""" Do NOT manually edit this file. Instead, run ./bin/ask_update.py. """ from sympy.assumptions.ask import Q from sympy.assumptions.cnf import Literal from sympy.core.cache import cacheit @cacheit def get_all_known_facts(): """ Known facts between unary predicates as CNF clauses. """ return { frozenset((Literal(Q.algebraic, False), Literal(Q.imaginary, True), Literal(Q.transcendental, False))), frozenset((Literal(Q.algebraic, False), Literal(Q.negative, True), Literal(Q.transcendental, False))), frozenset((Literal(Q.algebraic, False), Literal(Q.positive, True), Literal(Q.transcendental, False))), frozenset((Literal(Q.algebraic, False), Literal(Q.rational, True))), frozenset((Literal(Q.algebraic, False), Literal(Q.transcendental, False), Literal(Q.zero, True))), frozenset((Literal(Q.algebraic, True), Literal(Q.finite, False))), frozenset((Literal(Q.algebraic, True), Literal(Q.transcendental, True))), frozenset((Literal(Q.antihermitian, False), Literal(Q.hermitian, False), Literal(Q.zero, True))), frozenset((Literal(Q.antihermitian, False), Literal(Q.imaginary, True))), frozenset((Literal(Q.commutative, False), Literal(Q.finite, True))), frozenset((Literal(Q.commutative, False), Literal(Q.infinite, True))), frozenset((Literal(Q.complex_elements, False), Literal(Q.real_elements, True))), frozenset((Literal(Q.composite, False), Literal(Q.even, True), Literal(Q.positive, True), Literal(Q.prime, False))), frozenset((Literal(Q.composite, True), Literal(Q.even, False), Literal(Q.odd, False))), frozenset((Literal(Q.composite, True), Literal(Q.positive, False))), frozenset((Literal(Q.composite, True), Literal(Q.prime, True))), frozenset((Literal(Q.diagonal, False), Literal(Q.lower_triangular, True), Literal(Q.upper_triangular, True))), frozenset((Literal(Q.diagonal, True), Literal(Q.lower_triangular, False))), frozenset((Literal(Q.diagonal, True), Literal(Q.normal, False))), frozenset((Literal(Q.diagonal, True), Literal(Q.symmetric, False))), frozenset((Literal(Q.diagonal, True), Literal(Q.upper_triangular, False))), frozenset((Literal(Q.even, False), Literal(Q.odd, False), Literal(Q.prime, True))), frozenset((Literal(Q.even, False), Literal(Q.zero, True))), frozenset((Literal(Q.even, True), Literal(Q.odd, True))), frozenset((Literal(Q.even, True), Literal(Q.rational, False))), frozenset((Literal(Q.finite, False), Literal(Q.transcendental, True))), frozenset((Literal(Q.finite, True), Literal(Q.infinite, True))), frozenset((Literal(Q.fullrank, False), Literal(Q.invertible, True))), frozenset((Literal(Q.fullrank, True), Literal(Q.invertible, False), Literal(Q.square, True))), frozenset((Literal(Q.hermitian, False), Literal(Q.negative, True))), frozenset((Literal(Q.hermitian, False), Literal(Q.positive, True))), frozenset((Literal(Q.hermitian, False), Literal(Q.zero, True))), frozenset((Literal(Q.imaginary, True), Literal(Q.negative, True))), frozenset((Literal(Q.imaginary, True), Literal(Q.positive, True))), frozenset((Literal(Q.imaginary, True), Literal(Q.zero, True))), frozenset((Literal(Q.infinite, False), Literal(Q.negative_infinite, True))), frozenset((Literal(Q.infinite, False), Literal(Q.positive_infinite, True))), frozenset((Literal(Q.integer_elements, True), Literal(Q.real_elements, False))), frozenset((Literal(Q.invertible, False), Literal(Q.positive_definite, True))), frozenset((Literal(Q.invertible, False), Literal(Q.singular, False))), frozenset((Literal(Q.invertible, False), Literal(Q.unitary, True))), frozenset((Literal(Q.invertible, True), Literal(Q.singular, True))), frozenset((Literal(Q.invertible, True), Literal(Q.square, False))), frozenset((Literal(Q.irrational, False), Literal(Q.negative, True), Literal(Q.rational, False))), frozenset((Literal(Q.irrational, False), Literal(Q.positive, True), Literal(Q.rational, False))), frozenset((Literal(Q.irrational, False), Literal(Q.rational, False), Literal(Q.zero, True))), frozenset((Literal(Q.irrational, True), Literal(Q.negative, False), Literal(Q.positive, False), Literal(Q.zero, False))), frozenset((Literal(Q.irrational, True), Literal(Q.rational, True))), frozenset((Literal(Q.lower_triangular, False), Literal(Q.triangular, True), Literal(Q.upper_triangular, False))), frozenset((Literal(Q.lower_triangular, True), Literal(Q.triangular, False))), frozenset((Literal(Q.negative, False), Literal(Q.positive, False), Literal(Q.rational, True), Literal(Q.zero, False))), frozenset((Literal(Q.negative, True), Literal(Q.negative_infinite, True))), frozenset((Literal(Q.negative, True), Literal(Q.positive, True))), frozenset((Literal(Q.negative, True), Literal(Q.positive_infinite, True))), frozenset((Literal(Q.negative, True), Literal(Q.zero, True))), frozenset((Literal(Q.negative_infinite, True), Literal(Q.positive, True))), frozenset((Literal(Q.negative_infinite, True), Literal(Q.positive_infinite, True))), frozenset((Literal(Q.negative_infinite, True), Literal(Q.zero, True))), frozenset((Literal(Q.normal, False), Literal(Q.unitary, True))), frozenset((Literal(Q.normal, True), Literal(Q.square, False))), frozenset((Literal(Q.odd, True), Literal(Q.rational, False))), frozenset((Literal(Q.orthogonal, False), Literal(Q.real_elements, True), Literal(Q.unitary, True))), frozenset((Literal(Q.orthogonal, True), Literal(Q.positive_definite, False))), frozenset((Literal(Q.orthogonal, True), Literal(Q.unitary, False))), frozenset((Literal(Q.positive, False), Literal(Q.prime, True))), frozenset((Literal(Q.positive, True), Literal(Q.positive_infinite, True))), frozenset((Literal(Q.positive, True), Literal(Q.zero, True))), frozenset((Literal(Q.positive_infinite, True), Literal(Q.zero, True))), frozenset((Literal(Q.square, False), Literal(Q.symmetric, True))), frozenset((Literal(Q.triangular, False), Literal(Q.unit_triangular, True))), frozenset((Literal(Q.triangular, False), Literal(Q.upper_triangular, True))) } @cacheit def get_known_facts_dict(): """ Logical relations between unary predicates as dictionary. Each key is a predicate, and item is two groups of predicates. First group contains the predicates which are implied by the key, and second group contains the predicates which are rejected by the key. """ return { Q.algebraic: (set([Q.algebraic, Q.commutative, Q.complex, Q.finite]), set([Q.infinite, Q.negative_infinite, Q.positive_infinite, Q.transcendental])), Q.antihermitian: (set([Q.antihermitian]), set([])), Q.commutative: (set([Q.commutative]), set([])), Q.complex: (set([Q.commutative, Q.complex, Q.finite]), set([Q.infinite, Q.negative_infinite, Q.positive_infinite])), Q.complex_elements: (set([Q.complex_elements]), set([])), Q.composite: (set([Q.algebraic, Q.commutative, Q.complex, Q.composite, Q.extended_nonnegative, Q.extended_nonzero, Q.extended_positive, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.nonnegative, Q.nonzero, Q.positive, Q.rational, Q.real]), set([Q.extended_negative, Q.extended_nonpositive, Q.imaginary, Q.infinite, Q.irrational, Q.negative, Q.negative_infinite, Q.nonpositive, Q.positive_infinite, Q.prime, Q.transcendental, Q.zero])), Q.diagonal: (set([Q.diagonal, Q.lower_triangular, Q.normal, Q.square, Q.symmetric, Q.triangular, Q.upper_triangular]), set([])), Q.even: (set([Q.algebraic, Q.commutative, Q.complex, Q.even, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.rational, Q.real]), set([Q.imaginary, Q.infinite, Q.irrational, Q.negative_infinite, Q.odd, Q.positive_infinite, Q.transcendental])), Q.extended_negative: (set([Q.commutative, Q.extended_negative, Q.extended_nonpositive, Q.extended_nonzero, Q.extended_real]), set([Q.composite, Q.extended_nonnegative, Q.extended_positive, Q.imaginary, Q.nonnegative, Q.positive, Q.positive_infinite, Q.prime, Q.zero])), Q.extended_nonnegative: (set([Q.commutative, Q.extended_nonnegative, Q.extended_real]), set([Q.extended_negative, Q.imaginary, Q.negative, Q.negative_infinite])), Q.extended_nonpositive: (set([Q.commutative, Q.extended_nonpositive, Q.extended_real]), set([Q.composite, Q.extended_positive, Q.imaginary, Q.positive, Q.positive_infinite, Q.prime])), Q.extended_nonzero: (set([Q.commutative, Q.extended_nonzero, Q.extended_real]), set([Q.imaginary, Q.zero])), Q.extended_positive: (set([Q.commutative, Q.extended_nonnegative, Q.extended_nonzero, Q.extended_positive, Q.extended_real]), set([Q.extended_negative, Q.extended_nonpositive, Q.imaginary, Q.negative, Q.negative_infinite, Q.nonpositive, Q.zero])), Q.extended_real: (set([Q.commutative, Q.extended_real]), set([Q.imaginary])), Q.finite: (set([Q.commutative, Q.finite]), set([Q.infinite, Q.negative_infinite, Q.positive_infinite])), Q.fullrank: (set([Q.fullrank]), set([])), Q.hermitian: (set([Q.hermitian]), set([])), Q.imaginary: (set([Q.antihermitian, Q.commutative, Q.complex, Q.finite, Q.imaginary]), set([Q.composite, Q.even, Q.extended_negative, Q.extended_nonnegative, Q.extended_nonpositive, Q.extended_nonzero, Q.extended_positive, Q.extended_real, Q.infinite, Q.integer, Q.irrational, Q.negative, Q.negative_infinite, Q.nonnegative, Q.nonpositive, Q.nonzero, Q.odd, Q.positive, Q.positive_infinite, Q.prime, Q.rational, Q.real, Q.zero])), Q.infinite: (set([Q.commutative, Q.infinite]), set([Q.algebraic, Q.complex, Q.composite, Q.even, Q.finite, Q.imaginary, Q.integer, Q.irrational, Q.negative, Q.nonnegative, Q.nonpositive, Q.nonzero, Q.odd, Q.positive, Q.prime, Q.rational, Q.real, Q.transcendental, Q.zero])), Q.integer: (set([Q.algebraic, Q.commutative, Q.complex, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.rational, Q.real]), set([Q.imaginary, Q.infinite, Q.irrational, Q.negative_infinite, Q.positive_infinite, Q.transcendental])), Q.integer_elements: (set([Q.complex_elements, Q.integer_elements, Q.real_elements]), set([])), Q.invertible: (set([Q.fullrank, Q.invertible, Q.square]), set([Q.singular])), Q.irrational: (set([Q.commutative, Q.complex, Q.extended_nonzero, Q.extended_real, Q.finite, Q.hermitian, Q.irrational, Q.nonzero, Q.real]), set([Q.composite, Q.even, Q.imaginary, Q.infinite, Q.integer, Q.negative_infinite, Q.odd, Q.positive_infinite, Q.prime, Q.rational, Q.zero])), Q.is_true: (set([Q.is_true]), set([])), Q.lower_triangular: (set([Q.lower_triangular, Q.triangular]), set([])), Q.negative: (set([Q.commutative, Q.complex, Q.extended_negative, Q.extended_nonpositive, Q.extended_nonzero, Q.extended_real, Q.finite, Q.hermitian, Q.negative, Q.nonpositive, Q.nonzero, Q.real]), set([Q.composite, Q.extended_nonnegative, Q.extended_positive, Q.imaginary, Q.infinite, Q.negative_infinite, Q.nonnegative, Q.positive, Q.positive_infinite, Q.prime, Q.zero])), Q.negative_infinite: (set([Q.commutative, Q.extended_negative, Q.extended_nonpositive, Q.extended_nonzero, Q.extended_real, Q.infinite, Q.negative_infinite]), set([Q.algebraic, Q.complex, Q.composite, Q.even, Q.extended_nonnegative, Q.extended_positive, Q.finite, Q.imaginary, Q.integer, Q.irrational, Q.negative, Q.nonnegative, Q.nonpositive, Q.nonzero, Q.odd, Q.positive, Q.positive_infinite, Q.prime, Q.rational, Q.real, Q.transcendental, Q.zero])), Q.nonnegative: (set([Q.commutative, Q.complex, Q.extended_nonnegative, Q.extended_real, Q.finite, Q.hermitian, Q.nonnegative, Q.real]), set([Q.extended_negative, Q.imaginary, Q.infinite, Q.negative, Q.negative_infinite, Q.positive_infinite])), Q.nonpositive: (set([Q.commutative, Q.complex, Q.extended_nonpositive, Q.extended_real, Q.finite, Q.hermitian, Q.nonpositive, Q.real]), set([Q.composite, Q.extended_positive, Q.imaginary, Q.infinite, Q.negative_infinite, Q.positive, Q.positive_infinite, Q.prime])), Q.nonzero: (set([Q.commutative, Q.complex, Q.extended_nonzero, Q.extended_real, Q.finite, Q.hermitian, Q.nonzero, Q.real]), set([Q.imaginary, Q.infinite, Q.negative_infinite, Q.positive_infinite, Q.zero])), Q.normal: (set([Q.normal, Q.square]), set([])), Q.odd: (set([Q.algebraic, Q.commutative, Q.complex, Q.extended_nonzero, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.nonzero, Q.odd, Q.rational, Q.real]), set([Q.even, Q.imaginary, Q.infinite, Q.irrational, Q.negative_infinite, Q.positive_infinite, Q.transcendental, Q.zero])), Q.orthogonal: (set([Q.fullrank, Q.invertible, Q.normal, Q.orthogonal, Q.positive_definite, Q.square, Q.unitary]), set([Q.singular])), Q.positive: (set([Q.commutative, Q.complex, Q.extended_nonnegative, Q.extended_nonzero, Q.extended_positive, Q.extended_real, Q.finite, Q.hermitian, Q.nonnegative, Q.nonzero, Q.positive, Q.real]), set([Q.extended_negative, Q.extended_nonpositive, Q.imaginary, Q.infinite, Q.negative, Q.negative_infinite, Q.nonpositive, Q.positive_infinite, Q.zero])), Q.positive_definite: (set([Q.fullrank, Q.invertible, Q.positive_definite, Q.square]), set([Q.singular])), Q.positive_infinite: (set([Q.commutative, Q.extended_nonnegative, Q.extended_nonzero, Q.extended_positive, Q.extended_real, Q.infinite, Q.positive_infinite]), set([Q.algebraic, Q.complex, Q.composite, Q.even, Q.extended_negative, Q.extended_nonpositive, Q.finite, Q.imaginary, Q.integer, Q.irrational, Q.negative, Q.negative_infinite, Q.nonnegative, Q.nonpositive, Q.nonzero, Q.odd, Q.positive, Q.prime, Q.rational, Q.real, Q.transcendental, Q.zero])), Q.prime: (set([Q.algebraic, Q.commutative, Q.complex, Q.extended_nonnegative, Q.extended_nonzero, Q.extended_positive, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.nonnegative, Q.nonzero, Q.positive, Q.prime, Q.rational, Q.real]), set([Q.composite, Q.extended_negative, Q.extended_nonpositive, Q.imaginary, Q.infinite, Q.irrational, Q.negative, Q.negative_infinite, Q.nonpositive, Q.positive_infinite, Q.transcendental, Q.zero])), Q.rational: (set([Q.algebraic, Q.commutative, Q.complex, Q.extended_real, Q.finite, Q.hermitian, Q.rational, Q.real]), set([Q.imaginary, Q.infinite, Q.irrational, Q.negative_infinite, Q.positive_infinite, Q.transcendental])), Q.real: (set([Q.commutative, Q.complex, Q.extended_real, Q.finite, Q.hermitian, Q.real]), set([Q.imaginary, Q.infinite, Q.negative_infinite, Q.positive_infinite])), Q.real_elements: (set([Q.complex_elements, Q.real_elements]), set([])), Q.singular: (set([Q.singular]), set([Q.invertible, Q.orthogonal, Q.positive_definite, Q.unitary])), Q.square: (set([Q.square]), set([])), Q.symmetric: (set([Q.square, Q.symmetric]), set([])), Q.transcendental: (set([Q.commutative, Q.complex, Q.finite, Q.transcendental]), set([Q.algebraic, Q.composite, Q.even, Q.infinite, Q.integer, Q.negative_infinite, Q.odd, Q.positive_infinite, Q.prime, Q.rational, Q.zero])), Q.triangular: (set([Q.triangular]), set([])), Q.unit_triangular: (set([Q.triangular, Q.unit_triangular]), set([])), Q.unitary: (set([Q.fullrank, Q.invertible, Q.normal, Q.square, Q.unitary]), set([Q.singular])), Q.upper_triangular: (set([Q.triangular, Q.upper_triangular]), set([])), Q.zero: (set([Q.algebraic, Q.commutative, Q.complex, Q.even, Q.extended_nonnegative, Q.extended_nonpositive, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.nonnegative, Q.nonpositive, Q.rational, Q.real, Q.zero]), set([Q.composite, Q.extended_negative, Q.extended_nonzero, Q.extended_positive, Q.imaginary, Q.infinite, Q.irrational, Q.negative, Q.negative_infinite, Q.nonzero, Q.odd, Q.positive, Q.positive_infinite, Q.prime, Q.transcendental])), }