""" Module for the ddm_* routines for operating on a matrix in list of lists matrix representation. These routines are used internally by the DDM class which also provides a friendlier interface for them. The idea here is to implement core matrix routines in a way that can be applied to any simple list representation without the need to use any particular matrix class. For example we can compute the RREF of a matrix like: >>> from sympy.polys.matrices.dense import ddm_irref >>> M = [[1, 2, 3], [4, 5, 6]] >>> pivots = ddm_irref(M) >>> M [[1.0, 0.0, -1.0], [0, 1.0, 2.0]] These are lower-level routines that work mostly in place.The routines at this level should not need to know what the domain of the elements is but should ideally document what operations they will use and what functions they need to be provided with. The next-level up is the DDM class which uses these routines but wraps them up with an interface that handles copying etc and keeps track of the Domain of the elements of the matrix: >>> from sympy.polys.domains import QQ >>> from sympy.polys.matrices.ddm import DDM >>> M = DDM([[QQ(1), QQ(2), QQ(3)], [QQ(4), QQ(5), QQ(6)]], (2, 3), QQ) >>> M [[1, 2, 3], [4, 5, 6]] >>> Mrref, pivots = M.rref() >>> Mrref [[1, 0, -1], [0, 1, 2]] """ from __future__ import annotations from operator import mul from .exceptions import ( DMShapeError, DMNonInvertibleMatrixError, DMNonSquareMatrixError, ) from typing import Sequence, TypeVar from sympy.polys.matrices._typing import RingElement T = TypeVar('T') R = TypeVar('R', bound=RingElement) def ddm_transpose(matrix: Sequence[Sequence[T]]) -> list[list[T]]: """matrix transpose""" return list(map(list, zip(*matrix))) def ddm_iadd(a: list[list[R]], b: Sequence[Sequence[R]]) -> None: """a += b""" for ai, bi in zip(a, b): for j, bij in enumerate(bi): ai[j] += bij def ddm_isub(a: list[list[R]], b: Sequence[Sequence[R]]) -> None: """a -= b""" for ai, bi in zip(a, b): for j, bij in enumerate(bi): ai[j] -= bij def ddm_ineg(a: list[list[R]]) -> None: """a <-- -a""" for ai in a: for j, aij in enumerate(ai): ai[j] = -aij def ddm_imul(a: list[list[R]], b: R) -> None: for ai in a: for j, aij in enumerate(ai): ai[j] = aij * b def ddm_irmul(a: list[list[R]], b: R) -> None: for ai in a: for j, aij in enumerate(ai): ai[j] = b * aij def ddm_imatmul( a: list[list[R]], b: Sequence[Sequence[R]], c: Sequence[Sequence[R]] ) -> None: """a += b @ c""" cT = list(zip(*c)) for bi, ai in zip(b, a): for j, cTj in enumerate(cT): ai[j] = sum(map(mul, bi, cTj), ai[j]) def ddm_irref(a, _partial_pivot=False): """a <-- rref(a)""" # a is (m x n) m = len(a) if not m: return [] n = len(a[0]) i = 0 pivots = [] for j in range(n): # Proper pivoting should be used for all domains for performance # reasons but it is only strictly needed for RR and CC (and possibly # other domains like RR(x)). This path is used by DDM.rref() if the # domain is RR or CC. It uses partial (row) pivoting based on the # absolute value of the pivot candidates. if _partial_pivot: ip = max(range(i, m), key=lambda ip: abs(a[ip][j])) a[i], a[ip] = a[ip], a[i] # pivot aij = a[i][j] # zero-pivot if not aij: for ip in range(i+1, m): aij = a[ip][j] # row-swap if aij: a[i], a[ip] = a[ip], a[i] break else: # next column continue # normalise row ai = a[i] aijinv = aij**-1 for l in range(j, n): ai[l] *= aijinv # ai[j] = one # eliminate above and below to the right for k, ak in enumerate(a): if k == i or not ak[j]: continue akj = ak[j] ak[j] -= akj # ak[j] = zero for l in range(j+1, n): ak[l] -= akj * ai[l] # next row pivots.append(j) i += 1 # no more rows? if i >= m: break return pivots def ddm_idet(a, K): """a <-- echelon(a); return det""" # Bareiss algorithm # https://www.math.usm.edu/perry/Research/Thesis_DRL.pdf # a is (m x n) m = len(a) if not m: return K.one n = len(a[0]) exquo = K.exquo # uf keeps track of the sign change from row swaps uf = K.one for k in range(n-1): if not a[k][k]: for i in range(k+1, n): if a[i][k]: a[k], a[i] = a[i], a[k] uf = -uf break else: return K.zero akkm1 = a[k-1][k-1] if k else K.one for i in range(k+1, n): for j in range(k+1, n): a[i][j] = exquo(a[i][j]*a[k][k] - a[i][k]*a[k][j], akkm1) return uf * a[-1][-1] def ddm_iinv(ainv, a, K): if not K.is_Field: raise ValueError('Not a field') # a is (m x n) m = len(a) if not m: return n = len(a[0]) if m != n: raise DMNonSquareMatrixError eye = [[K.one if i==j else K.zero for j in range(n)] for i in range(n)] Aaug = [row + eyerow for row, eyerow in zip(a, eye)] pivots = ddm_irref(Aaug) if pivots != list(range(n)): raise DMNonInvertibleMatrixError('Matrix det == 0; not invertible.') ainv[:] = [row[n:] for row in Aaug] def ddm_ilu_split(L, U, K): """L, U <-- LU(U)""" m = len(U) if not m: return [] n = len(U[0]) swaps = ddm_ilu(U) zeros = [K.zero] * min(m, n) for i in range(1, m): j = min(i, n) L[i][:j] = U[i][:j] U[i][:j] = zeros[:j] return swaps def ddm_ilu(a): """a <-- LU(a)""" m = len(a) if not m: return [] n = len(a[0]) swaps = [] for i in range(min(m, n)): if not a[i][i]: for ip in range(i+1, m): if a[ip][i]: swaps.append((i, ip)) a[i], a[ip] = a[ip], a[i] break else: # M = Matrix([[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 1], [0, 0, 1, 2]]) continue for j in range(i+1, m): l_ji = a[j][i] / a[i][i] a[j][i] = l_ji for k in range(i+1, n): a[j][k] -= l_ji * a[i][k] return swaps def ddm_ilu_solve(x, L, U, swaps, b): """x <-- solve(L*U*x = swaps(b))""" m = len(U) if not m: return n = len(U[0]) m2 = len(b) if not m2: raise DMShapeError("Shape mismtch") o = len(b[0]) if m != m2: raise DMShapeError("Shape mismtch") if m < n: raise NotImplementedError("Underdetermined") if swaps: b = [row[:] for row in b] for i1, i2 in swaps: b[i1], b[i2] = b[i2], b[i1] # solve Ly = b y = [[None] * o for _ in range(m)] for k in range(o): for i in range(m): rhs = b[i][k] for j in range(i): rhs -= L[i][j] * y[j][k] y[i][k] = rhs if m > n: for i in range(n, m): for j in range(o): if y[i][j]: raise DMNonInvertibleMatrixError # Solve Ux = y for k in range(o): for i in reversed(range(n)): if not U[i][i]: raise DMNonInvertibleMatrixError rhs = y[i][k] for j in range(i+1, n): rhs -= U[i][j] * x[j][k] x[i][k] = rhs / U[i][i] def ddm_berk(M, K): m = len(M) if not m: return [[K.one]] n = len(M[0]) if m != n: raise DMShapeError("Not square") if n == 1: return [[K.one], [-M[0][0]]] a = M[0][0] R = [M[0][1:]] C = [[row[0]] for row in M[1:]] A = [row[1:] for row in M[1:]] q = ddm_berk(A, K) T = [[K.zero] * n for _ in range(n+1)] for i in range(n): T[i][i] = K.one T[i+1][i] = -a for i in range(2, n+1): if i == 2: AnC = C else: C = AnC AnC = [[K.zero] for row in C] ddm_imatmul(AnC, A, C) RAnC = [[K.zero]] ddm_imatmul(RAnC, R, AnC) for j in range(0, n+1-i): T[i+j][j] = -RAnC[0][0] qout = [[K.zero] for _ in range(n+1)] ddm_imatmul(qout, T, q) return qout