You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1151 lines
36 KiB
1151 lines
36 KiB
"""
|
|
This module implements computation of hypergeometric and related
|
|
functions. In particular, it provides code for generic summation
|
|
of hypergeometric series. Optimized versions for various special
|
|
cases are also provided.
|
|
"""
|
|
|
|
import operator
|
|
import math
|
|
|
|
from .backend import MPZ_ZERO, MPZ_ONE, BACKEND, xrange, exec_
|
|
|
|
from .libintmath import gcd
|
|
|
|
from .libmpf import (\
|
|
ComplexResult, round_fast, round_nearest,
|
|
negative_rnd, bitcount, to_fixed, from_man_exp, from_int, to_int,
|
|
from_rational,
|
|
fzero, fone, fnone, ftwo, finf, fninf, fnan,
|
|
mpf_sign, mpf_add, mpf_abs, mpf_pos,
|
|
mpf_cmp, mpf_lt, mpf_le, mpf_gt, mpf_min_max,
|
|
mpf_perturb, mpf_neg, mpf_shift, mpf_sub, mpf_mul, mpf_div,
|
|
sqrt_fixed, mpf_sqrt, mpf_rdiv_int, mpf_pow_int,
|
|
to_rational,
|
|
)
|
|
|
|
from .libelefun import (\
|
|
mpf_pi, mpf_exp, mpf_log, pi_fixed, mpf_cos_sin, mpf_cos, mpf_sin,
|
|
mpf_sqrt, agm_fixed,
|
|
)
|
|
|
|
from .libmpc import (\
|
|
mpc_one, mpc_sub, mpc_mul_mpf, mpc_mul, mpc_neg, complex_int_pow,
|
|
mpc_div, mpc_add_mpf, mpc_sub_mpf,
|
|
mpc_log, mpc_add, mpc_pos, mpc_shift,
|
|
mpc_is_infnan, mpc_zero, mpc_sqrt, mpc_abs,
|
|
mpc_mpf_div, mpc_square, mpc_exp
|
|
)
|
|
|
|
from .libintmath import ifac
|
|
from .gammazeta import mpf_gamma_int, mpf_euler, euler_fixed
|
|
|
|
class NoConvergence(Exception):
|
|
pass
|
|
|
|
|
|
#-----------------------------------------------------------------------#
|
|
# #
|
|
# Generic hypergeometric series #
|
|
# #
|
|
#-----------------------------------------------------------------------#
|
|
|
|
"""
|
|
TODO:
|
|
|
|
1. proper mpq parsing
|
|
2. imaginary z special-cased (also: rational, integer?)
|
|
3. more clever handling of series that don't converge because of stupid
|
|
upwards rounding
|
|
4. checking for cancellation
|
|
|
|
"""
|
|
|
|
def make_hyp_summator(key):
|
|
"""
|
|
Returns a function that sums a generalized hypergeometric series,
|
|
for given parameter types (integer, rational, real, complex).
|
|
|
|
"""
|
|
p, q, param_types, ztype = key
|
|
|
|
pstring = "".join(param_types)
|
|
fname = "hypsum_%i_%i_%s_%s_%s" % (p, q, pstring[:p], pstring[p:], ztype)
|
|
#print "generating hypsum", fname
|
|
|
|
have_complex_param = 'C' in param_types
|
|
have_complex_arg = ztype == 'C'
|
|
have_complex = have_complex_param or have_complex_arg
|
|
|
|
source = []
|
|
add = source.append
|
|
|
|
aint = []
|
|
arat = []
|
|
bint = []
|
|
brat = []
|
|
areal = []
|
|
breal = []
|
|
acomplex = []
|
|
bcomplex = []
|
|
|
|
#add("wp = prec + 40")
|
|
add("MAX = kwargs.get('maxterms', wp*100)")
|
|
add("HIGH = MPZ_ONE<<epsshift")
|
|
add("LOW = -HIGH")
|
|
|
|
# Setup code
|
|
add("SRE = PRE = one = (MPZ_ONE << wp)")
|
|
if have_complex:
|
|
add("SIM = PIM = MPZ_ZERO")
|
|
|
|
if have_complex_arg:
|
|
add("xsign, xm, xe, xbc = z[0]")
|
|
add("if xsign: xm = -xm")
|
|
add("ysign, ym, ye, ybc = z[1]")
|
|
add("if ysign: ym = -ym")
|
|
else:
|
|
add("xsign, xm, xe, xbc = z")
|
|
add("if xsign: xm = -xm")
|
|
|
|
add("offset = xe + wp")
|
|
add("if offset >= 0:")
|
|
add(" ZRE = xm << offset")
|
|
add("else:")
|
|
add(" ZRE = xm >> (-offset)")
|
|
if have_complex_arg:
|
|
add("offset = ye + wp")
|
|
add("if offset >= 0:")
|
|
add(" ZIM = ym << offset")
|
|
add("else:")
|
|
add(" ZIM = ym >> (-offset)")
|
|
|
|
for i, flag in enumerate(param_types):
|
|
W = ["A", "B"][i >= p]
|
|
if flag == 'Z':
|
|
([aint,bint][i >= p]).append(i)
|
|
add("%sINT_%i = coeffs[%i]" % (W, i, i))
|
|
elif flag == 'Q':
|
|
([arat,brat][i >= p]).append(i)
|
|
add("%sP_%i, %sQ_%i = coeffs[%i]._mpq_" % (W, i, W, i, i))
|
|
elif flag == 'R':
|
|
([areal,breal][i >= p]).append(i)
|
|
add("xsign, xm, xe, xbc = coeffs[%i]._mpf_" % i)
|
|
add("if xsign: xm = -xm")
|
|
add("offset = xe + wp")
|
|
add("if offset >= 0:")
|
|
add(" %sREAL_%i = xm << offset" % (W, i))
|
|
add("else:")
|
|
add(" %sREAL_%i = xm >> (-offset)" % (W, i))
|
|
elif flag == 'C':
|
|
([acomplex,bcomplex][i >= p]).append(i)
|
|
add("__re, __im = coeffs[%i]._mpc_" % i)
|
|
add("xsign, xm, xe, xbc = __re")
|
|
add("if xsign: xm = -xm")
|
|
add("ysign, ym, ye, ybc = __im")
|
|
add("if ysign: ym = -ym")
|
|
|
|
add("offset = xe + wp")
|
|
add("if offset >= 0:")
|
|
add(" %sCRE_%i = xm << offset" % (W, i))
|
|
add("else:")
|
|
add(" %sCRE_%i = xm >> (-offset)" % (W, i))
|
|
add("offset = ye + wp")
|
|
add("if offset >= 0:")
|
|
add(" %sCIM_%i = ym << offset" % (W, i))
|
|
add("else:")
|
|
add(" %sCIM_%i = ym >> (-offset)" % (W, i))
|
|
else:
|
|
raise ValueError
|
|
|
|
l_areal = len(areal)
|
|
l_breal = len(breal)
|
|
cancellable_real = min(l_areal, l_breal)
|
|
noncancellable_real_num = areal[cancellable_real:]
|
|
noncancellable_real_den = breal[cancellable_real:]
|
|
|
|
# LOOP
|
|
add("for n in xrange(1,10**8):")
|
|
|
|
add(" if n in magnitude_check:")
|
|
add(" p_mag = bitcount(abs(PRE))")
|
|
if have_complex:
|
|
add(" p_mag = max(p_mag, bitcount(abs(PIM)))")
|
|
add(" magnitude_check[n] = wp-p_mag")
|
|
|
|
# Real factors
|
|
multiplier = " * ".join(["AINT_#".replace("#", str(i)) for i in aint] + \
|
|
["AP_#".replace("#", str(i)) for i in arat] + \
|
|
["BQ_#".replace("#", str(i)) for i in brat])
|
|
|
|
divisor = " * ".join(["BINT_#".replace("#", str(i)) for i in bint] + \
|
|
["BP_#".replace("#", str(i)) for i in brat] + \
|
|
["AQ_#".replace("#", str(i)) for i in arat] + ["n"])
|
|
|
|
if multiplier:
|
|
add(" mul = " + multiplier)
|
|
add(" div = " + divisor)
|
|
|
|
# Check for singular terms
|
|
add(" if not div:")
|
|
if multiplier:
|
|
add(" if not mul:")
|
|
add(" break")
|
|
add(" raise ZeroDivisionError")
|
|
|
|
# Update product
|
|
if have_complex:
|
|
|
|
# TODO: when there are several real parameters and just a few complex
|
|
# (maybe just the complex argument), we only need to do about
|
|
# half as many ops if we accumulate the real factor in a single real variable
|
|
for k in range(cancellable_real): add(" PRE = PRE * AREAL_%i // BREAL_%i" % (areal[k], breal[k]))
|
|
for i in noncancellable_real_num: add(" PRE = (PRE * AREAL_#) >> wp".replace("#", str(i)))
|
|
for i in noncancellable_real_den: add(" PRE = (PRE << wp) // BREAL_#".replace("#", str(i)))
|
|
for k in range(cancellable_real): add(" PIM = PIM * AREAL_%i // BREAL_%i" % (areal[k], breal[k]))
|
|
for i in noncancellable_real_num: add(" PIM = (PIM * AREAL_#) >> wp".replace("#", str(i)))
|
|
for i in noncancellable_real_den: add(" PIM = (PIM << wp) // BREAL_#".replace("#", str(i)))
|
|
|
|
if multiplier:
|
|
if have_complex_arg:
|
|
add(" PRE, PIM = (mul*(PRE*ZRE-PIM*ZIM))//div, (mul*(PIM*ZRE+PRE*ZIM))//div")
|
|
add(" PRE >>= wp")
|
|
add(" PIM >>= wp")
|
|
else:
|
|
add(" PRE = ((mul * PRE * ZRE) >> wp) // div")
|
|
add(" PIM = ((mul * PIM * ZRE) >> wp) // div")
|
|
else:
|
|
if have_complex_arg:
|
|
add(" PRE, PIM = (PRE*ZRE-PIM*ZIM)//div, (PIM*ZRE+PRE*ZIM)//div")
|
|
add(" PRE >>= wp")
|
|
add(" PIM >>= wp")
|
|
else:
|
|
add(" PRE = ((PRE * ZRE) >> wp) // div")
|
|
add(" PIM = ((PIM * ZRE) >> wp) // div")
|
|
|
|
for i in acomplex:
|
|
add(" PRE, PIM = PRE*ACRE_#-PIM*ACIM_#, PIM*ACRE_#+PRE*ACIM_#".replace("#", str(i)))
|
|
add(" PRE >>= wp")
|
|
add(" PIM >>= wp")
|
|
|
|
for i in bcomplex:
|
|
add(" mag = BCRE_#*BCRE_#+BCIM_#*BCIM_#".replace("#", str(i)))
|
|
add(" re = PRE*BCRE_# + PIM*BCIM_#".replace("#", str(i)))
|
|
add(" im = PIM*BCRE_# - PRE*BCIM_#".replace("#", str(i)))
|
|
add(" PRE = (re << wp) // mag".replace("#", str(i)))
|
|
add(" PIM = (im << wp) // mag".replace("#", str(i)))
|
|
|
|
else:
|
|
for k in range(cancellable_real): add(" PRE = PRE * AREAL_%i // BREAL_%i" % (areal[k], breal[k]))
|
|
for i in noncancellable_real_num: add(" PRE = (PRE * AREAL_#) >> wp".replace("#", str(i)))
|
|
for i in noncancellable_real_den: add(" PRE = (PRE << wp) // BREAL_#".replace("#", str(i)))
|
|
if multiplier:
|
|
add(" PRE = ((PRE * mul * ZRE) >> wp) // div")
|
|
else:
|
|
add(" PRE = ((PRE * ZRE) >> wp) // div")
|
|
|
|
# Add product to sum
|
|
if have_complex:
|
|
add(" SRE += PRE")
|
|
add(" SIM += PIM")
|
|
add(" if (HIGH > PRE > LOW) and (HIGH > PIM > LOW):")
|
|
add(" break")
|
|
else:
|
|
add(" SRE += PRE")
|
|
add(" if HIGH > PRE > LOW:")
|
|
add(" break")
|
|
|
|
#add(" from mpmath import nprint, log, ldexp")
|
|
#add(" nprint([n, log(abs(PRE),2), ldexp(PRE,-wp)])")
|
|
|
|
add(" if n > MAX:")
|
|
add(" raise NoConvergence('Hypergeometric series converges too slowly. Try increasing maxterms.')")
|
|
|
|
# +1 all parameters for next loop
|
|
for i in aint: add(" AINT_# += 1".replace("#", str(i)))
|
|
for i in bint: add(" BINT_# += 1".replace("#", str(i)))
|
|
for i in arat: add(" AP_# += AQ_#".replace("#", str(i)))
|
|
for i in brat: add(" BP_# += BQ_#".replace("#", str(i)))
|
|
for i in areal: add(" AREAL_# += one".replace("#", str(i)))
|
|
for i in breal: add(" BREAL_# += one".replace("#", str(i)))
|
|
for i in acomplex: add(" ACRE_# += one".replace("#", str(i)))
|
|
for i in bcomplex: add(" BCRE_# += one".replace("#", str(i)))
|
|
|
|
if have_complex:
|
|
add("a = from_man_exp(SRE, -wp, prec, 'n')")
|
|
add("b = from_man_exp(SIM, -wp, prec, 'n')")
|
|
|
|
add("if SRE:")
|
|
add(" if SIM:")
|
|
add(" magn = max(a[2]+a[3], b[2]+b[3])")
|
|
add(" else:")
|
|
add(" magn = a[2]+a[3]")
|
|
add("elif SIM:")
|
|
add(" magn = b[2]+b[3]")
|
|
add("else:")
|
|
add(" magn = -wp+1")
|
|
|
|
add("return (a, b), True, magn")
|
|
else:
|
|
add("a = from_man_exp(SRE, -wp, prec, 'n')")
|
|
|
|
add("if SRE:")
|
|
add(" magn = a[2]+a[3]")
|
|
add("else:")
|
|
add(" magn = -wp+1")
|
|
|
|
add("return a, False, magn")
|
|
|
|
source = "\n".join((" " + line) for line in source)
|
|
source = ("def %s(coeffs, z, prec, wp, epsshift, magnitude_check, **kwargs):\n" % fname) + source
|
|
|
|
namespace = {}
|
|
|
|
exec_(source, globals(), namespace)
|
|
|
|
#print source
|
|
return source, namespace[fname]
|
|
|
|
|
|
if BACKEND == 'sage':
|
|
|
|
def make_hyp_summator(key):
|
|
"""
|
|
Returns a function that sums a generalized hypergeometric series,
|
|
for given parameter types (integer, rational, real, complex).
|
|
"""
|
|
from sage.libs.mpmath.ext_main import hypsum_internal
|
|
p, q, param_types, ztype = key
|
|
def _hypsum(coeffs, z, prec, wp, epsshift, magnitude_check, **kwargs):
|
|
return hypsum_internal(p, q, param_types, ztype, coeffs, z,
|
|
prec, wp, epsshift, magnitude_check, kwargs)
|
|
|
|
return "(none)", _hypsum
|
|
|
|
|
|
#-----------------------------------------------------------------------#
|
|
# #
|
|
# Error functions #
|
|
# #
|
|
#-----------------------------------------------------------------------#
|
|
|
|
# TODO: mpf_erf should call mpf_erfc when appropriate (currently
|
|
# only the converse delegation is implemented)
|
|
|
|
def mpf_erf(x, prec, rnd=round_fast):
|
|
sign, man, exp, bc = x
|
|
if not man:
|
|
if x == fzero: return fzero
|
|
if x == finf: return fone
|
|
if x== fninf: return fnone
|
|
return fnan
|
|
size = exp + bc
|
|
lg = math.log
|
|
# The approximation erf(x) = 1 is accurate to > x^2 * log(e,2) bits
|
|
if size > 3 and 2*(size-1) + 0.528766 > lg(prec,2):
|
|
if sign:
|
|
return mpf_perturb(fnone, 0, prec, rnd)
|
|
else:
|
|
return mpf_perturb(fone, 1, prec, rnd)
|
|
# erf(x) ~ 2*x/sqrt(pi) close to 0
|
|
if size < -prec:
|
|
# 2*x
|
|
x = mpf_shift(x,1)
|
|
c = mpf_sqrt(mpf_pi(prec+20), prec+20)
|
|
# TODO: interval rounding
|
|
return mpf_div(x, c, prec, rnd)
|
|
wp = prec + abs(size) + 25
|
|
# Taylor series for erf, fixed-point summation
|
|
t = abs(to_fixed(x, wp))
|
|
t2 = (t*t) >> wp
|
|
s, term, k = t, 12345, 1
|
|
while term:
|
|
t = ((t * t2) >> wp) // k
|
|
term = t // (2*k+1)
|
|
if k & 1:
|
|
s -= term
|
|
else:
|
|
s += term
|
|
k += 1
|
|
s = (s << (wp+1)) // sqrt_fixed(pi_fixed(wp), wp)
|
|
if sign:
|
|
s = -s
|
|
return from_man_exp(s, -wp, prec, rnd)
|
|
|
|
# If possible, we use the asymptotic series for erfc.
|
|
# This is an alternating divergent asymptotic series, so
|
|
# the error is at most equal to the first omitted term.
|
|
# Here we check if the smallest term is small enough
|
|
# for a given x and precision
|
|
def erfc_check_series(x, prec):
|
|
n = to_int(x)
|
|
if n**2 * 1.44 > prec:
|
|
return True
|
|
return False
|
|
|
|
def mpf_erfc(x, prec, rnd=round_fast):
|
|
sign, man, exp, bc = x
|
|
if not man:
|
|
if x == fzero: return fone
|
|
if x == finf: return fzero
|
|
if x == fninf: return ftwo
|
|
return fnan
|
|
wp = prec + 20
|
|
mag = bc+exp
|
|
# Preserve full accuracy when exponent grows huge
|
|
wp += max(0, 2*mag)
|
|
regular_erf = sign or mag < 2
|
|
if regular_erf or not erfc_check_series(x, wp):
|
|
if regular_erf:
|
|
return mpf_sub(fone, mpf_erf(x, prec+10, negative_rnd[rnd]), prec, rnd)
|
|
# 1-erf(x) ~ exp(-x^2), increase prec to deal with cancellation
|
|
n = to_int(x)+1
|
|
return mpf_sub(fone, mpf_erf(x, prec + int(n**2*1.44) + 10), prec, rnd)
|
|
s = term = MPZ_ONE << wp
|
|
term_prev = 0
|
|
t = (2 * to_fixed(x, wp) ** 2) >> wp
|
|
k = 1
|
|
while 1:
|
|
term = ((term * (2*k - 1)) << wp) // t
|
|
if k > 4 and term > term_prev or not term:
|
|
break
|
|
if k & 1:
|
|
s -= term
|
|
else:
|
|
s += term
|
|
term_prev = term
|
|
#print k, to_str(from_man_exp(term, -wp, 50), 10)
|
|
k += 1
|
|
s = (s << wp) // sqrt_fixed(pi_fixed(wp), wp)
|
|
s = from_man_exp(s, -wp, wp)
|
|
z = mpf_exp(mpf_neg(mpf_mul(x,x,wp),wp),wp)
|
|
y = mpf_div(mpf_mul(z, s, wp), x, prec, rnd)
|
|
return y
|
|
|
|
|
|
#-----------------------------------------------------------------------#
|
|
# #
|
|
# Exponential integrals #
|
|
# #
|
|
#-----------------------------------------------------------------------#
|
|
|
|
def ei_taylor(x, prec):
|
|
s = t = x
|
|
k = 2
|
|
while t:
|
|
t = ((t*x) >> prec) // k
|
|
s += t // k
|
|
k += 1
|
|
return s
|
|
|
|
def complex_ei_taylor(zre, zim, prec):
|
|
_abs = abs
|
|
sre = tre = zre
|
|
sim = tim = zim
|
|
k = 2
|
|
while _abs(tre) + _abs(tim) > 5:
|
|
tre, tim = ((tre*zre-tim*zim)//k)>>prec, ((tre*zim+tim*zre)//k)>>prec
|
|
sre += tre // k
|
|
sim += tim // k
|
|
k += 1
|
|
return sre, sim
|
|
|
|
def ei_asymptotic(x, prec):
|
|
one = MPZ_ONE << prec
|
|
x = t = ((one << prec) // x)
|
|
s = one + x
|
|
k = 2
|
|
while t:
|
|
t = (k*t*x) >> prec
|
|
s += t
|
|
k += 1
|
|
return s
|
|
|
|
def complex_ei_asymptotic(zre, zim, prec):
|
|
_abs = abs
|
|
one = MPZ_ONE << prec
|
|
M = (zim*zim + zre*zre) >> prec
|
|
# 1 / z
|
|
xre = tre = (zre << prec) // M
|
|
xim = tim = ((-zim) << prec) // M
|
|
sre = one + xre
|
|
sim = xim
|
|
k = 2
|
|
while _abs(tre) + _abs(tim) > 1000:
|
|
#print tre, tim
|
|
tre, tim = ((tre*xre-tim*xim)*k)>>prec, ((tre*xim+tim*xre)*k)>>prec
|
|
sre += tre
|
|
sim += tim
|
|
k += 1
|
|
if k > prec:
|
|
raise NoConvergence
|
|
return sre, sim
|
|
|
|
def mpf_ei(x, prec, rnd=round_fast, e1=False):
|
|
if e1:
|
|
x = mpf_neg(x)
|
|
sign, man, exp, bc = x
|
|
if e1 and not sign:
|
|
if x == fzero:
|
|
return finf
|
|
raise ComplexResult("E1(x) for x < 0")
|
|
if man:
|
|
xabs = 0, man, exp, bc
|
|
xmag = exp+bc
|
|
wp = prec + 20
|
|
can_use_asymp = xmag > wp
|
|
if not can_use_asymp:
|
|
if exp >= 0:
|
|
xabsint = man << exp
|
|
else:
|
|
xabsint = man >> (-exp)
|
|
can_use_asymp = xabsint > int(wp*0.693) + 10
|
|
if can_use_asymp:
|
|
if xmag > wp:
|
|
v = fone
|
|
else:
|
|
v = from_man_exp(ei_asymptotic(to_fixed(x, wp), wp), -wp)
|
|
v = mpf_mul(v, mpf_exp(x, wp), wp)
|
|
v = mpf_div(v, x, prec, rnd)
|
|
else:
|
|
wp += 2*int(to_int(xabs))
|
|
u = to_fixed(x, wp)
|
|
v = ei_taylor(u, wp) + euler_fixed(wp)
|
|
t1 = from_man_exp(v,-wp)
|
|
t2 = mpf_log(xabs,wp)
|
|
v = mpf_add(t1, t2, prec, rnd)
|
|
else:
|
|
if x == fzero: v = fninf
|
|
elif x == finf: v = finf
|
|
elif x == fninf: v = fzero
|
|
else: v = fnan
|
|
if e1:
|
|
v = mpf_neg(v)
|
|
return v
|
|
|
|
def mpc_ei(z, prec, rnd=round_fast, e1=False):
|
|
if e1:
|
|
z = mpc_neg(z)
|
|
a, b = z
|
|
asign, aman, aexp, abc = a
|
|
bsign, bman, bexp, bbc = b
|
|
if b == fzero:
|
|
if e1:
|
|
x = mpf_neg(mpf_ei(a, prec, rnd))
|
|
if not asign:
|
|
y = mpf_neg(mpf_pi(prec, rnd))
|
|
else:
|
|
y = fzero
|
|
return x, y
|
|
else:
|
|
return mpf_ei(a, prec, rnd), fzero
|
|
if a != fzero:
|
|
if not aman or not bman:
|
|
return (fnan, fnan)
|
|
wp = prec + 40
|
|
amag = aexp+abc
|
|
bmag = bexp+bbc
|
|
zmag = max(amag, bmag)
|
|
can_use_asymp = zmag > wp
|
|
if not can_use_asymp:
|
|
zabsint = abs(to_int(a)) + abs(to_int(b))
|
|
can_use_asymp = zabsint > int(wp*0.693) + 20
|
|
try:
|
|
if can_use_asymp:
|
|
if zmag > wp:
|
|
v = fone, fzero
|
|
else:
|
|
zre = to_fixed(a, wp)
|
|
zim = to_fixed(b, wp)
|
|
vre, vim = complex_ei_asymptotic(zre, zim, wp)
|
|
v = from_man_exp(vre, -wp), from_man_exp(vim, -wp)
|
|
v = mpc_mul(v, mpc_exp(z, wp), wp)
|
|
v = mpc_div(v, z, wp)
|
|
if e1:
|
|
v = mpc_neg(v, prec, rnd)
|
|
else:
|
|
x, y = v
|
|
if bsign:
|
|
v = mpf_pos(x, prec, rnd), mpf_sub(y, mpf_pi(wp), prec, rnd)
|
|
else:
|
|
v = mpf_pos(x, prec, rnd), mpf_add(y, mpf_pi(wp), prec, rnd)
|
|
return v
|
|
except NoConvergence:
|
|
pass
|
|
#wp += 2*max(0,zmag)
|
|
wp += 2*int(to_int(mpc_abs(z, 5)))
|
|
zre = to_fixed(a, wp)
|
|
zim = to_fixed(b, wp)
|
|
vre, vim = complex_ei_taylor(zre, zim, wp)
|
|
vre += euler_fixed(wp)
|
|
v = from_man_exp(vre,-wp), from_man_exp(vim,-wp)
|
|
if e1:
|
|
u = mpc_log(mpc_neg(z),wp)
|
|
else:
|
|
u = mpc_log(z,wp)
|
|
v = mpc_add(v, u, prec, rnd)
|
|
if e1:
|
|
v = mpc_neg(v)
|
|
return v
|
|
|
|
def mpf_e1(x, prec, rnd=round_fast):
|
|
return mpf_ei(x, prec, rnd, True)
|
|
|
|
def mpc_e1(x, prec, rnd=round_fast):
|
|
return mpc_ei(x, prec, rnd, True)
|
|
|
|
def mpf_expint(n, x, prec, rnd=round_fast, gamma=False):
|
|
"""
|
|
E_n(x), n an integer, x real
|
|
|
|
With gamma=True, computes Gamma(n,x) (upper incomplete gamma function)
|
|
|
|
Returns (real, None) if real, otherwise (real, imag)
|
|
The imaginary part is an optional branch cut term
|
|
|
|
"""
|
|
sign, man, exp, bc = x
|
|
if not man:
|
|
if gamma:
|
|
if x == fzero:
|
|
# Actually gamma function pole
|
|
if n <= 0:
|
|
return finf, None
|
|
return mpf_gamma_int(n, prec, rnd), None
|
|
if x == finf:
|
|
return fzero, None
|
|
# TODO: could return finite imaginary value at -inf
|
|
return fnan, fnan
|
|
else:
|
|
if x == fzero:
|
|
if n > 1:
|
|
return from_rational(1, n-1, prec, rnd), None
|
|
else:
|
|
return finf, None
|
|
if x == finf:
|
|
return fzero, None
|
|
return fnan, fnan
|
|
n_orig = n
|
|
if gamma:
|
|
n = 1-n
|
|
wp = prec + 20
|
|
xmag = exp + bc
|
|
# Beware of near-poles
|
|
if xmag < -10:
|
|
raise NotImplementedError
|
|
nmag = bitcount(abs(n))
|
|
have_imag = n > 0 and sign
|
|
negx = mpf_neg(x)
|
|
# Skip series if direct convergence
|
|
if n == 0 or 2*nmag - xmag < -wp:
|
|
if gamma:
|
|
v = mpf_exp(negx, wp)
|
|
re = mpf_mul(v, mpf_pow_int(x, n_orig-1, wp), prec, rnd)
|
|
else:
|
|
v = mpf_exp(negx, wp)
|
|
re = mpf_div(v, x, prec, rnd)
|
|
else:
|
|
# Finite number of terms, or...
|
|
can_use_asymptotic_series = -3*wp < n <= 0
|
|
# ...large enough?
|
|
if not can_use_asymptotic_series:
|
|
xi = abs(to_int(x))
|
|
m = min(max(1, xi-n), 2*wp)
|
|
siz = -n*nmag + (m+n)*bitcount(abs(m+n)) - m*xmag - (144*m//100)
|
|
tol = -wp-10
|
|
can_use_asymptotic_series = siz < tol
|
|
if can_use_asymptotic_series:
|
|
r = ((-MPZ_ONE) << (wp+wp)) // to_fixed(x, wp)
|
|
m = n
|
|
t = r*m
|
|
s = MPZ_ONE << wp
|
|
while m and t:
|
|
s += t
|
|
m += 1
|
|
t = (m*r*t) >> wp
|
|
v = mpf_exp(negx, wp)
|
|
if gamma:
|
|
# ~ exp(-x) * x^(n-1) * (1 + ...)
|
|
v = mpf_mul(v, mpf_pow_int(x, n_orig-1, wp), wp)
|
|
else:
|
|
# ~ exp(-x)/x * (1 + ...)
|
|
v = mpf_div(v, x, wp)
|
|
re = mpf_mul(v, from_man_exp(s, -wp), prec, rnd)
|
|
elif n == 1:
|
|
re = mpf_neg(mpf_ei(negx, prec, rnd))
|
|
elif n > 0 and n < 3*wp:
|
|
T1 = mpf_neg(mpf_ei(negx, wp))
|
|
if gamma:
|
|
if n_orig & 1:
|
|
T1 = mpf_neg(T1)
|
|
else:
|
|
T1 = mpf_mul(T1, mpf_pow_int(negx, n-1, wp), wp)
|
|
r = t = to_fixed(x, wp)
|
|
facs = [1] * (n-1)
|
|
for k in range(1,n-1):
|
|
facs[k] = facs[k-1] * k
|
|
facs = facs[::-1]
|
|
s = facs[0] << wp
|
|
for k in range(1, n-1):
|
|
if k & 1:
|
|
s -= facs[k] * t
|
|
else:
|
|
s += facs[k] * t
|
|
t = (t*r) >> wp
|
|
T2 = from_man_exp(s, -wp, wp)
|
|
T2 = mpf_mul(T2, mpf_exp(negx, wp))
|
|
if gamma:
|
|
T2 = mpf_mul(T2, mpf_pow_int(x, n_orig, wp), wp)
|
|
R = mpf_add(T1, T2)
|
|
re = mpf_div(R, from_int(ifac(n-1)), prec, rnd)
|
|
else:
|
|
raise NotImplementedError
|
|
if have_imag:
|
|
M = from_int(-ifac(n-1))
|
|
if gamma:
|
|
im = mpf_div(mpf_pi(wp), M, prec, rnd)
|
|
if n_orig & 1:
|
|
im = mpf_neg(im)
|
|
else:
|
|
im = mpf_div(mpf_mul(mpf_pi(wp), mpf_pow_int(negx, n_orig-1, wp), wp), M, prec, rnd)
|
|
return re, im
|
|
else:
|
|
return re, None
|
|
|
|
def mpf_ci_si_taylor(x, wp, which=0):
|
|
"""
|
|
0 - Ci(x) - (euler+log(x))
|
|
1 - Si(x)
|
|
"""
|
|
x = to_fixed(x, wp)
|
|
x2 = -(x*x) >> wp
|
|
if which == 0:
|
|
s, t, k = 0, (MPZ_ONE<<wp), 2
|
|
else:
|
|
s, t, k = x, x, 3
|
|
while t:
|
|
t = (t*x2//(k*(k-1)))>>wp
|
|
s += t//k
|
|
k += 2
|
|
return from_man_exp(s, -wp)
|
|
|
|
def mpc_ci_si_taylor(re, im, wp, which=0):
|
|
# The following code is only designed for small arguments,
|
|
# and not too small arguments (for relative accuracy)
|
|
if re[1]:
|
|
mag = re[2]+re[3]
|
|
elif im[1]:
|
|
mag = im[2]+im[3]
|
|
if im[1]:
|
|
mag = max(mag, im[2]+im[3])
|
|
if mag > 2 or mag < -wp:
|
|
raise NotImplementedError
|
|
wp += (2-mag)
|
|
zre = to_fixed(re, wp)
|
|
zim = to_fixed(im, wp)
|
|
z2re = (zim*zim-zre*zre)>>wp
|
|
z2im = (-2*zre*zim)>>wp
|
|
tre = zre
|
|
tim = zim
|
|
one = MPZ_ONE<<wp
|
|
if which == 0:
|
|
sre, sim, tre, tim, k = 0, 0, (MPZ_ONE<<wp), 0, 2
|
|
else:
|
|
sre, sim, tre, tim, k = zre, zim, zre, zim, 3
|
|
while max(abs(tre), abs(tim)) > 2:
|
|
f = k*(k-1)
|
|
tre, tim = ((tre*z2re-tim*z2im)//f)>>wp, ((tre*z2im+tim*z2re)//f)>>wp
|
|
sre += tre//k
|
|
sim += tim//k
|
|
k += 2
|
|
return from_man_exp(sre, -wp), from_man_exp(sim, -wp)
|
|
|
|
def mpf_ci_si(x, prec, rnd=round_fast, which=2):
|
|
"""
|
|
Calculation of Ci(x), Si(x) for real x.
|
|
|
|
which = 0 -- returns (Ci(x), -)
|
|
which = 1 -- returns (Si(x), -)
|
|
which = 2 -- returns (Ci(x), Si(x))
|
|
|
|
Note: if x < 0, Ci(x) needs an additional imaginary term, pi*i.
|
|
"""
|
|
wp = prec + 20
|
|
sign, man, exp, bc = x
|
|
ci, si = None, None
|
|
if not man:
|
|
if x == fzero:
|
|
return (fninf, fzero)
|
|
if x == fnan:
|
|
return (x, x)
|
|
ci = fzero
|
|
if which != 0:
|
|
if x == finf:
|
|
si = mpf_shift(mpf_pi(prec, rnd), -1)
|
|
if x == fninf:
|
|
si = mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1))
|
|
return (ci, si)
|
|
# For small x: Ci(x) ~ euler + log(x), Si(x) ~ x
|
|
mag = exp+bc
|
|
if mag < -wp:
|
|
if which != 0:
|
|
si = mpf_perturb(x, 1-sign, prec, rnd)
|
|
if which != 1:
|
|
y = mpf_euler(wp)
|
|
xabs = mpf_abs(x)
|
|
ci = mpf_add(y, mpf_log(xabs, wp), prec, rnd)
|
|
return ci, si
|
|
# For huge x: Ci(x) ~ sin(x)/x, Si(x) ~ pi/2
|
|
elif mag > wp:
|
|
if which != 0:
|
|
if sign:
|
|
si = mpf_neg(mpf_pi(prec, negative_rnd[rnd]))
|
|
else:
|
|
si = mpf_pi(prec, rnd)
|
|
si = mpf_shift(si, -1)
|
|
if which != 1:
|
|
ci = mpf_div(mpf_sin(x, wp), x, prec, rnd)
|
|
return ci, si
|
|
else:
|
|
wp += abs(mag)
|
|
# Use an asymptotic series? The smallest value of n!/x^n
|
|
# occurs for n ~ x, where the magnitude is ~ exp(-x).
|
|
asymptotic = mag-1 > math.log(wp, 2)
|
|
# Case 1: convergent series near 0
|
|
if not asymptotic:
|
|
if which != 0:
|
|
si = mpf_pos(mpf_ci_si_taylor(x, wp, 1), prec, rnd)
|
|
if which != 1:
|
|
ci = mpf_ci_si_taylor(x, wp, 0)
|
|
ci = mpf_add(ci, mpf_euler(wp), wp)
|
|
ci = mpf_add(ci, mpf_log(mpf_abs(x), wp), prec, rnd)
|
|
return ci, si
|
|
x = mpf_abs(x)
|
|
# Case 2: asymptotic series for x >> 1
|
|
xf = to_fixed(x, wp)
|
|
xr = (MPZ_ONE<<(2*wp)) // xf # 1/x
|
|
s1 = (MPZ_ONE << wp)
|
|
s2 = xr
|
|
t = xr
|
|
k = 2
|
|
while t:
|
|
t = -t
|
|
t = (t*xr*k)>>wp
|
|
k += 1
|
|
s1 += t
|
|
t = (t*xr*k)>>wp
|
|
k += 1
|
|
s2 += t
|
|
s1 = from_man_exp(s1, -wp)
|
|
s2 = from_man_exp(s2, -wp)
|
|
s1 = mpf_div(s1, x, wp)
|
|
s2 = mpf_div(s2, x, wp)
|
|
cos, sin = mpf_cos_sin(x, wp)
|
|
# Ci(x) = sin(x)*s1-cos(x)*s2
|
|
# Si(x) = pi/2-cos(x)*s1-sin(x)*s2
|
|
if which != 0:
|
|
si = mpf_add(mpf_mul(cos, s1), mpf_mul(sin, s2), wp)
|
|
si = mpf_sub(mpf_shift(mpf_pi(wp), -1), si, wp)
|
|
if sign:
|
|
si = mpf_neg(si)
|
|
si = mpf_pos(si, prec, rnd)
|
|
if which != 1:
|
|
ci = mpf_sub(mpf_mul(sin, s1), mpf_mul(cos, s2), prec, rnd)
|
|
return ci, si
|
|
|
|
def mpf_ci(x, prec, rnd=round_fast):
|
|
if mpf_sign(x) < 0:
|
|
raise ComplexResult
|
|
return mpf_ci_si(x, prec, rnd, 0)[0]
|
|
|
|
def mpf_si(x, prec, rnd=round_fast):
|
|
return mpf_ci_si(x, prec, rnd, 1)[1]
|
|
|
|
def mpc_ci(z, prec, rnd=round_fast):
|
|
re, im = z
|
|
if im == fzero:
|
|
ci = mpf_ci_si(re, prec, rnd, 0)[0]
|
|
if mpf_sign(re) < 0:
|
|
return (ci, mpf_pi(prec, rnd))
|
|
return (ci, fzero)
|
|
wp = prec + 20
|
|
cre, cim = mpc_ci_si_taylor(re, im, wp, 0)
|
|
cre = mpf_add(cre, mpf_euler(wp), wp)
|
|
ci = mpc_add((cre, cim), mpc_log(z, wp), prec, rnd)
|
|
return ci
|
|
|
|
def mpc_si(z, prec, rnd=round_fast):
|
|
re, im = z
|
|
if im == fzero:
|
|
return (mpf_ci_si(re, prec, rnd, 1)[1], fzero)
|
|
wp = prec + 20
|
|
z = mpc_ci_si_taylor(re, im, wp, 1)
|
|
return mpc_pos(z, prec, rnd)
|
|
|
|
|
|
#-----------------------------------------------------------------------#
|
|
# #
|
|
# Bessel functions #
|
|
# #
|
|
#-----------------------------------------------------------------------#
|
|
|
|
# A Bessel function of the first kind of integer order, J_n(x), is
|
|
# given by the power series
|
|
|
|
# oo
|
|
# ___ k 2 k + n
|
|
# \ (-1) / x \
|
|
# J_n(x) = ) ----------- | - |
|
|
# /___ k! (k + n)! \ 2 /
|
|
# k = 0
|
|
|
|
# Simplifying the quotient between two successive terms gives the
|
|
# ratio x^2 / (-4*k*(k+n)). Hence, we only need one full-precision
|
|
# multiplication and one division by a small integer per term.
|
|
# The complex version is very similar, the only difference being
|
|
# that the multiplication is actually 4 multiplies.
|
|
|
|
# In the general case, we have
|
|
# J_v(x) = (x/2)**v / v! * 0F1(v+1, (-1/4)*z**2)
|
|
|
|
# TODO: for extremely large x, we could use an asymptotic
|
|
# trigonometric approximation.
|
|
|
|
# TODO: recompute at higher precision if the fixed-point mantissa
|
|
# is very small
|
|
|
|
def mpf_besseljn(n, x, prec, rounding=round_fast):
|
|
prec += 50
|
|
negate = n < 0 and n & 1
|
|
mag = x[2]+x[3]
|
|
n = abs(n)
|
|
wp = prec + 20 + n*bitcount(n)
|
|
if mag < 0:
|
|
wp -= n * mag
|
|
x = to_fixed(x, wp)
|
|
x2 = (x**2) >> wp
|
|
if not n:
|
|
s = t = MPZ_ONE << wp
|
|
else:
|
|
s = t = (x**n // ifac(n)) >> ((n-1)*wp + n)
|
|
k = 1
|
|
while t:
|
|
t = ((t * x2) // (-4*k*(k+n))) >> wp
|
|
s += t
|
|
k += 1
|
|
if negate:
|
|
s = -s
|
|
return from_man_exp(s, -wp, prec, rounding)
|
|
|
|
def mpc_besseljn(n, z, prec, rounding=round_fast):
|
|
negate = n < 0 and n & 1
|
|
n = abs(n)
|
|
origprec = prec
|
|
zre, zim = z
|
|
mag = max(zre[2]+zre[3], zim[2]+zim[3])
|
|
prec += 20 + n*bitcount(n) + abs(mag)
|
|
if mag < 0:
|
|
prec -= n * mag
|
|
zre = to_fixed(zre, prec)
|
|
zim = to_fixed(zim, prec)
|
|
z2re = (zre**2 - zim**2) >> prec
|
|
z2im = (zre*zim) >> (prec-1)
|
|
if not n:
|
|
sre = tre = MPZ_ONE << prec
|
|
sim = tim = MPZ_ZERO
|
|
else:
|
|
re, im = complex_int_pow(zre, zim, n)
|
|
sre = tre = (re // ifac(n)) >> ((n-1)*prec + n)
|
|
sim = tim = (im // ifac(n)) >> ((n-1)*prec + n)
|
|
k = 1
|
|
while abs(tre) + abs(tim) > 3:
|
|
p = -4*k*(k+n)
|
|
tre, tim = tre*z2re - tim*z2im, tim*z2re + tre*z2im
|
|
tre = (tre // p) >> prec
|
|
tim = (tim // p) >> prec
|
|
sre += tre
|
|
sim += tim
|
|
k += 1
|
|
if negate:
|
|
sre = -sre
|
|
sim = -sim
|
|
re = from_man_exp(sre, -prec, origprec, rounding)
|
|
im = from_man_exp(sim, -prec, origprec, rounding)
|
|
return (re, im)
|
|
|
|
def mpf_agm(a, b, prec, rnd=round_fast):
|
|
"""
|
|
Computes the arithmetic-geometric mean agm(a,b) for
|
|
nonnegative mpf values a, b.
|
|
"""
|
|
asign, aman, aexp, abc = a
|
|
bsign, bman, bexp, bbc = b
|
|
if asign or bsign:
|
|
raise ComplexResult("agm of a negative number")
|
|
# Handle inf, nan or zero in either operand
|
|
if not (aman and bman):
|
|
if a == fnan or b == fnan:
|
|
return fnan
|
|
if a == finf:
|
|
if b == fzero:
|
|
return fnan
|
|
return finf
|
|
if b == finf:
|
|
if a == fzero:
|
|
return fnan
|
|
return finf
|
|
# agm(0,x) = agm(x,0) = 0
|
|
return fzero
|
|
wp = prec + 20
|
|
amag = aexp+abc
|
|
bmag = bexp+bbc
|
|
mag_delta = amag - bmag
|
|
# Reduce to roughly the same magnitude using floating-point AGM
|
|
abs_mag_delta = abs(mag_delta)
|
|
if abs_mag_delta > 10:
|
|
while abs_mag_delta > 10:
|
|
a, b = mpf_shift(mpf_add(a,b,wp),-1), \
|
|
mpf_sqrt(mpf_mul(a,b,wp),wp)
|
|
abs_mag_delta //= 2
|
|
asign, aman, aexp, abc = a
|
|
bsign, bman, bexp, bbc = b
|
|
amag = aexp+abc
|
|
bmag = bexp+bbc
|
|
mag_delta = amag - bmag
|
|
#print to_float(a), to_float(b)
|
|
# Use agm(a,b) = agm(x*a,x*b)/x to obtain a, b ~= 1
|
|
min_mag = min(amag,bmag)
|
|
max_mag = max(amag,bmag)
|
|
n = 0
|
|
# If too small, we lose precision when going to fixed-point
|
|
if min_mag < -8:
|
|
n = -min_mag
|
|
# If too large, we waste time using fixed-point with large numbers
|
|
elif max_mag > 20:
|
|
n = -max_mag
|
|
if n:
|
|
a = mpf_shift(a, n)
|
|
b = mpf_shift(b, n)
|
|
#print to_float(a), to_float(b)
|
|
af = to_fixed(a, wp)
|
|
bf = to_fixed(b, wp)
|
|
g = agm_fixed(af, bf, wp)
|
|
return from_man_exp(g, -wp-n, prec, rnd)
|
|
|
|
def mpf_agm1(a, prec, rnd=round_fast):
|
|
"""
|
|
Computes the arithmetic-geometric mean agm(1,a) for a nonnegative
|
|
mpf value a.
|
|
"""
|
|
return mpf_agm(fone, a, prec, rnd)
|
|
|
|
def mpc_agm(a, b, prec, rnd=round_fast):
|
|
"""
|
|
Complex AGM.
|
|
|
|
TODO:
|
|
* check that convergence works as intended
|
|
* optimize
|
|
* select a nonarbitrary branch
|
|
"""
|
|
if mpc_is_infnan(a) or mpc_is_infnan(b):
|
|
return fnan, fnan
|
|
if mpc_zero in (a, b):
|
|
return fzero, fzero
|
|
if mpc_neg(a) == b:
|
|
return fzero, fzero
|
|
wp = prec+20
|
|
eps = mpf_shift(fone, -wp+10)
|
|
while 1:
|
|
a1 = mpc_shift(mpc_add(a, b, wp), -1)
|
|
b1 = mpc_sqrt(mpc_mul(a, b, wp), wp)
|
|
a, b = a1, b1
|
|
size = mpf_min_max([mpc_abs(a,10), mpc_abs(b,10)])[1]
|
|
err = mpc_abs(mpc_sub(a, b, 10), 10)
|
|
if size == fzero or mpf_lt(err, mpf_mul(eps, size)):
|
|
return a
|
|
|
|
def mpc_agm1(a, prec, rnd=round_fast):
|
|
return mpc_agm(mpc_one, a, prec, rnd)
|
|
|
|
def mpf_ellipk(x, prec, rnd=round_fast):
|
|
if not x[1]:
|
|
if x == fzero:
|
|
return mpf_shift(mpf_pi(prec, rnd), -1)
|
|
if x == fninf:
|
|
return fzero
|
|
if x == fnan:
|
|
return x
|
|
if x == fone:
|
|
return finf
|
|
# TODO: for |x| << 1/2, one could use fall back to
|
|
# pi/2 * hyp2f1_rat((1,2),(1,2),(1,1), x)
|
|
wp = prec + 15
|
|
# Use K(x) = pi/2/agm(1,a) where a = sqrt(1-x)
|
|
# The sqrt raises ComplexResult if x > 0
|
|
a = mpf_sqrt(mpf_sub(fone, x, wp), wp)
|
|
v = mpf_agm1(a, wp)
|
|
r = mpf_div(mpf_pi(wp), v, prec, rnd)
|
|
return mpf_shift(r, -1)
|
|
|
|
def mpc_ellipk(z, prec, rnd=round_fast):
|
|
re, im = z
|
|
if im == fzero:
|
|
if re == finf:
|
|
return mpc_zero
|
|
if mpf_le(re, fone):
|
|
return mpf_ellipk(re, prec, rnd), fzero
|
|
wp = prec + 15
|
|
a = mpc_sqrt(mpc_sub(mpc_one, z, wp), wp)
|
|
v = mpc_agm1(a, wp)
|
|
r = mpc_mpf_div(mpf_pi(wp), v, prec, rnd)
|
|
return mpc_shift(r, -1)
|
|
|
|
def mpf_ellipe(x, prec, rnd=round_fast):
|
|
# http://functions.wolfram.com/EllipticIntegrals/
|
|
# EllipticK/20/01/0001/
|
|
# E = (1-m)*(K'(m)*2*m + K(m))
|
|
sign, man, exp, bc = x
|
|
if not man:
|
|
if x == fzero:
|
|
return mpf_shift(mpf_pi(prec, rnd), -1)
|
|
if x == fninf:
|
|
return finf
|
|
if x == fnan:
|
|
return x
|
|
if x == finf:
|
|
raise ComplexResult
|
|
if x == fone:
|
|
return fone
|
|
wp = prec+20
|
|
mag = exp+bc
|
|
if mag < -wp:
|
|
return mpf_shift(mpf_pi(prec, rnd), -1)
|
|
# Compute a finite difference for K'
|
|
p = max(mag, 0) - wp
|
|
h = mpf_shift(fone, p)
|
|
K = mpf_ellipk(x, 2*wp)
|
|
Kh = mpf_ellipk(mpf_sub(x, h), 2*wp)
|
|
Kdiff = mpf_shift(mpf_sub(K, Kh), -p)
|
|
t = mpf_sub(fone, x)
|
|
b = mpf_mul(Kdiff, mpf_shift(x,1), wp)
|
|
return mpf_mul(t, mpf_add(K, b), prec, rnd)
|
|
|
|
def mpc_ellipe(z, prec, rnd=round_fast):
|
|
re, im = z
|
|
if im == fzero:
|
|
if re == finf:
|
|
return (fzero, finf)
|
|
if mpf_le(re, fone):
|
|
return mpf_ellipe(re, prec, rnd), fzero
|
|
wp = prec + 15
|
|
mag = mpc_abs(z, 1)
|
|
p = max(mag[2]+mag[3], 0) - wp
|
|
h = mpf_shift(fone, p)
|
|
K = mpc_ellipk(z, 2*wp)
|
|
Kh = mpc_ellipk(mpc_add_mpf(z, h, 2*wp), 2*wp)
|
|
Kdiff = mpc_shift(mpc_sub(Kh, K, wp), -p)
|
|
t = mpc_sub(mpc_one, z, wp)
|
|
b = mpc_mul(Kdiff, mpc_shift(z,1), wp)
|
|
return mpc_mul(t, mpc_add(K, b, wp), prec, rnd)
|