""" Handlers for keys related to number theory: prime, even, odd, etc. """ from sympy.assumptions import Q, ask from sympy.core import Add, Basic, Expr, Float, Mul, Pow, S from sympy.core.numbers import (ImaginaryUnit, Infinity, Integer, NaN, NegativeInfinity, NumberSymbol, Rational) from sympy.functions import Abs, im, re from sympy.ntheory import isprime from sympy.multipledispatch import MDNotImplementedError from ..predicates.ntheory import (PrimePredicate, CompositePredicate, EvenPredicate, OddPredicate) # PrimePredicate def _PrimePredicate_number(expr, assumptions): # helper method exact = not expr.atoms(Float) try: i = int(expr.round()) if (expr - i).equals(0) is False: raise TypeError except TypeError: return False if exact: return isprime(i) # when not exact, we won't give a True or False # since the number represents an approximate value @PrimePredicate.register(Expr) def _(expr, assumptions): ret = expr.is_prime if ret is None: raise MDNotImplementedError return ret @PrimePredicate.register(Basic) def _(expr, assumptions): if expr.is_number: return _PrimePredicate_number(expr, assumptions) @PrimePredicate.register(Mul) def _(expr, assumptions): if expr.is_number: return _PrimePredicate_number(expr, assumptions) for arg in expr.args: if not ask(Q.integer(arg), assumptions): return None for arg in expr.args: if arg.is_number and arg.is_composite: return False @PrimePredicate.register(Pow) def _(expr, assumptions): """ Integer**Integer -> !Prime """ if expr.is_number: return _PrimePredicate_number(expr, assumptions) if ask(Q.integer(expr.exp), assumptions) and \ ask(Q.integer(expr.base), assumptions): return False @PrimePredicate.register(Integer) def _(expr, assumptions): return isprime(expr) @PrimePredicate.register_many(Rational, Infinity, NegativeInfinity, ImaginaryUnit) def _(expr, assumptions): return False @PrimePredicate.register(Float) def _(expr, assumptions): return _PrimePredicate_number(expr, assumptions) @PrimePredicate.register(NumberSymbol) def _(expr, assumptions): return _PrimePredicate_number(expr, assumptions) @PrimePredicate.register(NaN) def _(expr, assumptions): return None # CompositePredicate @CompositePredicate.register(Expr) def _(expr, assumptions): ret = expr.is_composite if ret is None: raise MDNotImplementedError return ret @CompositePredicate.register(Basic) def _(expr, assumptions): _positive = ask(Q.positive(expr), assumptions) if _positive: _integer = ask(Q.integer(expr), assumptions) if _integer: _prime = ask(Q.prime(expr), assumptions) if _prime is None: return # Positive integer which is not prime is not # necessarily composite if expr.equals(1): return False return not _prime else: return _integer else: return _positive # EvenPredicate def _EvenPredicate_number(expr, assumptions): # helper method try: i = int(expr.round()) if not (expr - i).equals(0): raise TypeError except TypeError: return False if isinstance(expr, (float, Float)): return False return i % 2 == 0 @EvenPredicate.register(Expr) def _(expr, assumptions): ret = expr.is_even if ret is None: raise MDNotImplementedError return ret @EvenPredicate.register(Basic) def _(expr, assumptions): if expr.is_number: return _EvenPredicate_number(expr, assumptions) @EvenPredicate.register(Mul) def _(expr, assumptions): """ Even * Integer -> Even Even * Odd -> Even Integer * Odd -> ? Odd * Odd -> Odd Even * Even -> Even Integer * Integer -> Even if Integer + Integer = Odd otherwise -> ? """ if expr.is_number: return _EvenPredicate_number(expr, assumptions) even, odd, irrational, acc = False, 0, False, 1 for arg in expr.args: # check for all integers and at least one even if ask(Q.integer(arg), assumptions): if ask(Q.even(arg), assumptions): even = True elif ask(Q.odd(arg), assumptions): odd += 1 elif not even and acc != 1: if ask(Q.odd(acc + arg), assumptions): even = True elif ask(Q.irrational(arg), assumptions): # one irrational makes the result False # two makes it undefined if irrational: break irrational = True else: break acc = arg else: if irrational: return False if even: return True if odd == len(expr.args): return False @EvenPredicate.register(Add) def _(expr, assumptions): """ Even + Odd -> Odd Even + Even -> Even Odd + Odd -> Even """ if expr.is_number: return _EvenPredicate_number(expr, assumptions) _result = True for arg in expr.args: if ask(Q.even(arg), assumptions): pass elif ask(Q.odd(arg), assumptions): _result = not _result else: break else: return _result @EvenPredicate.register(Pow) def _(expr, assumptions): if expr.is_number: return _EvenPredicate_number(expr, assumptions) if ask(Q.integer(expr.exp), assumptions): if ask(Q.positive(expr.exp), assumptions): return ask(Q.even(expr.base), assumptions) elif ask(~Q.negative(expr.exp) & Q.odd(expr.base), assumptions): return False elif expr.base is S.NegativeOne: return False @EvenPredicate.register(Integer) def _(expr, assumptions): return not bool(expr.p & 1) @EvenPredicate.register_many(Rational, Infinity, NegativeInfinity, ImaginaryUnit) def _(expr, assumptions): return False @EvenPredicate.register(NumberSymbol) def _(expr, assumptions): return _EvenPredicate_number(expr, assumptions) @EvenPredicate.register(Abs) def _(expr, assumptions): if ask(Q.real(expr.args[0]), assumptions): return ask(Q.even(expr.args[0]), assumptions) @EvenPredicate.register(re) def _(expr, assumptions): if ask(Q.real(expr.args[0]), assumptions): return ask(Q.even(expr.args[0]), assumptions) @EvenPredicate.register(im) def _(expr, assumptions): if ask(Q.real(expr.args[0]), assumptions): return True @EvenPredicate.register(NaN) def _(expr, assumptions): return None # OddPredicate @OddPredicate.register(Expr) def _(expr, assumptions): ret = expr.is_odd if ret is None: raise MDNotImplementedError return ret @OddPredicate.register(Basic) def _(expr, assumptions): _integer = ask(Q.integer(expr), assumptions) if _integer: _even = ask(Q.even(expr), assumptions) if _even is None: return None return not _even return _integer