from torch.distributions import constraints from torch.distributions.gamma import Gamma __all__ = ["Chi2"] class Chi2(Gamma): r""" Creates a Chi-squared distribution parameterized by shape parameter :attr:`df`. This is exactly equivalent to ``Gamma(alpha=0.5*df, beta=0.5)`` Example:: >>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> m = Chi2(torch.tensor([1.0])) >>> m.sample() # Chi2 distributed with shape df=1 tensor([ 0.1046]) Args: df (float or Tensor): shape parameter of the distribution """ arg_constraints = {"df": constraints.positive} def __init__(self, df, validate_args=None): super().__init__(0.5 * df, 0.5, validate_args=validate_args) def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(Chi2, _instance) return super().expand(batch_shape, new) @property def df(self): return self.concentration * 2