import warnings from functools import partial from typing import Any, List, Optional, Union import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from torchvision.models import inception as inception_module from torchvision.models.inception import Inception_V3_Weights, InceptionOutputs from ...transforms._presets import ImageClassification from .._api import register_model, Weights, WeightsEnum from .._meta import _IMAGENET_CATEGORIES from .._utils import _ovewrite_named_param, handle_legacy_interface from .utils import _fuse_modules, _replace_relu, quantize_model __all__ = [ "QuantizableInception3", "Inception_V3_QuantizedWeights", "inception_v3", ] class QuantizableBasicConv2d(inception_module.BasicConv2d): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) self.relu = nn.ReLU() def forward(self, x: Tensor) -> Tensor: x = self.conv(x) x = self.bn(x) x = self.relu(x) return x def fuse_model(self, is_qat: Optional[bool] = None) -> None: _fuse_modules(self, ["conv", "bn", "relu"], is_qat, inplace=True) class QuantizableInceptionA(inception_module.InceptionA): # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659 def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc] self.myop = nn.quantized.FloatFunctional() def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return self.myop.cat(outputs, 1) class QuantizableInceptionB(inception_module.InceptionB): # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659 def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc] self.myop = nn.quantized.FloatFunctional() def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return self.myop.cat(outputs, 1) class QuantizableInceptionC(inception_module.InceptionC): # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659 def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc] self.myop = nn.quantized.FloatFunctional() def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return self.myop.cat(outputs, 1) class QuantizableInceptionD(inception_module.InceptionD): # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659 def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc] self.myop = nn.quantized.FloatFunctional() def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return self.myop.cat(outputs, 1) class QuantizableInceptionE(inception_module.InceptionE): # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659 def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc] self.myop1 = nn.quantized.FloatFunctional() self.myop2 = nn.quantized.FloatFunctional() self.myop3 = nn.quantized.FloatFunctional() def _forward(self, x: Tensor) -> List[Tensor]: branch1x1 = self.branch1x1(x) branch3x3 = self.branch3x3_1(x) branch3x3 = [self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3)] branch3x3 = self.myop1.cat(branch3x3, 1) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = [ self.branch3x3dbl_3a(branch3x3dbl), self.branch3x3dbl_3b(branch3x3dbl), ] branch3x3dbl = self.myop2.cat(branch3x3dbl, 1) branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] return outputs def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return self.myop3.cat(outputs, 1) class QuantizableInceptionAux(inception_module.InceptionAux): # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659 def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs) # type: ignore[misc] class QuantizableInception3(inception_module.Inception3): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__( # type: ignore[misc] *args, inception_blocks=[ QuantizableBasicConv2d, QuantizableInceptionA, QuantizableInceptionB, QuantizableInceptionC, QuantizableInceptionD, QuantizableInceptionE, QuantizableInceptionAux, ], **kwargs, ) self.quant = torch.ao.quantization.QuantStub() self.dequant = torch.ao.quantization.DeQuantStub() def forward(self, x: Tensor) -> InceptionOutputs: x = self._transform_input(x) x = self.quant(x) x, aux = self._forward(x) x = self.dequant(x) aux_defined = self.training and self.aux_logits if torch.jit.is_scripting(): if not aux_defined: warnings.warn("Scripted QuantizableInception3 always returns QuantizableInception3 Tuple") return InceptionOutputs(x, aux) else: return self.eager_outputs(x, aux) def fuse_model(self, is_qat: Optional[bool] = None) -> None: r"""Fuse conv/bn/relu modules in inception model Fuse conv+bn+relu/ conv+relu/conv+bn modules to prepare for quantization. Model is modified in place. Note that this operation does not change numerics and the model after modification is in floating point """ for m in self.modules(): if type(m) is QuantizableBasicConv2d: m.fuse_model(is_qat) class Inception_V3_QuantizedWeights(WeightsEnum): IMAGENET1K_FBGEMM_V1 = Weights( url="https://download.pytorch.org/models/quantized/inception_v3_google_fbgemm-a2837893.pth", transforms=partial(ImageClassification, crop_size=299, resize_size=342), meta={ "num_params": 27161264, "min_size": (75, 75), "categories": _IMAGENET_CATEGORIES, "backend": "fbgemm", "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models", "unquantized": Inception_V3_Weights.IMAGENET1K_V1, "_metrics": { "ImageNet-1K": { "acc@1": 77.176, "acc@5": 93.354, } }, "_ops": 5.713, "_file_size": 23.146, "_docs": """ These weights were produced by doing Post Training Quantization (eager mode) on top of the unquantized weights listed below. """, }, ) DEFAULT = IMAGENET1K_FBGEMM_V1 @register_model(name="quantized_inception_v3") @handle_legacy_interface( weights=( "pretrained", lambda kwargs: Inception_V3_QuantizedWeights.IMAGENET1K_FBGEMM_V1 if kwargs.get("quantize", False) else Inception_V3_Weights.IMAGENET1K_V1, ) ) def inception_v3( *, weights: Optional[Union[Inception_V3_QuantizedWeights, Inception_V3_Weights]] = None, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableInception3: r"""Inception v3 model architecture from `Rethinking the Inception Architecture for Computer Vision `__. .. note:: **Important**: In contrast to the other models the inception_v3 expects tensors with a size of N x 3 x 299 x 299, so ensure your images are sized accordingly. .. note:: Note that ``quantize = True`` returns a quantized model with 8 bit weights. Quantized models only support inference and run on CPUs. GPU inference is not yet supported. Args: weights (:class:`~torchvision.models.quantization.Inception_V3_QuantizedWeights` or :class:`~torchvision.models.Inception_V3_Weights`, optional): The pretrained weights for the model. See :class:`~torchvision.models.quantization.Inception_V3_QuantizedWeights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. quantize (bool, optional): If True, return a quantized version of the model. Default is False. **kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableInception3`` base class. Please refer to the `source code `_ for more details about this class. .. autoclass:: torchvision.models.quantization.Inception_V3_QuantizedWeights :members: .. autoclass:: torchvision.models.Inception_V3_Weights :members: :noindex: """ weights = (Inception_V3_QuantizedWeights if quantize else Inception_V3_Weights).verify(weights) original_aux_logits = kwargs.get("aux_logits", False) if weights is not None: if "transform_input" not in kwargs: _ovewrite_named_param(kwargs, "transform_input", True) _ovewrite_named_param(kwargs, "aux_logits", True) _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) if "backend" in weights.meta: _ovewrite_named_param(kwargs, "backend", weights.meta["backend"]) backend = kwargs.pop("backend", "fbgemm") model = QuantizableInception3(**kwargs) _replace_relu(model) if quantize: quantize_model(model, backend) if weights is not None: if quantize and not original_aux_logits: model.aux_logits = False model.AuxLogits = None model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) if not quantize and not original_aux_logits: model.aux_logits = False model.AuxLogits = None return model