import logging from collections import defaultdict from threading import Lock from typing import List, Optional import torch import torch.distributed.autograd as dist_autograd import torch.distributed.rpc as rpc import torch.jit as jit import torch.nn as nn from torch import Tensor from torch.distributed.rpc import RRef from .utils import functional_optim_map __all__ = ["DistributedOptimizer"] logger = logging.getLogger(__name__) # XXX: we define a _ScriptModuleOptimizer here to explicitly # compile the FunctionalOptimizer class into TorchScript # This is because ScriptClass instance still lives in # python unless you explicitly compile it as an attribute # in ScriptModule or pass it to a ScriptFunction # _ScriptLocalOptimizerInterface serves as a common # interface type for Optimizer ScriptModules. # # TODO (wanchaol): remove this once we added TorchScript # class reference semantics @jit.interface class _ScriptLocalOptimizerInterface: def step(self, autograd_ctx_id: int) -> None: pass class _ScriptLocalOptimizer(nn.Module): # TorchScript does not support multithread concurrent compiling. # request_callback might invoke concurrent compiling, so we # serialize the compiling with a lock compile_lock = Lock() def __init__(self, optim_cls, local_params_rref, *args, **kwargs): super().__init__() self._local_params = [rref.local_value() for rref in local_params_rref] self.optim = optim_cls(self._local_params, *args, **kwargs) @jit.export def step(self, autograd_ctx_id: int): all_local_grads = dist_autograd.get_gradients(autograd_ctx_id) # apply functional optimizer step with a list of gradients grads: List[Optional[Tensor]] = [ all_local_grads[p] if p in all_local_grads else None for p in self._local_params ] self.optim.step(grads) # TODO (wanchaol): remove/merge this with ScriptLocalOptimizer once # we have converted all to functional optimizer in distributed.optim class _LocalOptimizer: # Ideally we would only need to share a lock for instances of # _LocalOptimizer that deal with the same parameters. We are # making a simplifying assumption here that if there is more # than one instance of _LocalOptimizer per worker, they will # be optimizing the same parameters (e.g. each data parallel # trainer will create its own instance of _LocalOptimizer but # they will all optimize the same parameters on each worker) global_lock = Lock() def __init__(self, optim_cls, local_params_rref, *args, **kwargs): self._local_params = [rref.local_value() for rref in local_params_rref] self.optim = optim_cls(self._local_params, *args, **kwargs) def step(self, autograd_ctx_id): all_local_grads = dist_autograd.get_gradients(autograd_ctx_id) with _LocalOptimizer.global_lock: for param, grad in all_local_grads.items(): param.grad = grad self.optim.step() def _new_local_optimizer(optim_cls, local_params_rref, *args, **kwargs): return rpc.RRef(_LocalOptimizer(optim_cls, local_params_rref, *args, **kwargs)) def _local_optimizer_step(local_optim_rref, autograd_ctx_id): local_optim = local_optim_rref.local_value() local_optim.step(autograd_ctx_id) # new/step functions combined with _ScriptLocalOptimizer to provide GIL-free optimizer def _new_script_local_optimizer(optim_cls, local_params_rref, *args, **kwargs): optim = _ScriptLocalOptimizer(optim_cls, local_params_rref, *args, **kwargs) with _ScriptLocalOptimizer.compile_lock: script_optim = jit.script(optim) return rpc.RRef(script_optim, _ScriptLocalOptimizerInterface) @jit.script def _script_local_optimizer_step( local_optim_rref: RRef[_ScriptLocalOptimizerInterface], autograd_ctx_id: int ) -> None: local_optim = local_optim_rref.local_value() local_optim.step(autograd_ctx_id) def _wait_for_all(rpc_futs): # TODO: improve error propagation exception = None results = [] for fut in rpc_futs: try: results.append(fut.wait()) except Exception as e: results.append(e) exception = e if exception is not None: raise exception return results class DistributedOptimizer: """ DistributedOptimizer takes remote references to parameters scattered across workers and applies the given optimizer locally for each parameter. This class uses :meth:`~torch.distributed.autograd.get_gradients` in order to retrieve the gradients for specific parameters. Concurrent calls to :meth:`~torch.distributed.optim.DistributedOptimizer.step`, either from the same or different clients, will be serialized on each worker -- as each worker's optimizer can only work on one set of gradients at a time. However, there is no guarantee that the full forward-backward-optimizer sequence will execute for one client at a time. This means that the gradients being applied may not correspond to the latest forward pass executed on a given worker. Also, there is no guaranteed ordering across workers. `DistributedOptimizer` creates the local optimizer with TorchScript enabled by default, so that optimizer updates are not blocked by the Python Global Interpreter Lock (GIL) in the case of multithreaded training (e.g. Distributed Model Parallel). This feature is currently enabled for most optimizers. You can also follow `the recipe`__ in PyTorch tutorials to enable TorchScript support for your own custom optimizers. Args: optimizer_class (optim.Optimizer): the class of optimizer to instantiate on each worker. params_rref (list[RRef]): list of RRefs to local or remote parameters to optimize. args: arguments to pass to the optimizer constructor on each worker. kwargs: arguments to pass to the optimizer constructor on each worker. Example:: >>> # xdoctest: +SKIP("distributed") >>> import torch.distributed.autograd as dist_autograd >>> import torch.distributed.rpc as rpc >>> from torch import optim >>> from torch.distributed.optim import DistributedOptimizer >>> >>> with dist_autograd.context() as context_id: >>> # Forward pass. >>> rref1 = rpc.remote("worker1", torch.add, args=(torch.ones(2), 3)) >>> rref2 = rpc.remote("worker1", torch.add, args=(torch.ones(2), 1)) >>> loss = rref1.to_here() + rref2.to_here() >>> >>> # Backward pass. >>> dist_autograd.backward(context_id, [loss.sum()]) >>> >>> # Optimizer. >>> dist_optim = DistributedOptimizer( >>> optim.SGD, >>> [rref1, rref2], >>> lr=0.05, >>> ) >>> dist_optim.step(context_id) __ https://github.com/pytorch/tutorials/pull/1465 """ def __init__(self, optimizer_class, params_rref, *args, **kwargs): torch._C._log_api_usage_once("torch.distributed.optim.DistributedOptimizer") per_worker_params_rref = defaultdict(list) for param in params_rref: per_worker_params_rref[param.owner()].append(param) if optimizer_class in functional_optim_map and jit._state._enabled: optim_ctor = functional_optim_map.get(optimizer_class) else: optim_ctor = optimizer_class self.is_functional_optim = optim_ctor != optimizer_class if self.is_functional_optim: optimizer_new_func = _new_script_local_optimizer else: logger.warning( "Creating the optimizer %s without TorchScript support, " "this might result in slow computation time in multithreading environment" "(i.e. Distributed Model Parallel training on CPU) due to the Python's " "Global Interpreter Lock (GIL). Please file an issue if you need this " "optimizer in TorchScript. ", optimizer_class ) optimizer_new_func = _new_local_optimizer remote_optim_futs = [] for worker, param_rrefs in per_worker_params_rref.items(): remote_optim_rref_fut = rpc.rpc_async( worker, optimizer_new_func, args=(optim_ctor, param_rrefs) + args, kwargs=kwargs, ) remote_optim_futs.append(remote_optim_rref_fut) self.remote_optimizers = _wait_for_all(remote_optim_futs) def step(self, context_id): """ Performs a single optimization step. This will call :meth:`torch.optim.Optimizer.step` on each worker containing parameters to be optimized, and will block until all workers return. The provided ``context_id`` will be used to retrieve the corresponding :class:`~torch.distributed.autograd.context` that contains the gradients that should be applied to the parameters. Args: context_id: the autograd context id for which we should run the optimizer step. """ dist_autograd._is_valid_context(context_id) optimizer_step_func = ( _script_local_optimizer_step if self.is_functional_optim else _local_optimizer_step ) rpc_futs = [] for optimizer in self.remote_optimizers: rpc_futs.append( rpc.rpc_async( optimizer.owner(), optimizer_step_func, args=(optimizer, context_id), ) ) _wait_for_all(rpc_futs)