"""A module which implements predicates and assumption context.""" from contextlib import contextmanager import inspect from sympy.core.symbol import Str from sympy.core.sympify import _sympify from sympy.logic.boolalg import Boolean, false, true from sympy.multipledispatch.dispatcher import Dispatcher, str_signature from sympy.utilities.exceptions import sympy_deprecation_warning from sympy.utilities.iterables import is_sequence from sympy.utilities.source import get_class class AssumptionsContext(set): """ Set containing default assumptions which are applied to the ``ask()`` function. Explanation =========== This is used to represent global assumptions, but you can also use this class to create your own local assumptions contexts. It is basically a thin wrapper to Python's set, so see its documentation for advanced usage. Examples ======== The default assumption context is ``global_assumptions``, which is initially empty: >>> from sympy import ask, Q >>> from sympy.assumptions import global_assumptions >>> global_assumptions AssumptionsContext() You can add default assumptions: >>> from sympy.abc import x >>> global_assumptions.add(Q.real(x)) >>> global_assumptions AssumptionsContext({Q.real(x)}) >>> ask(Q.real(x)) True And remove them: >>> global_assumptions.remove(Q.real(x)) >>> print(ask(Q.real(x))) None The ``clear()`` method removes every assumption: >>> global_assumptions.add(Q.positive(x)) >>> global_assumptions AssumptionsContext({Q.positive(x)}) >>> global_assumptions.clear() >>> global_assumptions AssumptionsContext() See Also ======== assuming """ def add(self, *assumptions): """Add assumptions.""" for a in assumptions: super().add(a) def _sympystr(self, printer): if not self: return "%s()" % self.__class__.__name__ return "{}({})".format(self.__class__.__name__, printer._print_set(self)) global_assumptions = AssumptionsContext() class AppliedPredicate(Boolean): """ The class of expressions resulting from applying ``Predicate`` to the arguments. ``AppliedPredicate`` merely wraps its argument and remain unevaluated. To evaluate it, use the ``ask()`` function. Examples ======== >>> from sympy import Q, ask >>> Q.integer(1) Q.integer(1) The ``function`` attribute returns the predicate, and the ``arguments`` attribute returns the tuple of arguments. >>> type(Q.integer(1)) >>> Q.integer(1).function Q.integer >>> Q.integer(1).arguments (1,) Applied predicates can be evaluated to a boolean value with ``ask``: >>> ask(Q.integer(1)) True """ __slots__ = () def __new__(cls, predicate, *args): if not isinstance(predicate, Predicate): raise TypeError("%s is not a Predicate." % predicate) args = map(_sympify, args) return super().__new__(cls, predicate, *args) @property def arg(self): """ Return the expression used by this assumption. Examples ======== >>> from sympy import Q, Symbol >>> x = Symbol('x') >>> a = Q.integer(x + 1) >>> a.arg x + 1 """ # Will be deprecated args = self._args if len(args) == 2: # backwards compatibility return args[1] raise TypeError("'arg' property is allowed only for unary predicates.") @property def function(self): """ Return the predicate. """ # Will be changed to self.args[0] after args overriding is removed return self._args[0] @property def arguments(self): """ Return the arguments which are applied to the predicate. """ # Will be changed to self.args[1:] after args overriding is removed return self._args[1:] def _eval_ask(self, assumptions): return self.function.eval(self.arguments, assumptions) @property def binary_symbols(self): from .ask import Q if self.function == Q.is_true: i = self.arguments[0] if i.is_Boolean or i.is_Symbol: return i.binary_symbols if self.function in (Q.eq, Q.ne): if true in self.arguments or false in self.arguments: if self.arguments[0].is_Symbol: return {self.arguments[0]} elif self.arguments[1].is_Symbol: return {self.arguments[1]} return set() class PredicateMeta(type): def __new__(cls, clsname, bases, dct): # If handler is not defined, assign empty dispatcher. if "handler" not in dct: name = f"Ask{clsname.capitalize()}Handler" handler = Dispatcher(name, doc="Handler for key %s" % name) dct["handler"] = handler dct["_orig_doc"] = dct.get("__doc__", "") return super().__new__(cls, clsname, bases, dct) @property def __doc__(cls): handler = cls.handler doc = cls._orig_doc if cls is not Predicate and handler is not None: doc += "Handler\n" doc += " =======\n\n" # Append the handler's doc without breaking sphinx documentation. docs = [" Multiply dispatched method: %s" % handler.name] if handler.doc: for line in handler.doc.splitlines(): if not line: continue docs.append(" %s" % line) other = [] for sig in handler.ordering[::-1]: func = handler.funcs[sig] if func.__doc__: s = ' Inputs: <%s>' % str_signature(sig) lines = [] for line in func.__doc__.splitlines(): lines.append(" %s" % line) s += "\n".join(lines) docs.append(s) else: other.append(str_signature(sig)) if other: othersig = " Other signatures:" for line in other: othersig += "\n * %s" % line docs.append(othersig) doc += '\n\n'.join(docs) return doc class Predicate(Boolean, metaclass=PredicateMeta): """ Base class for mathematical predicates. It also serves as a constructor for undefined predicate objects. Explanation =========== Predicate is a function that returns a boolean value [1]. Predicate function is object, and it is instance of predicate class. When a predicate is applied to arguments, ``AppliedPredicate`` instance is returned. This merely wraps the argument and remain unevaluated. To obtain the truth value of applied predicate, use the function ``ask``. Evaluation of predicate is done by multiple dispatching. You can register new handler to the predicate to support new types. Every predicate in SymPy can be accessed via the property of ``Q``. For example, ``Q.even`` returns the predicate which checks if the argument is even number. To define a predicate which can be evaluated, you must subclass this class, make an instance of it, and register it to ``Q``. After then, dispatch the handler by argument types. If you directly construct predicate using this class, you will get ``UndefinedPredicate`` which cannot be dispatched. This is useful when you are building boolean expressions which do not need to be evaluated. Examples ======== Applying and evaluating to boolean value: >>> from sympy import Q, ask >>> ask(Q.prime(7)) True You can define a new predicate by subclassing and dispatching. Here, we define a predicate for sexy primes [2] as an example. >>> from sympy import Predicate, Integer >>> class SexyPrimePredicate(Predicate): ... name = "sexyprime" >>> Q.sexyprime = SexyPrimePredicate() >>> @Q.sexyprime.register(Integer, Integer) ... def _(int1, int2, assumptions): ... args = sorted([int1, int2]) ... if not all(ask(Q.prime(a), assumptions) for a in args): ... return False ... return args[1] - args[0] == 6 >>> ask(Q.sexyprime(5, 11)) True Direct constructing returns ``UndefinedPredicate``, which can be applied but cannot be dispatched. >>> from sympy import Predicate, Integer >>> Q.P = Predicate("P") >>> type(Q.P) >>> Q.P(1) Q.P(1) >>> Q.P.register(Integer)(lambda expr, assump: True) Traceback (most recent call last): ... TypeError: cannot be dispatched. References ========== .. [1] https://en.wikipedia.org/wiki/Predicate_%28mathematical_logic%29 .. [2] https://en.wikipedia.org/wiki/Sexy_prime """ is_Atom = True def __new__(cls, *args, **kwargs): if cls is Predicate: return UndefinedPredicate(*args, **kwargs) obj = super().__new__(cls, *args) return obj @property def name(self): # May be overridden return type(self).__name__ @classmethod def register(cls, *types, **kwargs): """ Register the signature to the handler. """ if cls.handler is None: raise TypeError("%s cannot be dispatched." % type(cls)) return cls.handler.register(*types, **kwargs) @classmethod def register_many(cls, *types, **kwargs): """ Register multiple signatures to same handler. """ def _(func): for t in types: if not is_sequence(t): t = (t,) # for convenience, allow passing `type` to mean `(type,)` cls.register(*t, **kwargs)(func) return _ def __call__(self, *args): return AppliedPredicate(self, *args) def eval(self, args, assumptions=True): """ Evaluate ``self(*args)`` under the given assumptions. This uses only direct resolution methods, not logical inference. """ result = None try: result = self.handler(*args, assumptions=assumptions) except NotImplementedError: pass return result def _eval_refine(self, assumptions): # When Predicate is no longer Boolean, delete this method return self class UndefinedPredicate(Predicate): """ Predicate without handler. Explanation =========== This predicate is generated by using ``Predicate`` directly for construction. It does not have a handler, and evaluating this with arguments is done by SAT solver. Examples ======== >>> from sympy import Predicate, Q >>> Q.P = Predicate('P') >>> Q.P.func >>> Q.P.name Str('P') """ handler = None def __new__(cls, name, handlers=None): # "handlers" parameter supports old design if not isinstance(name, Str): name = Str(name) obj = super(Boolean, cls).__new__(cls, name) obj.handlers = handlers or [] return obj @property def name(self): return self.args[0] def _hashable_content(self): return (self.name,) def __getnewargs__(self): return (self.name,) def __call__(self, expr): return AppliedPredicate(self, expr) def add_handler(self, handler): sympy_deprecation_warning( """ The AskHandler system is deprecated. Predicate.add_handler() should be replaced with the multipledispatch handler of Predicate. """, deprecated_since_version="1.8", active_deprecations_target='deprecated-askhandler', ) self.handlers.append(handler) def remove_handler(self, handler): sympy_deprecation_warning( """ The AskHandler system is deprecated. Predicate.remove_handler() should be replaced with the multipledispatch handler of Predicate. """, deprecated_since_version="1.8", active_deprecations_target='deprecated-askhandler', ) self.handlers.remove(handler) def eval(self, args, assumptions=True): # Support for deprecated design # When old design is removed, this will always return None sympy_deprecation_warning( """ The AskHandler system is deprecated. Evaluating UndefinedPredicate objects should be replaced with the multipledispatch handler of Predicate. """, deprecated_since_version="1.8", active_deprecations_target='deprecated-askhandler', stacklevel=5, ) expr, = args res, _res = None, None mro = inspect.getmro(type(expr)) for handler in self.handlers: cls = get_class(handler) for subclass in mro: eval_ = getattr(cls, subclass.__name__, None) if eval_ is None: continue res = eval_(expr, assumptions) # Do not stop if value returned is None # Try to check for higher classes if res is None: continue if _res is None: _res = res else: # only check consistency if both resolutors have concluded if _res != res: raise ValueError('incompatible resolutors') break return res @contextmanager def assuming(*assumptions): """ Context manager for assumptions. Examples ======== >>> from sympy import assuming, Q, ask >>> from sympy.abc import x, y >>> print(ask(Q.integer(x + y))) None >>> with assuming(Q.integer(x), Q.integer(y)): ... print(ask(Q.integer(x + y))) True """ old_global_assumptions = global_assumptions.copy() global_assumptions.update(assumptions) try: yield finally: global_assumptions.clear() global_assumptions.update(old_global_assumptions)