"""Square-free decomposition algorithms and related tools. """ from sympy.polys.densearith import ( dup_neg, dmp_neg, dup_sub, dmp_sub, dup_mul, dup_quo, dmp_quo, dup_mul_ground, dmp_mul_ground) from sympy.polys.densebasic import ( dup_strip, dup_LC, dmp_ground_LC, dmp_zero_p, dmp_ground, dup_degree, dmp_degree, dmp_raise, dmp_inject, dup_convert) from sympy.polys.densetools import ( dup_diff, dmp_diff, dmp_diff_in, dup_shift, dmp_compose, dup_monic, dmp_ground_monic, dup_primitive, dmp_ground_primitive) from sympy.polys.euclidtools import ( dup_inner_gcd, dmp_inner_gcd, dup_gcd, dmp_gcd, dmp_resultant) from sympy.polys.galoistools import ( gf_sqf_list, gf_sqf_part) from sympy.polys.polyerrors import ( MultivariatePolynomialError, DomainError) def dup_sqf_p(f, K): """ Return ``True`` if ``f`` is a square-free polynomial in ``K[x]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x = ring("x", ZZ) >>> R.dup_sqf_p(x**2 - 2*x + 1) False >>> R.dup_sqf_p(x**2 - 1) True """ if not f: return True else: return not dup_degree(dup_gcd(f, dup_diff(f, 1, K), K)) def dmp_sqf_p(f, u, K): """ Return ``True`` if ``f`` is a square-free polynomial in ``K[X]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) >>> R.dmp_sqf_p(x**2 + 2*x*y + y**2) False >>> R.dmp_sqf_p(x**2 + y**2) True """ if dmp_zero_p(f, u): return True else: return not dmp_degree(dmp_gcd(f, dmp_diff(f, 1, u, K), u, K), u) def dup_sqf_norm(f, K): """ Square-free norm of ``f`` in ``K[x]``, useful over algebraic domains. Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))`` is a square-free polynomial over K, where ``a`` is the algebraic extension of ``K``. Examples ======== >>> from sympy.polys import ring, QQ >>> from sympy import sqrt >>> K = QQ.algebraic_field(sqrt(3)) >>> R, x = ring("x", K) >>> _, X = ring("x", QQ) >>> s, f, r = R.dup_sqf_norm(x**2 - 2) >>> s == 1 True >>> f == x**2 + K([QQ(-2), QQ(0)])*x + 1 True >>> r == X**4 - 10*X**2 + 1 True """ if not K.is_Algebraic: raise DomainError("ground domain must be algebraic") s, g = 0, dmp_raise(K.mod.rep, 1, 0, K.dom) while True: h, _ = dmp_inject(f, 0, K, front=True) r = dmp_resultant(g, h, 1, K.dom) if dup_sqf_p(r, K.dom): break else: f, s = dup_shift(f, -K.unit, K), s + 1 return s, f, r def dmp_sqf_norm(f, u, K): """ Square-free norm of ``f`` in ``K[X]``, useful over algebraic domains. Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))`` is a square-free polynomial over K, where ``a`` is the algebraic extension of ``K``. Examples ======== >>> from sympy.polys import ring, QQ >>> from sympy import I >>> K = QQ.algebraic_field(I) >>> R, x, y = ring("x,y", K) >>> _, X, Y = ring("x,y", QQ) >>> s, f, r = R.dmp_sqf_norm(x*y + y**2) >>> s == 1 True >>> f == x*y + y**2 + K([QQ(-1), QQ(0)])*y True >>> r == X**2*Y**2 + 2*X*Y**3 + Y**4 + Y**2 True """ if not u: return dup_sqf_norm(f, K) if not K.is_Algebraic: raise DomainError("ground domain must be algebraic") g = dmp_raise(K.mod.rep, u + 1, 0, K.dom) F = dmp_raise([K.one, -K.unit], u, 0, K) s = 0 while True: h, _ = dmp_inject(f, u, K, front=True) r = dmp_resultant(g, h, u + 1, K.dom) if dmp_sqf_p(r, u, K.dom): break else: f, s = dmp_compose(f, F, u, K), s + 1 return s, f, r def dmp_norm(f, u, K): """ Norm of ``f`` in ``K[X1, ..., Xn]``, often not square-free. """ if not K.is_Algebraic: raise DomainError("ground domain must be algebraic") g = dmp_raise(K.mod.rep, u + 1, 0, K.dom) h, _ = dmp_inject(f, u, K, front=True) return dmp_resultant(g, h, u + 1, K.dom) def dup_gf_sqf_part(f, K): """Compute square-free part of ``f`` in ``GF(p)[x]``. """ f = dup_convert(f, K, K.dom) g = gf_sqf_part(f, K.mod, K.dom) return dup_convert(g, K.dom, K) def dmp_gf_sqf_part(f, u, K): """Compute square-free part of ``f`` in ``GF(p)[X]``. """ raise NotImplementedError('multivariate polynomials over finite fields') def dup_sqf_part(f, K): """ Returns square-free part of a polynomial in ``K[x]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x = ring("x", ZZ) >>> R.dup_sqf_part(x**3 - 3*x - 2) x**2 - x - 2 """ if K.is_FiniteField: return dup_gf_sqf_part(f, K) if not f: return f if K.is_negative(dup_LC(f, K)): f = dup_neg(f, K) gcd = dup_gcd(f, dup_diff(f, 1, K), K) sqf = dup_quo(f, gcd, K) if K.is_Field: return dup_monic(sqf, K) else: return dup_primitive(sqf, K)[1] def dmp_sqf_part(f, u, K): """ Returns square-free part of a polynomial in ``K[X]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) >>> R.dmp_sqf_part(x**3 + 2*x**2*y + x*y**2) x**2 + x*y """ if not u: return dup_sqf_part(f, K) if K.is_FiniteField: return dmp_gf_sqf_part(f, u, K) if dmp_zero_p(f, u): return f if K.is_negative(dmp_ground_LC(f, u, K)): f = dmp_neg(f, u, K) gcd = f for i in range(u+1): gcd = dmp_gcd(gcd, dmp_diff_in(f, 1, i, u, K), u, K) sqf = dmp_quo(f, gcd, u, K) if K.is_Field: return dmp_ground_monic(sqf, u, K) else: return dmp_ground_primitive(sqf, u, K)[1] def dup_gf_sqf_list(f, K, all=False): """Compute square-free decomposition of ``f`` in ``GF(p)[x]``. """ f = dup_convert(f, K, K.dom) coeff, factors = gf_sqf_list(f, K.mod, K.dom, all=all) for i, (f, k) in enumerate(factors): factors[i] = (dup_convert(f, K.dom, K), k) return K.convert(coeff, K.dom), factors def dmp_gf_sqf_list(f, u, K, all=False): """Compute square-free decomposition of ``f`` in ``GF(p)[X]``. """ raise NotImplementedError('multivariate polynomials over finite fields') def dup_sqf_list(f, K, all=False): """ Return square-free decomposition of a polynomial in ``K[x]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x = ring("x", ZZ) >>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16 >>> R.dup_sqf_list(f) (2, [(x + 1, 2), (x + 2, 3)]) >>> R.dup_sqf_list(f, all=True) (2, [(1, 1), (x + 1, 2), (x + 2, 3)]) """ if K.is_FiniteField: return dup_gf_sqf_list(f, K, all=all) if K.is_Field: coeff = dup_LC(f, K) f = dup_monic(f, K) else: coeff, f = dup_primitive(f, K) if K.is_negative(dup_LC(f, K)): f = dup_neg(f, K) coeff = -coeff if dup_degree(f) <= 0: return coeff, [] result, i = [], 1 h = dup_diff(f, 1, K) g, p, q = dup_inner_gcd(f, h, K) while True: d = dup_diff(p, 1, K) h = dup_sub(q, d, K) if not h: result.append((p, i)) break g, p, q = dup_inner_gcd(p, h, K) if all or dup_degree(g) > 0: result.append((g, i)) i += 1 return coeff, result def dup_sqf_list_include(f, K, all=False): """ Return square-free decomposition of a polynomial in ``K[x]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x = ring("x", ZZ) >>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16 >>> R.dup_sqf_list_include(f) [(2, 1), (x + 1, 2), (x + 2, 3)] >>> R.dup_sqf_list_include(f, all=True) [(2, 1), (x + 1, 2), (x + 2, 3)] """ coeff, factors = dup_sqf_list(f, K, all=all) if factors and factors[0][1] == 1: g = dup_mul_ground(factors[0][0], coeff, K) return [(g, 1)] + factors[1:] else: g = dup_strip([coeff]) return [(g, 1)] + factors def dmp_sqf_list(f, u, K, all=False): """ Return square-free decomposition of a polynomial in ``K[X]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) >>> f = x**5 + 2*x**4*y + x**3*y**2 >>> R.dmp_sqf_list(f) (1, [(x + y, 2), (x, 3)]) >>> R.dmp_sqf_list(f, all=True) (1, [(1, 1), (x + y, 2), (x, 3)]) """ if not u: return dup_sqf_list(f, K, all=all) if K.is_FiniteField: return dmp_gf_sqf_list(f, u, K, all=all) if K.is_Field: coeff = dmp_ground_LC(f, u, K) f = dmp_ground_monic(f, u, K) else: coeff, f = dmp_ground_primitive(f, u, K) if K.is_negative(dmp_ground_LC(f, u, K)): f = dmp_neg(f, u, K) coeff = -coeff if dmp_degree(f, u) <= 0: return coeff, [] result, i = [], 1 h = dmp_diff(f, 1, u, K) g, p, q = dmp_inner_gcd(f, h, u, K) while True: d = dmp_diff(p, 1, u, K) h = dmp_sub(q, d, u, K) if dmp_zero_p(h, u): result.append((p, i)) break g, p, q = dmp_inner_gcd(p, h, u, K) if all or dmp_degree(g, u) > 0: result.append((g, i)) i += 1 return coeff, result def dmp_sqf_list_include(f, u, K, all=False): """ Return square-free decomposition of a polynomial in ``K[x]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) >>> f = x**5 + 2*x**4*y + x**3*y**2 >>> R.dmp_sqf_list_include(f) [(1, 1), (x + y, 2), (x, 3)] >>> R.dmp_sqf_list_include(f, all=True) [(1, 1), (x + y, 2), (x, 3)] """ if not u: return dup_sqf_list_include(f, K, all=all) coeff, factors = dmp_sqf_list(f, u, K, all=all) if factors and factors[0][1] == 1: g = dmp_mul_ground(factors[0][0], coeff, u, K) return [(g, 1)] + factors[1:] else: g = dmp_ground(coeff, u) return [(g, 1)] + factors def dup_gff_list(f, K): """ Compute greatest factorial factorization of ``f`` in ``K[x]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x = ring("x", ZZ) >>> R.dup_gff_list(x**5 + 2*x**4 - x**3 - 2*x**2) [(x, 1), (x + 2, 4)] """ if not f: raise ValueError("greatest factorial factorization doesn't exist for a zero polynomial") f = dup_monic(f, K) if not dup_degree(f): return [] else: g = dup_gcd(f, dup_shift(f, K.one, K), K) H = dup_gff_list(g, K) for i, (h, k) in enumerate(H): g = dup_mul(g, dup_shift(h, -K(k), K), K) H[i] = (h, k + 1) f = dup_quo(f, g, K) if not dup_degree(f): return H else: return [(f, 1)] + H def dmp_gff_list(f, u, K): """ Compute greatest factorial factorization of ``f`` in ``K[X]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) """ if not u: return dup_gff_list(f, K) else: raise MultivariatePolynomialError(f)