#pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace at { class Tensor; enum class TORCH_API Float32MatmulPrecision { HIGHEST, HIGH, MEDIUM }; class TORCH_API Context { public: Context(); const Generator& defaultGenerator(Device device) { c10::DeviceType device_type = device.type(); initCUDAIfNeeded(device_type); initHIPIfNeeded(device_type); if (device_type == at::kCPU) { return at::detail::getDefaultCPUGenerator(); } else if (device_type == at::kCUDA) { return at::detail::getCUDAHooks().getDefaultCUDAGenerator(device.index()); } else if (device_type == at::kMPS) { return at::detail::getMPSHooks().getDefaultMPSGenerator(); } else if (device_type == at::kXPU) { return at::detail::getXPUHooks().getDefaultXPUGenerator(device.index()); } else if (device_type == at::kIPU) { return at::detail::getIPUHooks().getDefaultIPUGenerator(device.index()); } else if (device_type == at::kPrivateUse1) { return at::GetPrivateUse1HooksInterface()->getDefaultGenerator( device.index()); } else { AT_ERROR(c10::DeviceTypeName(device_type), " device type not enabled."); } } const AcceleratorHooksInterface& getAcceleratorHooksInterface( c10::optional opt_device_type = c10::nullopt) { c10::DeviceType device_type = opt_device_type.has_value() ? opt_device_type.value() : at::getAccelerator(true).value(); if (device_type == at::kCUDA) { return at::detail::getCUDAHooks(); } else if (device_type == at::kMPS) { return at::detail::getMPSHooks(); } else if (device_type == at::kPrivateUse1) { return at::detail::getPrivateUse1Hooks(); } else { AT_ERROR( c10::DeviceTypeName(device_type), " device type not an accelerator."); } } Device getDeviceFromPtr(void* data, c10::DeviceType device_type) { initCUDAIfNeeded(device_type); initHIPIfNeeded(device_type); initXPUIfNeeded(device_type); if (device_type == at::kCPU) { return c10::DeviceType::CPU; } else if (device_type == at::kCUDA) { return at::detail::getCUDAHooks().getDeviceFromPtr(data); } else if (device_type == at::kXPU) { return at::detail::getXPUHooks().getDeviceFromPtr(data); } else if (device_type == at::kPrivateUse1) { return at::GetPrivateUse1HooksInterface()->getDeviceFromPtr(data); } else { AT_ERROR(c10::DeviceTypeName(device_type), " device type not enabled."); } } static bool isPinnedPtr(const void* data) { return detail::getCUDAHooks().isPinnedPtr(data); } static bool hasOpenMP(); static bool hasMKL(); static bool hasLAPACK(); static bool hasMKLDNN(); static bool hasMAGMA() { return detail::getCUDAHooks().hasMAGMA(); } static bool hasCUDA() { return detail::getCUDAHooks().hasCUDA(); } static bool hasMTIA() { return detail::getMTIAHooks().hasMTIA(); } static bool hasCUDART() { return detail::getCUDAHooks().hasCUDART(); } static long versionCUDART() { return detail::getCUDAHooks().versionCUDART(); } static bool hasCuDNN() { return detail::getCUDAHooks().hasCuDNN(); } static long versionCuDNN() { return detail::getCUDAHooks().versionCuDNN(); } static bool hasCuSOLVER() { return detail::getCUDAHooks().hasCuSOLVER(); } static bool hasHIP() { return detail::getHIPHooks().hasHIP(); } static bool hasMPS() { return detail::getMPSHooks().hasMPS(); } static bool hasIPU() { return c10::impl::hasDeviceGuardImpl(c10::DeviceType::IPU); } static bool hasXLA() { return c10::impl::hasDeviceGuardImpl(c10::DeviceType::XLA); } static bool hasXPU() { return detail::getXPUHooks().hasXPU(); } static bool hasLazy() { return c10::impl::hasDeviceGuardImpl(c10::DeviceType::Lazy); } static bool hasORT() { return c10::impl::hasDeviceGuardImpl(c10::DeviceType::ORT); } // defined in header so that getNonVariableType has ability to inline // call_once check. getNonVariableType is called fairly frequently void lazyInitCUDA() { c10::call_once(thc_init, [&] { detail::getCUDAHooks().initCUDA(); }); } void lazyInitHIP() { c10::call_once(thh_init, [&] { detail::getHIPHooks().initHIP(); }); } void lazyInitXPU() { c10::call_once(thx_init, [&] { detail::getXPUHooks().initXPU(); }); } void lazyInitPrivateUse1() { c10::call_once(thp_init, [&] { if (isPrivateUse1HooksRegistered()) { at::GetPrivateUse1HooksInterface()->initPrivateUse1(); } }); } static const at::cuda::NVRTC& getNVRTC() { return detail::getCUDAHooks().nvrtc(); } static bool setFlushDenormal(bool on); // NB: This method is *purely* whether or not a user requested // that CuDNN was enabled, it doesn't actually say anything about // whether or not CuDNN is actually usable. Use cudnn_is_acceptable // to test this instead bool userEnabledCuDNN() const; void setUserEnabledCuDNN(bool e); bool userEnabledMkldnn() const; void setUserEnabledMkldnn(bool e); bool benchmarkCuDNN() const; void setBenchmarkCuDNN(bool); int benchmarkLimitCuDNN() const; void setBenchmarkLimitCuDNN(int); bool deterministicCuDNN() const; void setDeterministicCuDNN(bool); bool userEnabledNNPACK() const; void setUserEnabledNNPACK(bool e); // Note [Disabling Fused SDP Kernels] // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Flash and Memory Efficient SDP kernels are enabled by default. // However, they can be disabled by setting // at::globalContext().setUserEnabledFlashSDP(false) flag. // This is useful for debugging purposes. For example, if you want to // compare the performance of the flash SDP kernels with the unfused // kernel, you can disable the flash SDP kernels. By disabling // the math SDP kernel, you can force your code to use flash kernels. // The math SDP kernel can be disabled by setting // at::globalContext().setUserEnabledMathSDP(false) flag. void setSDPUseFlash(bool); bool userEnabledFlashSDP() const; void setSDPUseMemEfficient(bool); bool userEnabledMemEfficientSDP() const; void setSDPUseMath(bool); bool userEnabledMathSDP() const; void setSDPUseCuDNN(bool); bool userEnabledCuDNNSDP() const; at::LinalgBackend linalgPreferredBackend() const; void setLinalgPreferredBackend(at::LinalgBackend); // Note [Enabling Deterministic Operations] // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Operations in PyTorch that normally act nondeterministically, but have an // alternate deterministic implementation, should satisfy the following // requirements: // // * Include this comment: "See Note [Enabling Deterministic Operations]" // // * Check the value of `at::globalContext().deterministicAlgorithms()` to // toggle // between nondeterministic and deterministic implementations. // // * Have an entry in the list of PyTorch operations that toggle between // nondeterministic // and deterministic implementations, in the docstring of // `use_deterministic_algorithms()` in torch/__init__.py // // `example_func()` below shows an example of toggling between // nondeterministic and deterministic implementations: // // void example_func() { // // See Note [Enabling Deterministic Operations] // if (at::globalContext().deterministicAlgorithms()) { // example_func_deterministic(); // } else { // example_func_nondeterministic(); // } // } bool deterministicAlgorithms() const; bool deterministicAlgorithmsWarnOnly() const; void setDeterministicAlgorithms(bool, bool); bool deterministicFillUninitializedMemory() const; void setDeterministicFillUninitializedMemory(bool); // Note [Writing Nondeterministic Operations] // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Operations in PyTorch that act nondeterministically and do not have an // alternate deterministic implementation should satisfy the following // requirements: // // * Include this comment: "See Note [Writing Nondeterministic Operations]" // // * Include a comment explaining why the operation is nondeterministic. // // * Throw an error when `Context::deterministicAlgorithms()` is true. Most // of the time, this should be accomplished by calling // `at::globalContext().alertNotDeterminstic()`. However, if the // nondeterministic behavior is caused by the CuBLAS workspace // configuration in CUDA >= 10.2, // `at::globalContext().alertCuBLASConfigNotDeterministic()` should be // called instead (in this case, a comment explaining why the operation is // nondeterministic is not necessary). See below for details on these // methods. // // * Have an entry in the list of nondeterministic PyTorch operations in the // docstring of `use_deterministic_algorithms()` in torch/__init__.py // // * Have a test function in `test/test_torch.py` whose name begins with // `test_nondeterministic_alert_`. Alternatively, if CuBLAS workspace // configuration is the reason for nondeterminism, the operation should be // included in the `test_cublas_config_nondeterministic_alert` test. Any new // tests should ideally follow a pattern similar to the existing ones. // // `example_func()` below shows an example of the comments and error-throwing // code for a nondeterministic operation: // // void example_func() { // // See Note [Writing Nondeterministic Operations] // // Nondeterministic because // at::globalContext().alertNondeterministic("example_func"); // ... // } // Throws an error if `Context::deterministicAlgorithms()` is true static void alertNotDeterministic(c10::string_view const& caller); // Throws an error if `Context::deterministicAlgorithms()` is true, CUDA // >= 10.2, and CUBLAS_WORKSPACE_CONFIG is not set to either ":16:8" or // ":4096:8". For more details: // https://docs.nvidia.com/cuda/cublas/index.html#results-reproducibility void alertCuBLASConfigNotDeterministic() const; void setFloat32MatmulPrecision(const std::string& s); bool allowTF32CuDNN() const; void setAllowTF32CuDNN(bool); bool allowTF32CuBLAS() const; void setAllowTF32CuBLAS(bool); Float32MatmulPrecision float32MatmulPrecision() const; void setFloat32MatmulPrecision(Float32MatmulPrecision p); bool allowFP16ReductionCuBLAS() const; void setAllowFP16ReductionCuBLAS(bool); bool allowBF16ReductionCuBLAS() const; void setAllowBF16ReductionCuBLAS(bool); at::QEngine qEngine() const; void setQEngine(at::QEngine e); static const std::vector& supportedQEngines(); static bool isXNNPACKAvailable(); void setCheckSparseTensorInvariants(bool e); bool checkSparseTensorInvariants() const; // This method is used to release the original weight after pre-packing. // It should be called once before loading/running the model. // NB: By default it is set to true for mobile builds. void setReleaseWeightsWhenPrepacking(bool e); bool releaseWeightsWhenPrepacking() const; void setDisplayVmapFallbackWarnings(bool enabled); bool areVmapFallbackWarningsEnabled() const; void setDefaultMobileCPUAllocator(); void unsetDefaultMobileCPUAllocator(); bool allowFP16ReductionCPU() const; void setAllowFP16ReductionCPU(bool); private: void initCUDAIfNeeded(c10::DeviceType p) { if (p == c10::DeviceType::CUDA) { lazyInitCUDA(); } } void initHIPIfNeeded(c10::DeviceType p) { if (p == c10::DeviceType::HIP) { lazyInitHIP(); } } void initXPUIfNeeded(c10::DeviceType p) { if (p == c10::DeviceType::XPU) { lazyInitXPU(); } } static bool checkCuBLASConfigDeterministic(); c10::once_flag thc_init; c10::once_flag thh_init; c10::once_flag thx_init; c10::once_flag thp_init; bool enabled_cudnn = true; bool deterministic_cudnn = false; bool _deterministic_algorithms = false; bool _deterministic_algorithms_warn_only = false; bool _deterministic_fill_uninitialized_memory = true; bool enabled_flashSDP = true; bool enabled_mem_efficientSDP = true; bool enabled_mathSDP = true; bool enabled_cudnnSDP = false; #ifdef USE_ROCM bool benchmark_cudnn = true; #else bool benchmark_cudnn = false; #endif Float32MatmulPrecision float32_matmul_precision = c10::utils::check_env("TORCH_ALLOW_TF32_CUBLAS_OVERRIDE") == true ? at::Float32MatmulPrecision::HIGH : at::Float32MatmulPrecision::HIGHEST; int benchmark_limit_cudnn = 10; bool allow_tf32_cudnn = true; bool allow_fp16_reduction_cublas = true; bool allow_bf16_reduction_cublas = true; bool enabled_mkldnn = true; bool enabled_nnpack = true; at::LinalgBackend linalg_preferred_backend = c10::utils::check_env("TORCH_LINALG_PREFER_CUSOLVER") == true ? at::LinalgBackend::Cusolver : at::LinalgBackend::Default; #ifdef C10_MOBILE bool release_original_weights = true; #else bool release_original_weights = false; #endif bool display_vmap_fallback_warnings_ = false; c10::optional quantized_engine = c10::nullopt; bool enable_sparse_tensor_invariant_checks = false; bool allow_fp16_reduction_cpu = false; Allocator* prev_allocator_ptr_{nullptr}; }; TORCH_API Context& globalContext(); static inline void init() { globalContext(); } TORCH_API Allocator* getCPUAllocator(); static inline DeprecatedTypeProperties& getDeprecatedTypeProperties( Backend p, ScalarType s) { return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties( p, s); } static inline DeprecatedTypeProperties& CPU(ScalarType s) { return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties( Backend::CPU, s); } static inline DeprecatedTypeProperties& CUDA(ScalarType s) { return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties( Backend::CUDA, s); } static inline DeprecatedTypeProperties& HIP(ScalarType s) { return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties( Backend::HIP, s); } static inline DeprecatedTypeProperties& MPS(ScalarType s) { return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties( Backend::MPS, s); } static inline bool hasCUDA() { return globalContext().hasCUDA(); } static inline bool hasMTIA() { return globalContext().hasMTIA(); } static inline bool hasHIP() { return globalContext().hasHIP(); } static inline bool hasIPU() { return globalContext().hasIPU(); } static inline bool hasXLA() { return globalContext().hasXLA(); } static inline bool hasMPS() { return globalContext().hasMPS(); } static inline bool hasORT() { return globalContext().hasORT(); } static inline bool hasXPU() { return globalContext().hasXPU(); } // Despite its name, this function returns the number of *CUDA* GPUs. static inline size_t getNumGPUs() { // WARNING: DO NOT ADD LOGIC TO HANDLE OTHER DEVICE TYPES TO THIS // FUNCTION. If you are interested in interrogating the number of // devices for a specific device type, add that function to the // relevant library (e.g., similar to at::cuda::device_count()) if (hasCUDA() && hasHIP()) { throw std::runtime_error( "Enabling both CUDA and HIP in ATen is not supported, as HIP masquerades " "to be CUDA (e.g., when you say CUDA, on a HIP build of ATen, this actually " "means HIP. Rebuild PyTorch with one or the other disabled."); } else if (hasCUDA()) { return detail::getCUDAHooks().getNumGPUs(); } else if (hasHIP()) { return detail::getHIPHooks().getNumGPUs(); } else { return 0; } } static inline bool hasOpenMP() { return globalContext().hasOpenMP(); } static inline bool hasMKL() { return globalContext().hasMKL(); } static inline bool hasLAPACK() { return globalContext().hasLAPACK(); } static inline bool hasMAGMA() { return globalContext().hasMAGMA(); } static inline bool hasMKLDNN() { return globalContext().hasMKLDNN(); } static inline void manual_seed(uint64_t seed) { auto gen = globalContext().defaultGenerator(c10::DeviceType::CPU); { // See Note [Acquire lock when using random generators] std::lock_guard lock(gen.mutex()); gen.set_current_seed(seed); } // NB: Sometimes we build with CUDA, but we don't have any GPUs // available. In that case, we must not seed CUDA; it will fail! const auto cuda_num_gpus = detail::getCUDAHooks().getNumGPUs(); if (hasCUDA() && cuda_num_gpus > 0) { for (const auto i : c10::irange(cuda_num_gpus)) { auto cuda_gen = globalContext().defaultGenerator( Device(at::kCUDA, static_cast(i))); { // See Note [Acquire lock when using random generators] std::lock_guard lock(cuda_gen.mutex()); cuda_gen.set_current_seed(seed); } } } const auto xpu_num_gpus = detail::getXPUHooks().getNumGPUs(); if (hasXPU() && xpu_num_gpus) { for (const auto i : c10::irange(xpu_num_gpus)) { auto xpu_gen = globalContext().defaultGenerator( Device(at::kXPU, static_cast(i))); { // See Note [Acquire lock when using random generators] std::lock_guard lock(xpu_gen.mutex()); xpu_gen.set_current_seed(seed); } } } if (hasMPS()) { auto mps_gen = globalContext().defaultGenerator(c10::DeviceType::MPS); // See Note [Acquire lock when using random generators] std::lock_guard lock(mps_gen.mutex()); mps_gen.set_current_seed(seed); } } // When the global flag `allow_tf32` is set to true, cuBLAS handles are // automatically configured to use math mode CUBLAS_TF32_TENSOR_OP_MATH. // For some operators, such as addmv, TF32 offers no performance improvement // but causes precision loss. To help this case, this class implements // a RAII guard that can be used to quickly disable TF32 within its scope. // // Usage: // NoTF32Guard disable_tf32; struct TORCH_API NoTF32Guard { NoTF32Guard(); ~NoTF32Guard(); static bool should_disable_tf32(); private: bool changed = false; }; struct TORCH_API ROCmBackwardPassGuard { ROCmBackwardPassGuard(); ~ROCmBackwardPassGuard(); static bool is_backward_pass(); }; } // namespace at