from sympy.core.numbers import (Float, I, Rational) from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.functions.elementary.complexes import Abs from sympy.polys.polytools import PurePoly from sympy.matrices import \ Matrix, MutableSparseMatrix, ImmutableSparseMatrix, SparseMatrix, eye, \ ones, zeros, ShapeError, NonSquareMatrixError from sympy.testing.pytest import raises def test_sparse_creation(): a = SparseMatrix(2, 2, {(0, 0): [[1, 2], [3, 4]]}) assert a == SparseMatrix([[1, 2], [3, 4]]) a = SparseMatrix(2, 2, {(0, 0): [[1, 2]]}) assert a == SparseMatrix([[1, 2], [0, 0]]) a = SparseMatrix(2, 2, {(0, 0): [1, 2]}) assert a == SparseMatrix([[1, 0], [2, 0]]) def test_sparse_matrix(): def sparse_eye(n): return SparseMatrix.eye(n) def sparse_zeros(n): return SparseMatrix.zeros(n) # creation args raises(TypeError, lambda: SparseMatrix(1, 2)) a = SparseMatrix(( (1, 0), (0, 1) )) assert SparseMatrix(a) == a from sympy.matrices import MutableDenseMatrix a = MutableSparseMatrix([]) b = MutableDenseMatrix([1, 2]) assert a.row_join(b) == b assert a.col_join(b) == b assert type(a.row_join(b)) == type(a) assert type(a.col_join(b)) == type(a) # make sure 0 x n matrices get stacked correctly sparse_matrices = [SparseMatrix.zeros(0, n) for n in range(4)] assert SparseMatrix.hstack(*sparse_matrices) == Matrix(0, 6, []) sparse_matrices = [SparseMatrix.zeros(n, 0) for n in range(4)] assert SparseMatrix.vstack(*sparse_matrices) == Matrix(6, 0, []) # test element assignment a = SparseMatrix(( (1, 0), (0, 1) )) a[3] = 4 assert a[1, 1] == 4 a[3] = 1 a[0, 0] = 2 assert a == SparseMatrix(( (2, 0), (0, 1) )) a[1, 0] = 5 assert a == SparseMatrix(( (2, 0), (5, 1) )) a[1, 1] = 0 assert a == SparseMatrix(( (2, 0), (5, 0) )) assert a.todok() == {(0, 0): 2, (1, 0): 5} # test_multiplication a = SparseMatrix(( (1, 2), (3, 1), (0, 6), )) b = SparseMatrix(( (1, 2), (3, 0), )) c = a*b assert c[0, 0] == 7 assert c[0, 1] == 2 assert c[1, 0] == 6 assert c[1, 1] == 6 assert c[2, 0] == 18 assert c[2, 1] == 0 try: eval('c = a @ b') except SyntaxError: pass else: assert c[0, 0] == 7 assert c[0, 1] == 2 assert c[1, 0] == 6 assert c[1, 1] == 6 assert c[2, 0] == 18 assert c[2, 1] == 0 x = Symbol("x") c = b * Symbol("x") assert isinstance(c, SparseMatrix) assert c[0, 0] == x assert c[0, 1] == 2*x assert c[1, 0] == 3*x assert c[1, 1] == 0 c = 5 * b assert isinstance(c, SparseMatrix) assert c[0, 0] == 5 assert c[0, 1] == 2*5 assert c[1, 0] == 3*5 assert c[1, 1] == 0 #test_power A = SparseMatrix([[2, 3], [4, 5]]) assert (A**5)[:] == [6140, 8097, 10796, 14237] A = SparseMatrix([[2, 1, 3], [4, 2, 4], [6, 12, 1]]) assert (A**3)[:] == [290, 262, 251, 448, 440, 368, 702, 954, 433] # test_creation x = Symbol("x") a = SparseMatrix([[x, 0], [0, 0]]) m = a assert m.cols == m.rows assert m.cols == 2 assert m[:] == [x, 0, 0, 0] b = SparseMatrix(2, 2, [x, 0, 0, 0]) m = b assert m.cols == m.rows assert m.cols == 2 assert m[:] == [x, 0, 0, 0] assert a == b S = sparse_eye(3) S.row_del(1) assert S == SparseMatrix([ [1, 0, 0], [0, 0, 1]]) S = sparse_eye(3) S.col_del(1) assert S == SparseMatrix([ [1, 0], [0, 0], [0, 1]]) S = SparseMatrix.eye(3) S[2, 1] = 2 S.col_swap(1, 0) assert S == SparseMatrix([ [0, 1, 0], [1, 0, 0], [2, 0, 1]]) S.row_swap(0, 1) assert S == SparseMatrix([ [1, 0, 0], [0, 1, 0], [2, 0, 1]]) a = SparseMatrix(1, 2, [1, 2]) b = a.copy() c = a.copy() assert a[0] == 1 a.row_del(0) assert a == SparseMatrix(0, 2, []) b.col_del(1) assert b == SparseMatrix(1, 1, [1]) assert SparseMatrix([[1, 2, 3], [1, 2], [1]]) == Matrix([ [1, 2, 3], [1, 2, 0], [1, 0, 0]]) assert SparseMatrix(4, 4, {(1, 1): sparse_eye(2)}) == Matrix([ [0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 0]]) raises(ValueError, lambda: SparseMatrix(1, 1, {(1, 1): 1})) assert SparseMatrix(1, 2, [1, 2]).tolist() == [[1, 2]] assert SparseMatrix(2, 2, [1, [2, 3]]).tolist() == [[1, 0], [2, 3]] raises(ValueError, lambda: SparseMatrix(2, 2, [1])) raises(ValueError, lambda: SparseMatrix(1, 1, [[1, 2]])) assert SparseMatrix([.1]).has(Float) # autosizing assert SparseMatrix(None, {(0, 1): 0}).shape == (0, 0) assert SparseMatrix(None, {(0, 1): 1}).shape == (1, 2) assert SparseMatrix(None, None, {(0, 1): 1}).shape == (1, 2) raises(ValueError, lambda: SparseMatrix(None, 1, [[1, 2]])) raises(ValueError, lambda: SparseMatrix(1, None, [[1, 2]])) raises(ValueError, lambda: SparseMatrix(3, 3, {(0, 0): ones(2), (1, 1): 2})) # test_determinant x, y = Symbol('x'), Symbol('y') assert SparseMatrix(1, 1, [0]).det() == 0 assert SparseMatrix([[1]]).det() == 1 assert SparseMatrix(((-3, 2), (8, -5))).det() == -1 assert SparseMatrix(((x, 1), (y, 2*y))).det() == 2*x*y - y assert SparseMatrix(( (1, 1, 1), (1, 2, 3), (1, 3, 6) )).det() == 1 assert SparseMatrix(( ( 3, -2, 0, 5), (-2, 1, -2, 2), ( 0, -2, 5, 0), ( 5, 0, 3, 4) )).det() == -289 assert SparseMatrix(( ( 1, 2, 3, 4), ( 5, 6, 7, 8), ( 9, 10, 11, 12), (13, 14, 15, 16) )).det() == 0 assert SparseMatrix(( (3, 2, 0, 0, 0), (0, 3, 2, 0, 0), (0, 0, 3, 2, 0), (0, 0, 0, 3, 2), (2, 0, 0, 0, 3) )).det() == 275 assert SparseMatrix(( (1, 0, 1, 2, 12), (2, 0, 1, 1, 4), (2, 1, 1, -1, 3), (3, 2, -1, 1, 8), (1, 1, 1, 0, 6) )).det() == -55 assert SparseMatrix(( (-5, 2, 3, 4, 5), ( 1, -4, 3, 4, 5), ( 1, 2, -3, 4, 5), ( 1, 2, 3, -2, 5), ( 1, 2, 3, 4, -1) )).det() == 11664 assert SparseMatrix(( ( 3, 0, 0, 0), (-2, 1, 0, 0), ( 0, -2, 5, 0), ( 5, 0, 3, 4) )).det() == 60 assert SparseMatrix(( ( 1, 0, 0, 0), ( 5, 0, 0, 0), ( 9, 10, 11, 0), (13, 14, 15, 16) )).det() == 0 assert SparseMatrix(( (3, 2, 0, 0, 0), (0, 3, 2, 0, 0), (0, 0, 3, 2, 0), (0, 0, 0, 3, 2), (0, 0, 0, 0, 3) )).det() == 243 assert SparseMatrix(( ( 2, 7, -1, 3, 2), ( 0, 0, 1, 0, 1), (-2, 0, 7, 0, 2), (-3, -2, 4, 5, 3), ( 1, 0, 0, 0, 1) )).det() == 123 # test_slicing m0 = sparse_eye(4) assert m0[:3, :3] == sparse_eye(3) assert m0[2:4, 0:2] == sparse_zeros(2) m1 = SparseMatrix(3, 3, lambda i, j: i + j) assert m1[0, :] == SparseMatrix(1, 3, (0, 1, 2)) assert m1[1:3, 1] == SparseMatrix(2, 1, (2, 3)) m2 = SparseMatrix( [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]) assert m2[:, -1] == SparseMatrix(4, 1, [3, 7, 11, 15]) assert m2[-2:, :] == SparseMatrix([[8, 9, 10, 11], [12, 13, 14, 15]]) assert SparseMatrix([[1, 2], [3, 4]])[[1], [1]] == Matrix([[4]]) # test_submatrix_assignment m = sparse_zeros(4) m[2:4, 2:4] = sparse_eye(2) assert m == SparseMatrix([(0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)]) assert len(m.todok()) == 2 m[:2, :2] = sparse_eye(2) assert m == sparse_eye(4) m[:, 0] = SparseMatrix(4, 1, (1, 2, 3, 4)) assert m == SparseMatrix([(1, 0, 0, 0), (2, 1, 0, 0), (3, 0, 1, 0), (4, 0, 0, 1)]) m[:, :] = sparse_zeros(4) assert m == sparse_zeros(4) m[:, :] = ((1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16)) assert m == SparseMatrix((( 1, 2, 3, 4), ( 5, 6, 7, 8), ( 9, 10, 11, 12), (13, 14, 15, 16))) m[:2, 0] = [0, 0] assert m == SparseMatrix((( 0, 2, 3, 4), ( 0, 6, 7, 8), ( 9, 10, 11, 12), (13, 14, 15, 16))) # test_reshape m0 = sparse_eye(3) assert m0.reshape(1, 9) == SparseMatrix(1, 9, (1, 0, 0, 0, 1, 0, 0, 0, 1)) m1 = SparseMatrix(3, 4, lambda i, j: i + j) assert m1.reshape(4, 3) == \ SparseMatrix([(0, 1, 2), (3, 1, 2), (3, 4, 2), (3, 4, 5)]) assert m1.reshape(2, 6) == \ SparseMatrix([(0, 1, 2, 3, 1, 2), (3, 4, 2, 3, 4, 5)]) # test_applyfunc m0 = sparse_eye(3) assert m0.applyfunc(lambda x: 2*x) == sparse_eye(3)*2 assert m0.applyfunc(lambda x: 0 ) == sparse_zeros(3) # test__eval_Abs assert abs(SparseMatrix(((x, 1), (y, 2*y)))) == SparseMatrix(((Abs(x), 1), (Abs(y), 2*Abs(y)))) # test_LUdecomp testmat = SparseMatrix([[ 0, 2, 5, 3], [ 3, 3, 7, 4], [ 8, 4, 0, 2], [-2, 6, 3, 4]]) L, U, p = testmat.LUdecomposition() assert L.is_lower assert U.is_upper assert (L*U).permute_rows(p, 'backward') - testmat == sparse_zeros(4) testmat = SparseMatrix([[ 6, -2, 7, 4], [ 0, 3, 6, 7], [ 1, -2, 7, 4], [-9, 2, 6, 3]]) L, U, p = testmat.LUdecomposition() assert L.is_lower assert U.is_upper assert (L*U).permute_rows(p, 'backward') - testmat == sparse_zeros(4) x, y, z = Symbol('x'), Symbol('y'), Symbol('z') M = Matrix(((1, x, 1), (2, y, 0), (y, 0, z))) L, U, p = M.LUdecomposition() assert L.is_lower assert U.is_upper assert (L*U).permute_rows(p, 'backward') - M == sparse_zeros(3) # test_LUsolve A = SparseMatrix([[2, 3, 5], [3, 6, 2], [8, 3, 6]]) x = SparseMatrix(3, 1, [3, 7, 5]) b = A*x soln = A.LUsolve(b) assert soln == x A = SparseMatrix([[0, -1, 2], [5, 10, 7], [8, 3, 4]]) x = SparseMatrix(3, 1, [-1, 2, 5]) b = A*x soln = A.LUsolve(b) assert soln == x # test_inverse A = sparse_eye(4) assert A.inv() == sparse_eye(4) assert A.inv(method="CH") == sparse_eye(4) assert A.inv(method="LDL") == sparse_eye(4) A = SparseMatrix([[2, 3, 5], [3, 6, 2], [7, 2, 6]]) Ainv = SparseMatrix(Matrix(A).inv()) assert A*Ainv == sparse_eye(3) assert A.inv(method="CH") == Ainv assert A.inv(method="LDL") == Ainv A = SparseMatrix([[2, 3, 5], [3, 6, 2], [5, 2, 6]]) Ainv = SparseMatrix(Matrix(A).inv()) assert A*Ainv == sparse_eye(3) assert A.inv(method="CH") == Ainv assert A.inv(method="LDL") == Ainv # test_cross v1 = Matrix(1, 3, [1, 2, 3]) v2 = Matrix(1, 3, [3, 4, 5]) assert v1.cross(v2) == Matrix(1, 3, [-2, 4, -2]) assert v1.norm(2)**2 == 14 # conjugate a = SparseMatrix(((1, 2 + I), (3, 4))) assert a.C == SparseMatrix([ [1, 2 - I], [3, 4] ]) # mul assert a*Matrix(2, 2, [1, 0, 0, 1]) == a assert a + Matrix(2, 2, [1, 1, 1, 1]) == SparseMatrix([ [2, 3 + I], [4, 5] ]) # col join assert a.col_join(sparse_eye(2)) == SparseMatrix([ [1, 2 + I], [3, 4], [1, 0], [0, 1] ]) # row insert assert a.row_insert(2, sparse_eye(2)) == SparseMatrix([ [1, 2 + I], [3, 4], [1, 0], [0, 1] ]) # col insert assert a.col_insert(2, SparseMatrix.zeros(2, 1)) == SparseMatrix([ [1, 2 + I, 0], [3, 4, 0], ]) # symmetric assert not a.is_symmetric(simplify=False) # col op M = SparseMatrix.eye(3)*2 M[1, 0] = -1 M.col_op(1, lambda v, i: v + 2*M[i, 0]) assert M == SparseMatrix([ [ 2, 4, 0], [-1, 0, 0], [ 0, 0, 2] ]) # fill M = SparseMatrix.eye(3) M.fill(2) assert M == SparseMatrix([ [2, 2, 2], [2, 2, 2], [2, 2, 2], ]) # test_cofactor assert sparse_eye(3) == sparse_eye(3).cofactor_matrix() test = SparseMatrix([[1, 3, 2], [2, 6, 3], [2, 3, 6]]) assert test.cofactor_matrix() == \ SparseMatrix([[27, -6, -6], [-12, 2, 3], [-3, 1, 0]]) test = SparseMatrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) assert test.cofactor_matrix() == \ SparseMatrix([[-3, 6, -3], [6, -12, 6], [-3, 6, -3]]) # test_jacobian x = Symbol('x') y = Symbol('y') L = SparseMatrix(1, 2, [x**2*y, 2*y**2 + x*y]) syms = [x, y] assert L.jacobian(syms) == Matrix([[2*x*y, x**2], [y, 4*y + x]]) L = SparseMatrix(1, 2, [x, x**2*y**3]) assert L.jacobian(syms) == SparseMatrix([[1, 0], [2*x*y**3, x**2*3*y**2]]) # test_QR A = Matrix([[1, 2], [2, 3]]) Q, S = A.QRdecomposition() R = Rational assert Q == Matrix([ [ 5**R(-1, 2), (R(2)/5)*(R(1)/5)**R(-1, 2)], [2*5**R(-1, 2), (-R(1)/5)*(R(1)/5)**R(-1, 2)]]) assert S == Matrix([ [5**R(1, 2), 8*5**R(-1, 2)], [ 0, (R(1)/5)**R(1, 2)]]) assert Q*S == A assert Q.T * Q == sparse_eye(2) R = Rational # test nullspace # first test reduced row-ech form M = SparseMatrix([[5, 7, 2, 1], [1, 6, 2, -1]]) out, tmp = M.rref() assert out == Matrix([[1, 0, -R(2)/23, R(13)/23], [0, 1, R(8)/23, R(-6)/23]]) M = SparseMatrix([[ 1, 3, 0, 2, 6, 3, 1], [-2, -6, 0, -2, -8, 3, 1], [ 3, 9, 0, 0, 6, 6, 2], [-1, -3, 0, 1, 0, 9, 3]]) out, tmp = M.rref() assert out == Matrix([[1, 3, 0, 0, 2, 0, 0], [0, 0, 0, 1, 2, 0, 0], [0, 0, 0, 0, 0, 1, R(1)/3], [0, 0, 0, 0, 0, 0, 0]]) # now check the vectors basis = M.nullspace() assert basis[0] == Matrix([-3, 1, 0, 0, 0, 0, 0]) assert basis[1] == Matrix([0, 0, 1, 0, 0, 0, 0]) assert basis[2] == Matrix([-2, 0, 0, -2, 1, 0, 0]) assert basis[3] == Matrix([0, 0, 0, 0, 0, R(-1)/3, 1]) # test eigen x = Symbol('x') y = Symbol('y') sparse_eye3 = sparse_eye(3) assert sparse_eye3.charpoly(x) == PurePoly((x - 1)**3) assert sparse_eye3.charpoly(y) == PurePoly((y - 1)**3) # test values M = Matrix([( 0, 1, -1), ( 1, 1, 0), (-1, 0, 1)]) vals = M.eigenvals() assert sorted(vals.keys()) == [-1, 1, 2] R = Rational M = Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) assert M.eigenvects() == [(1, 3, [ Matrix([1, 0, 0]), Matrix([0, 1, 0]), Matrix([0, 0, 1])])] M = Matrix([[5, 0, 2], [3, 2, 0], [0, 0, 1]]) assert M.eigenvects() == [(1, 1, [Matrix([R(-1)/2, R(3)/2, 1])]), (2, 1, [Matrix([0, 1, 0])]), (5, 1, [Matrix([1, 1, 0])])] assert M.zeros(3, 5) == SparseMatrix(3, 5, {}) A = SparseMatrix(10, 10, {(0, 0): 18, (0, 9): 12, (1, 4): 18, (2, 7): 16, (3, 9): 12, (4, 2): 19, (5, 7): 16, (6, 2): 12, (9, 7): 18}) assert A.row_list() == [(0, 0, 18), (0, 9, 12), (1, 4, 18), (2, 7, 16), (3, 9, 12), (4, 2, 19), (5, 7, 16), (6, 2, 12), (9, 7, 18)] assert A.col_list() == [(0, 0, 18), (4, 2, 19), (6, 2, 12), (1, 4, 18), (2, 7, 16), (5, 7, 16), (9, 7, 18), (0, 9, 12), (3, 9, 12)] assert SparseMatrix.eye(2).nnz() == 2 def test_scalar_multiply(): assert SparseMatrix([[1, 2]]).scalar_multiply(3) == SparseMatrix([[3, 6]]) def test_transpose(): assert SparseMatrix(((1, 2), (3, 4))).transpose() == \ SparseMatrix(((1, 3), (2, 4))) def test_trace(): assert SparseMatrix(((1, 2), (3, 4))).trace() == 5 assert SparseMatrix(((0, 0), (0, 4))).trace() == 4 def test_CL_RL(): assert SparseMatrix(((1, 2), (3, 4))).row_list() == \ [(0, 0, 1), (0, 1, 2), (1, 0, 3), (1, 1, 4)] assert SparseMatrix(((1, 2), (3, 4))).col_list() == \ [(0, 0, 1), (1, 0, 3), (0, 1, 2), (1, 1, 4)] def test_add(): assert SparseMatrix(((1, 0), (0, 1))) + SparseMatrix(((0, 1), (1, 0))) == \ SparseMatrix(((1, 1), (1, 1))) a = SparseMatrix(100, 100, lambda i, j: int(j != 0 and i % j == 0)) b = SparseMatrix(100, 100, lambda i, j: int(i != 0 and j % i == 0)) assert (len(a.todok()) + len(b.todok()) - len((a + b).todok()) > 0) def test_errors(): raises(ValueError, lambda: SparseMatrix(1.4, 2, lambda i, j: 0)) raises(TypeError, lambda: SparseMatrix([1, 2, 3], [1, 2])) raises(ValueError, lambda: SparseMatrix([[1, 2], [3, 4]])[(1, 2, 3)]) raises(IndexError, lambda: SparseMatrix([[1, 2], [3, 4]])[5]) raises(ValueError, lambda: SparseMatrix([[1, 2], [3, 4]])[1, 2, 3]) raises(TypeError, lambda: SparseMatrix([[1, 2], [3, 4]]).copyin_list([0, 1], set())) raises( IndexError, lambda: SparseMatrix([[1, 2], [3, 4]])[1, 2]) raises(TypeError, lambda: SparseMatrix([1, 2, 3]).cross(1)) raises(IndexError, lambda: SparseMatrix(1, 2, [1, 2])[3]) raises(ShapeError, lambda: SparseMatrix(1, 2, [1, 2]) + SparseMatrix(2, 1, [2, 1])) def test_len(): assert not SparseMatrix() assert SparseMatrix() == SparseMatrix([]) assert SparseMatrix() == SparseMatrix([[]]) def test_sparse_zeros_sparse_eye(): assert SparseMatrix.eye(3) == eye(3, cls=SparseMatrix) assert len(SparseMatrix.eye(3).todok()) == 3 assert SparseMatrix.zeros(3) == zeros(3, cls=SparseMatrix) assert len(SparseMatrix.zeros(3).todok()) == 0 def test_copyin(): s = SparseMatrix(3, 3, {}) s[1, 0] = 1 assert s[:, 0] == SparseMatrix(Matrix([0, 1, 0])) assert s[3] == 1 assert s[3: 4] == [1] s[1, 1] = 42 assert s[1, 1] == 42 assert s[1, 1:] == SparseMatrix([[42, 0]]) s[1, 1:] = Matrix([[5, 6]]) assert s[1, :] == SparseMatrix([[1, 5, 6]]) s[1, 1:] = [[42, 43]] assert s[1, :] == SparseMatrix([[1, 42, 43]]) s[0, 0] = 17 assert s[:, :1] == SparseMatrix([17, 1, 0]) s[0, 0] = [1, 1, 1] assert s[:, 0] == SparseMatrix([1, 1, 1]) s[0, 0] = Matrix([1, 1, 1]) assert s[:, 0] == SparseMatrix([1, 1, 1]) s[0, 0] = SparseMatrix([1, 1, 1]) assert s[:, 0] == SparseMatrix([1, 1, 1]) def test_sparse_solve(): A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) assert A.cholesky() == Matrix([ [ 5, 0, 0], [ 3, 3, 0], [-1, 1, 3]]) assert A.cholesky() * A.cholesky().T == Matrix([ [25, 15, -5], [15, 18, 0], [-5, 0, 11]]) A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) L, D = A.LDLdecomposition() assert 15*L == Matrix([ [15, 0, 0], [ 9, 15, 0], [-3, 5, 15]]) assert D == Matrix([ [25, 0, 0], [ 0, 9, 0], [ 0, 0, 9]]) assert L * D * L.T == A A = SparseMatrix(((3, 0, 2), (0, 0, 1), (1, 2, 0))) assert A.inv() * A == SparseMatrix(eye(3)) A = SparseMatrix([ [ 2, -1, 0], [-1, 2, -1], [ 0, 0, 2]]) ans = SparseMatrix([ [Rational(2, 3), Rational(1, 3), Rational(1, 6)], [Rational(1, 3), Rational(2, 3), Rational(1, 3)], [ 0, 0, S.Half]]) assert A.inv(method='CH') == ans assert A.inv(method='LDL') == ans assert A * ans == SparseMatrix(eye(3)) s = A.solve(A[:, 0], 'LDL') assert A*s == A[:, 0] s = A.solve(A[:, 0], 'CH') assert A*s == A[:, 0] A = A.col_join(A) s = A.solve_least_squares(A[:, 0], 'CH') assert A*s == A[:, 0] s = A.solve_least_squares(A[:, 0], 'LDL') assert A*s == A[:, 0] def test_lower_triangular_solve(): raises(NonSquareMatrixError, lambda: SparseMatrix([[1, 2]]).lower_triangular_solve(Matrix([[1, 2]]))) raises(ShapeError, lambda: SparseMatrix([[1, 2], [0, 4]]).lower_triangular_solve(Matrix([1]))) raises(ValueError, lambda: SparseMatrix([[1, 2], [3, 4]]).lower_triangular_solve(Matrix([[1, 2], [3, 4]]))) a, b, c, d = symbols('a:d') u, v, w, x = symbols('u:x') A = SparseMatrix([[a, 0], [c, d]]) B = MutableSparseMatrix([[u, v], [w, x]]) C = ImmutableSparseMatrix([[u, v], [w, x]]) sol = Matrix([[u/a, v/a], [(w - c*u/a)/d, (x - c*v/a)/d]]) assert A.lower_triangular_solve(B) == sol assert A.lower_triangular_solve(C) == sol def test_upper_triangular_solve(): raises(NonSquareMatrixError, lambda: SparseMatrix([[1, 2]]).upper_triangular_solve(Matrix([[1, 2]]))) raises(ShapeError, lambda: SparseMatrix([[1, 2], [0, 4]]).upper_triangular_solve(Matrix([1]))) raises(TypeError, lambda: SparseMatrix([[1, 2], [3, 4]]).upper_triangular_solve(Matrix([[1, 2], [3, 4]]))) a, b, c, d = symbols('a:d') u, v, w, x = symbols('u:x') A = SparseMatrix([[a, b], [0, d]]) B = MutableSparseMatrix([[u, v], [w, x]]) C = ImmutableSparseMatrix([[u, v], [w, x]]) sol = Matrix([[(u - b*w/d)/a, (v - b*x/d)/a], [w/d, x/d]]) assert A.upper_triangular_solve(B) == sol assert A.upper_triangular_solve(C) == sol def test_diagonal_solve(): a, d = symbols('a d') u, v, w, x = symbols('u:x') A = SparseMatrix([[a, 0], [0, d]]) B = MutableSparseMatrix([[u, v], [w, x]]) C = ImmutableSparseMatrix([[u, v], [w, x]]) sol = Matrix([[u/a, v/a], [w/d, x/d]]) assert A.diagonal_solve(B) == sol assert A.diagonal_solve(C) == sol def test_hermitian(): x = Symbol('x') a = SparseMatrix([[0, I], [-I, 0]]) assert a.is_hermitian a = SparseMatrix([[1, I], [-I, 1]]) assert a.is_hermitian a[0, 0] = 2*I assert a.is_hermitian is False a[0, 0] = x assert a.is_hermitian is None a[0, 1] = a[1, 0]*I assert a.is_hermitian is False