from sympy.core import Symbol, S, oo from sympy.functions.elementary.miscellaneous import sqrt from sympy.polys import poly from sympy.polys.dispersion import dispersion, dispersionset def test_dispersion(): x = Symbol("x") a = Symbol("a") fp = poly(S.Zero, x) assert sorted(dispersionset(fp)) == [0] fp = poly(S(2), x) assert sorted(dispersionset(fp)) == [0] fp = poly(x + 1, x) assert sorted(dispersionset(fp)) == [0] assert dispersion(fp) == 0 fp = poly((x + 1)*(x + 2), x) assert sorted(dispersionset(fp)) == [0, 1] assert dispersion(fp) == 1 fp = poly(x*(x + 3), x) assert sorted(dispersionset(fp)) == [0, 3] assert dispersion(fp) == 3 fp = poly((x - 3)*(x + 3), x) assert sorted(dispersionset(fp)) == [0, 6] assert dispersion(fp) == 6 fp = poly(x**4 - 3*x**2 + 1, x) gp = fp.shift(-3) assert sorted(dispersionset(fp, gp)) == [2, 3, 4] assert dispersion(fp, gp) == 4 assert sorted(dispersionset(gp, fp)) == [] assert dispersion(gp, fp) is -oo fp = poly(x*(3*x**2+a)*(x-2536)*(x**3+a), x) gp = fp.as_expr().subs(x, x-345).as_poly(x) assert sorted(dispersionset(fp, gp)) == [345, 2881] assert sorted(dispersionset(gp, fp)) == [2191] gp = poly((x-2)**2*(x-3)**3*(x-5)**3, x) assert sorted(dispersionset(gp)) == [0, 1, 2, 3] assert sorted(dispersionset(gp, (gp+4)**2)) == [1, 2] fp = poly(x*(x+2)*(x-1), x) assert sorted(dispersionset(fp)) == [0, 1, 2, 3] fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ') gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ') assert sorted(dispersionset(fp, gp)) == [2] assert sorted(dispersionset(gp, fp)) == [1, 4] # There are some difficulties if we compute over Z[a] # and alpha happenes to lie in Z[a] instead of simply Z. # Hence we can not decide if alpha is indeed integral # in general. fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x) assert sorted(dispersionset(fp)) == [0, 1] # For any specific value of a, the dispersion is 3*a # but the algorithm can not find this in general. # This is the point where the resultant based Ansatz # is superior to the current one. fp = poly(a**2*x**3 + (a**3 + a**2 + a + 1)*x, x) gp = fp.as_expr().subs(x, x - 3*a).as_poly(x) assert sorted(dispersionset(fp, gp)) == [] fpa = fp.as_expr().subs(a, 2).as_poly(x) gpa = gp.as_expr().subs(a, 2).as_poly(x) assert sorted(dispersionset(fpa, gpa)) == [6] # Work with Expr instead of Poly f = (x + 1)*(x + 2) assert sorted(dispersionset(f)) == [0, 1] assert dispersion(f) == 1 f = x**4 - 3*x**2 + 1 g = x**4 - 12*x**3 + 51*x**2 - 90*x + 55 assert sorted(dispersionset(f, g)) == [2, 3, 4] assert dispersion(f, g) == 4 # Work with Expr and specify a generator f = (x + 1)*(x + 2) assert sorted(dispersionset(f, None, x)) == [0, 1] assert dispersion(f, None, x) == 1 f = x**4 - 3*x**2 + 1 g = x**4 - 12*x**3 + 51*x**2 - 90*x + 55 assert sorted(dispersionset(f, g, x)) == [2, 3, 4] assert dispersion(f, g, x) == 4