from sympy.core.numbers import I from sympy.core.symbol import symbols from sympy.matrices.common import _MinimalMatrix, _CastableMatrix from sympy.matrices.matrices import MatrixReductions from sympy.testing.pytest import raises from sympy.matrices import Matrix, zeros from sympy.core.symbol import Symbol from sympy.core.numbers import Rational from sympy.functions.elementary.miscellaneous import sqrt from sympy.simplify.simplify import simplify from sympy.abc import x class ReductionsOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixReductions): pass def eye_Reductions(n): return ReductionsOnlyMatrix(n, n, lambda i, j: int(i == j)) def zeros_Reductions(n): return ReductionsOnlyMatrix(n, n, lambda i, j: 0) # ReductionsOnlyMatrix tests def test_row_op(): e = eye_Reductions(3) raises(ValueError, lambda: e.elementary_row_op("abc")) raises(ValueError, lambda: e.elementary_row_op()) raises(ValueError, lambda: e.elementary_row_op('n->kn', row=5, k=5)) raises(ValueError, lambda: e.elementary_row_op('n->kn', row=-5, k=5)) raises(ValueError, lambda: e.elementary_row_op('n<->m', row1=1, row2=5)) raises(ValueError, lambda: e.elementary_row_op('n<->m', row1=5, row2=1)) raises(ValueError, lambda: e.elementary_row_op('n<->m', row1=-5, row2=1)) raises(ValueError, lambda: e.elementary_row_op('n<->m', row1=1, row2=-5)) raises(ValueError, lambda: e.elementary_row_op('n->n+km', row1=1, row2=5, k=5)) raises(ValueError, lambda: e.elementary_row_op('n->n+km', row1=5, row2=1, k=5)) raises(ValueError, lambda: e.elementary_row_op('n->n+km', row1=-5, row2=1, k=5)) raises(ValueError, lambda: e.elementary_row_op('n->n+km', row1=1, row2=-5, k=5)) raises(ValueError, lambda: e.elementary_row_op('n->n+km', row1=1, row2=1, k=5)) # test various ways to set arguments assert e.elementary_row_op("n->kn", 0, 5) == Matrix([[5, 0, 0], [0, 1, 0], [0, 0, 1]]) assert e.elementary_row_op("n->kn", 1, 5) == Matrix([[1, 0, 0], [0, 5, 0], [0, 0, 1]]) assert e.elementary_row_op("n->kn", row=1, k=5) == Matrix([[1, 0, 0], [0, 5, 0], [0, 0, 1]]) assert e.elementary_row_op("n->kn", row1=1, k=5) == Matrix([[1, 0, 0], [0, 5, 0], [0, 0, 1]]) assert e.elementary_row_op("n<->m", 0, 1) == Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) assert e.elementary_row_op("n<->m", row1=0, row2=1) == Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) assert e.elementary_row_op("n<->m", row=0, row2=1) == Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) assert e.elementary_row_op("n->n+km", 0, 5, 1) == Matrix([[1, 5, 0], [0, 1, 0], [0, 0, 1]]) assert e.elementary_row_op("n->n+km", row=0, k=5, row2=1) == Matrix([[1, 5, 0], [0, 1, 0], [0, 0, 1]]) assert e.elementary_row_op("n->n+km", row1=0, k=5, row2=1) == Matrix([[1, 5, 0], [0, 1, 0], [0, 0, 1]]) # make sure the matrix doesn't change size a = ReductionsOnlyMatrix(2, 3, [0]*6) assert a.elementary_row_op("n->kn", 1, 5) == Matrix(2, 3, [0]*6) assert a.elementary_row_op("n<->m", 0, 1) == Matrix(2, 3, [0]*6) assert a.elementary_row_op("n->n+km", 0, 5, 1) == Matrix(2, 3, [0]*6) def test_col_op(): e = eye_Reductions(3) raises(ValueError, lambda: e.elementary_col_op("abc")) raises(ValueError, lambda: e.elementary_col_op()) raises(ValueError, lambda: e.elementary_col_op('n->kn', col=5, k=5)) raises(ValueError, lambda: e.elementary_col_op('n->kn', col=-5, k=5)) raises(ValueError, lambda: e.elementary_col_op('n<->m', col1=1, col2=5)) raises(ValueError, lambda: e.elementary_col_op('n<->m', col1=5, col2=1)) raises(ValueError, lambda: e.elementary_col_op('n<->m', col1=-5, col2=1)) raises(ValueError, lambda: e.elementary_col_op('n<->m', col1=1, col2=-5)) raises(ValueError, lambda: e.elementary_col_op('n->n+km', col1=1, col2=5, k=5)) raises(ValueError, lambda: e.elementary_col_op('n->n+km', col1=5, col2=1, k=5)) raises(ValueError, lambda: e.elementary_col_op('n->n+km', col1=-5, col2=1, k=5)) raises(ValueError, lambda: e.elementary_col_op('n->n+km', col1=1, col2=-5, k=5)) raises(ValueError, lambda: e.elementary_col_op('n->n+km', col1=1, col2=1, k=5)) # test various ways to set arguments assert e.elementary_col_op("n->kn", 0, 5) == Matrix([[5, 0, 0], [0, 1, 0], [0, 0, 1]]) assert e.elementary_col_op("n->kn", 1, 5) == Matrix([[1, 0, 0], [0, 5, 0], [0, 0, 1]]) assert e.elementary_col_op("n->kn", col=1, k=5) == Matrix([[1, 0, 0], [0, 5, 0], [0, 0, 1]]) assert e.elementary_col_op("n->kn", col1=1, k=5) == Matrix([[1, 0, 0], [0, 5, 0], [0, 0, 1]]) assert e.elementary_col_op("n<->m", 0, 1) == Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) assert e.elementary_col_op("n<->m", col1=0, col2=1) == Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) assert e.elementary_col_op("n<->m", col=0, col2=1) == Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) assert e.elementary_col_op("n->n+km", 0, 5, 1) == Matrix([[1, 0, 0], [5, 1, 0], [0, 0, 1]]) assert e.elementary_col_op("n->n+km", col=0, k=5, col2=1) == Matrix([[1, 0, 0], [5, 1, 0], [0, 0, 1]]) assert e.elementary_col_op("n->n+km", col1=0, k=5, col2=1) == Matrix([[1, 0, 0], [5, 1, 0], [0, 0, 1]]) # make sure the matrix doesn't change size a = ReductionsOnlyMatrix(2, 3, [0]*6) assert a.elementary_col_op("n->kn", 1, 5) == Matrix(2, 3, [0]*6) assert a.elementary_col_op("n<->m", 0, 1) == Matrix(2, 3, [0]*6) assert a.elementary_col_op("n->n+km", 0, 5, 1) == Matrix(2, 3, [0]*6) def test_is_echelon(): zro = zeros_Reductions(3) ident = eye_Reductions(3) assert zro.is_echelon assert ident.is_echelon a = ReductionsOnlyMatrix(0, 0, []) assert a.is_echelon a = ReductionsOnlyMatrix(2, 3, [3, 2, 1, 0, 0, 6]) assert a.is_echelon a = ReductionsOnlyMatrix(2, 3, [0, 0, 6, 3, 2, 1]) assert not a.is_echelon x = Symbol('x') a = ReductionsOnlyMatrix(3, 1, [x, 0, 0]) assert a.is_echelon a = ReductionsOnlyMatrix(3, 1, [x, x, 0]) assert not a.is_echelon a = ReductionsOnlyMatrix(3, 3, [0, 0, 0, 1, 2, 3, 0, 0, 0]) assert not a.is_echelon def test_echelon_form(): # echelon form is not unique, but the result # must be row-equivalent to the original matrix # and it must be in echelon form. a = zeros_Reductions(3) e = eye_Reductions(3) # we can assume the zero matrix and the identity matrix shouldn't change assert a.echelon_form() == a assert e.echelon_form() == e a = ReductionsOnlyMatrix(0, 0, []) assert a.echelon_form() == a a = ReductionsOnlyMatrix(1, 1, [5]) assert a.echelon_form() == a # now we get to the real tests def verify_row_null_space(mat, rows, nulls): for v in nulls: assert all(t.is_zero for t in a_echelon*v) for v in rows: if not all(t.is_zero for t in v): assert not all(t.is_zero for t in a_echelon*v.transpose()) a = ReductionsOnlyMatrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9]) nulls = [Matrix([ [ 1], [-2], [ 1]])] rows = [a[i, :] for i in range(a.rows)] a_echelon = a.echelon_form() assert a_echelon.is_echelon verify_row_null_space(a, rows, nulls) a = ReductionsOnlyMatrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 8]) nulls = [] rows = [a[i, :] for i in range(a.rows)] a_echelon = a.echelon_form() assert a_echelon.is_echelon verify_row_null_space(a, rows, nulls) a = ReductionsOnlyMatrix(3, 3, [2, 1, 3, 0, 0, 0, 2, 1, 3]) nulls = [Matrix([ [Rational(-1, 2)], [ 1], [ 0]]), Matrix([ [Rational(-3, 2)], [ 0], [ 1]])] rows = [a[i, :] for i in range(a.rows)] a_echelon = a.echelon_form() assert a_echelon.is_echelon verify_row_null_space(a, rows, nulls) # this one requires a row swap a = ReductionsOnlyMatrix(3, 3, [2, 1, 3, 0, 0, 0, 1, 1, 3]) nulls = [Matrix([ [ 0], [ -3], [ 1]])] rows = [a[i, :] for i in range(a.rows)] a_echelon = a.echelon_form() assert a_echelon.is_echelon verify_row_null_space(a, rows, nulls) a = ReductionsOnlyMatrix(3, 3, [0, 3, 3, 0, 2, 2, 0, 1, 1]) nulls = [Matrix([ [1], [0], [0]]), Matrix([ [ 0], [-1], [ 1]])] rows = [a[i, :] for i in range(a.rows)] a_echelon = a.echelon_form() assert a_echelon.is_echelon verify_row_null_space(a, rows, nulls) a = ReductionsOnlyMatrix(2, 3, [2, 2, 3, 3, 3, 0]) nulls = [Matrix([ [-1], [1], [0]])] rows = [a[i, :] for i in range(a.rows)] a_echelon = a.echelon_form() assert a_echelon.is_echelon verify_row_null_space(a, rows, nulls) def test_rref(): e = ReductionsOnlyMatrix(0, 0, []) assert e.rref(pivots=False) == e e = ReductionsOnlyMatrix(1, 1, [1]) a = ReductionsOnlyMatrix(1, 1, [5]) assert e.rref(pivots=False) == a.rref(pivots=False) == e a = ReductionsOnlyMatrix(3, 1, [1, 2, 3]) assert a.rref(pivots=False) == Matrix([[1], [0], [0]]) a = ReductionsOnlyMatrix(1, 3, [1, 2, 3]) assert a.rref(pivots=False) == Matrix([[1, 2, 3]]) a = ReductionsOnlyMatrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9]) assert a.rref(pivots=False) == Matrix([ [1, 0, -1], [0, 1, 2], [0, 0, 0]]) a = ReductionsOnlyMatrix(3, 3, [1, 2, 3, 1, 2, 3, 1, 2, 3]) b = ReductionsOnlyMatrix(3, 3, [1, 2, 3, 0, 0, 0, 0, 0, 0]) c = ReductionsOnlyMatrix(3, 3, [0, 0, 0, 1, 2, 3, 0, 0, 0]) d = ReductionsOnlyMatrix(3, 3, [0, 0, 0, 0, 0, 0, 1, 2, 3]) assert a.rref(pivots=False) == \ b.rref(pivots=False) == \ c.rref(pivots=False) == \ d.rref(pivots=False) == b e = eye_Reductions(3) z = zeros_Reductions(3) assert e.rref(pivots=False) == e assert z.rref(pivots=False) == z a = ReductionsOnlyMatrix([ [ 0, 0, 1, 2, 2, -5, 3], [-1, 5, 2, 2, 1, -7, 5], [ 0, 0, -2, -3, -3, 8, -5], [-1, 5, 0, -1, -2, 1, 0]]) mat, pivot_offsets = a.rref() assert mat == Matrix([ [1, -5, 0, 0, 1, 1, -1], [0, 0, 1, 0, 0, -1, 1], [0, 0, 0, 1, 1, -2, 1], [0, 0, 0, 0, 0, 0, 0]]) assert pivot_offsets == (0, 2, 3) a = ReductionsOnlyMatrix([[Rational(1, 19), Rational(1, 5), 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [ 12, 13, 14, 15]]) assert a.rref(pivots=False) == Matrix([ [1, 0, 0, Rational(-76, 157)], [0, 1, 0, Rational(-5, 157)], [0, 0, 1, Rational(238, 157)], [0, 0, 0, 0]]) x = Symbol('x') a = ReductionsOnlyMatrix(2, 3, [x, 1, 1, sqrt(x), x, 1]) for i, j in zip(a.rref(pivots=False), [1, 0, sqrt(x)*(-x + 1)/(-x**Rational(5, 2) + x), 0, 1, 1/(sqrt(x) + x + 1)]): assert simplify(i - j).is_zero def test_issue_17827(): C = Matrix([ [3, 4, -1, 1], [9, 12, -3, 3], [0, 2, 1, 3], [2, 3, 0, -2], [0, 3, 3, -5], [8, 15, 0, 6] ]) # Tests for row/col within valid range D = C.elementary_row_op('n<->m', row1=2, row2=5) E = C.elementary_row_op('n->n+km', row1=5, row2=3, k=-4) F = C.elementary_row_op('n->kn', row=5, k=2) assert(D[5, :] == Matrix([[0, 2, 1, 3]])) assert(E[5, :] == Matrix([[0, 3, 0, 14]])) assert(F[5, :] == Matrix([[16, 30, 0, 12]])) # Tests for row/col out of range raises(ValueError, lambda: C.elementary_row_op('n<->m', row1=2, row2=6)) raises(ValueError, lambda: C.elementary_row_op('n->kn', row=7, k=2)) raises(ValueError, lambda: C.elementary_row_op('n->n+km', row1=-1, row2=5, k=2)) def test_rank(): m = Matrix([[1, 2], [x, 1 - 1/x]]) assert m.rank() == 2 n = Matrix(3, 3, range(1, 10)) assert n.rank() == 2 p = zeros(3) assert p.rank() == 0 def test_issue_11434(): ax, ay, bx, by, cx, cy, dx, dy, ex, ey, t0, t1 = \ symbols('a_x a_y b_x b_y c_x c_y d_x d_y e_x e_y t_0 t_1') M = Matrix([[ax, ay, ax*t0, ay*t0, 0], [bx, by, bx*t0, by*t0, 0], [cx, cy, cx*t0, cy*t0, 1], [dx, dy, dx*t0, dy*t0, 1], [ex, ey, 2*ex*t1 - ex*t0, 2*ey*t1 - ey*t0, 0]]) assert M.rank() == 4 def test_rank_regression_from_so(): # see: # https://stackoverflow.com/questions/19072700/why-does-sympy-give-me-the-wrong-answer-when-i-row-reduce-a-symbolic-matrix nu, lamb = symbols('nu, lambda') A = Matrix([[-3*nu, 1, 0, 0], [ 3*nu, -2*nu - 1, 2, 0], [ 0, 2*nu, (-1*nu) - lamb - 2, 3], [ 0, 0, nu + lamb, -3]]) expected_reduced = Matrix([[1, 0, 0, 1/(nu**2*(-lamb - nu))], [0, 1, 0, 3/(nu*(-lamb - nu))], [0, 0, 1, 3/(-lamb - nu)], [0, 0, 0, 0]]) expected_pivots = (0, 1, 2) reduced, pivots = A.rref() assert simplify(expected_reduced - reduced) == zeros(*A.shape) assert pivots == expected_pivots def test_issue_15872(): A = Matrix([[1, 1, 1, 0], [-2, -1, 0, -1], [0, 0, -1, -1], [0, 0, 2, 1]]) B = A - Matrix.eye(4) * I assert B.rank() == 3 assert (B**2).rank() == 2 assert (B**3).rank() == 2