# mypy: ignore-errors from __future__ import annotations import functools import torch from . import _dtypes_impl, _util from ._normalizations import ArrayLike, normalizer def upcast(func): """NumPy fft casts inputs to 64 bit and *returns 64-bit results*.""" @functools.wraps(func) def wrapped(tensor, *args, **kwds): target_dtype = ( _dtypes_impl.default_dtypes().complex_dtype if tensor.is_complex() else _dtypes_impl.default_dtypes().float_dtype ) tensor = _util.cast_if_needed(tensor, target_dtype) return func(tensor, *args, **kwds) return wrapped @normalizer @upcast def fft(a: ArrayLike, n=None, axis=-1, norm=None): return torch.fft.fft(a, n, dim=axis, norm=norm) @normalizer @upcast def ifft(a: ArrayLike, n=None, axis=-1, norm=None): return torch.fft.ifft(a, n, dim=axis, norm=norm) @normalizer @upcast def rfft(a: ArrayLike, n=None, axis=-1, norm=None): return torch.fft.rfft(a, n, dim=axis, norm=norm) @normalizer @upcast def irfft(a: ArrayLike, n=None, axis=-1, norm=None): return torch.fft.irfft(a, n, dim=axis, norm=norm) @normalizer @upcast def fftn(a: ArrayLike, s=None, axes=None, norm=None): return torch.fft.fftn(a, s, dim=axes, norm=norm) @normalizer @upcast def ifftn(a: ArrayLike, s=None, axes=None, norm=None): return torch.fft.ifftn(a, s, dim=axes, norm=norm) @normalizer @upcast def rfftn(a: ArrayLike, s=None, axes=None, norm=None): return torch.fft.rfftn(a, s, dim=axes, norm=norm) @normalizer @upcast def irfftn(a: ArrayLike, s=None, axes=None, norm=None): return torch.fft.irfftn(a, s, dim=axes, norm=norm) @normalizer @upcast def fft2(a: ArrayLike, s=None, axes=(-2, -1), norm=None): return torch.fft.fft2(a, s, dim=axes, norm=norm) @normalizer @upcast def ifft2(a: ArrayLike, s=None, axes=(-2, -1), norm=None): return torch.fft.ifft2(a, s, dim=axes, norm=norm) @normalizer @upcast def rfft2(a: ArrayLike, s=None, axes=(-2, -1), norm=None): return torch.fft.rfft2(a, s, dim=axes, norm=norm) @normalizer @upcast def irfft2(a: ArrayLike, s=None, axes=(-2, -1), norm=None): return torch.fft.irfft2(a, s, dim=axes, norm=norm) @normalizer @upcast def hfft(a: ArrayLike, n=None, axis=-1, norm=None): return torch.fft.hfft(a, n, dim=axis, norm=norm) @normalizer @upcast def ihfft(a: ArrayLike, n=None, axis=-1, norm=None): return torch.fft.ihfft(a, n, dim=axis, norm=norm) @normalizer def fftfreq(n, d=1.0): return torch.fft.fftfreq(n, d) @normalizer def rfftfreq(n, d=1.0): return torch.fft.rfftfreq(n, d) @normalizer def fftshift(x: ArrayLike, axes=None): return torch.fft.fftshift(x, axes) @normalizer def ifftshift(x: ArrayLike, axes=None): return torch.fft.ifftshift(x, axes)