You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

602 lines
19 KiB

"""
Miscellaneous Helpers for NetworkX.
These are not imported into the base networkx namespace but
can be accessed, for example, as
>>> import networkx
>>> networkx.utils.make_list_of_ints({1, 2, 3})
[1, 2, 3]
>>> networkx.utils.arbitrary_element({5, 1, 7}) # doctest: +SKIP
1
"""
import random
import sys
import uuid
import warnings
from collections import defaultdict, deque
from collections.abc import Iterable, Iterator, Sized
from itertools import chain, tee
import networkx as nx
__all__ = [
"flatten",
"make_list_of_ints",
"dict_to_numpy_array",
"arbitrary_element",
"pairwise",
"groups",
"create_random_state",
"create_py_random_state",
"PythonRandomInterface",
"PythonRandomViaNumpyBits",
"nodes_equal",
"edges_equal",
"graphs_equal",
"_clear_cache",
]
# some cookbook stuff
# used in deciding whether something is a bunch of nodes, edges, etc.
# see G.add_nodes and others in Graph Class in networkx/base.py
def flatten(obj, result=None):
"""Return flattened version of (possibly nested) iterable object."""
if not isinstance(obj, Iterable | Sized) or isinstance(obj, str):
return obj
if result is None:
result = []
for item in obj:
if not isinstance(item, Iterable | Sized) or isinstance(item, str):
result.append(item)
else:
flatten(item, result)
return tuple(result)
def make_list_of_ints(sequence):
"""Return list of ints from sequence of integral numbers.
All elements of the sequence must satisfy int(element) == element
or a ValueError is raised. Sequence is iterated through once.
If sequence is a list, the non-int values are replaced with ints.
So, no new list is created
"""
if not isinstance(sequence, list):
result = []
for i in sequence:
errmsg = f"sequence is not all integers: {i}"
try:
ii = int(i)
except ValueError:
raise nx.NetworkXError(errmsg) from None
if ii != i:
raise nx.NetworkXError(errmsg)
result.append(ii)
return result
# original sequence is a list... in-place conversion to ints
for indx, i in enumerate(sequence):
errmsg = f"sequence is not all integers: {i}"
if isinstance(i, int):
continue
try:
ii = int(i)
except ValueError:
raise nx.NetworkXError(errmsg) from None
if ii != i:
raise nx.NetworkXError(errmsg)
sequence[indx] = ii
return sequence
def dict_to_numpy_array(d, mapping=None):
"""Convert a dictionary of dictionaries to a numpy array
with optional mapping."""
try:
return _dict_to_numpy_array2(d, mapping)
except (AttributeError, TypeError):
# AttributeError is when no mapping was provided and v.keys() fails.
# TypeError is when a mapping was provided and d[k1][k2] fails.
return _dict_to_numpy_array1(d, mapping)
def _dict_to_numpy_array2(d, mapping=None):
"""Convert a dictionary of dictionaries to a 2d numpy array
with optional mapping.
"""
import numpy as np
if mapping is None:
s = set(d.keys())
for k, v in d.items():
s.update(v.keys())
mapping = dict(zip(s, range(len(s))))
n = len(mapping)
a = np.zeros((n, n))
for k1, i in mapping.items():
for k2, j in mapping.items():
try:
a[i, j] = d[k1][k2]
except KeyError:
pass
return a
def _dict_to_numpy_array1(d, mapping=None):
"""Convert a dictionary of numbers to a 1d numpy array with optional mapping."""
import numpy as np
if mapping is None:
s = set(d.keys())
mapping = dict(zip(s, range(len(s))))
n = len(mapping)
a = np.zeros(n)
for k1, i in mapping.items():
i = mapping[k1]
a[i] = d[k1]
return a
def arbitrary_element(iterable):
"""Returns an arbitrary element of `iterable` without removing it.
This is most useful for "peeking" at an arbitrary element of a set,
but can be used for any list, dictionary, etc., as well.
Parameters
----------
iterable : `abc.collections.Iterable` instance
Any object that implements ``__iter__``, e.g. set, dict, list, tuple,
etc.
Returns
-------
The object that results from ``next(iter(iterable))``
Raises
------
ValueError
If `iterable` is an iterator (because the current implementation of
this function would consume an element from the iterator).
Examples
--------
Arbitrary elements from common Iterable objects:
>>> nx.utils.arbitrary_element([1, 2, 3]) # list
1
>>> nx.utils.arbitrary_element((1, 2, 3)) # tuple
1
>>> nx.utils.arbitrary_element({1, 2, 3}) # set
1
>>> d = {k: v for k, v in zip([1, 2, 3], [3, 2, 1])}
>>> nx.utils.arbitrary_element(d) # dict_keys
1
>>> nx.utils.arbitrary_element(d.values()) # dict values
3
`str` is also an Iterable:
>>> nx.utils.arbitrary_element("hello")
'h'
:exc:`ValueError` is raised if `iterable` is an iterator:
>>> iterator = iter([1, 2, 3]) # Iterator, *not* Iterable
>>> nx.utils.arbitrary_element(iterator)
Traceback (most recent call last):
...
ValueError: cannot return an arbitrary item from an iterator
Notes
-----
This function does not return a *random* element. If `iterable` is
ordered, sequential calls will return the same value::
>>> l = [1, 2, 3]
>>> nx.utils.arbitrary_element(l)
1
>>> nx.utils.arbitrary_element(l)
1
"""
if isinstance(iterable, Iterator):
raise ValueError("cannot return an arbitrary item from an iterator")
# Another possible implementation is ``for x in iterable: return x``.
return next(iter(iterable))
# Recipe from the itertools documentation.
def pairwise(iterable, cyclic=False):
"s -> (s0, s1), (s1, s2), (s2, s3), ..."
a, b = tee(iterable)
first = next(b, None)
if cyclic is True:
return zip(a, chain(b, (first,)))
return zip(a, b)
def groups(many_to_one):
"""Converts a many-to-one mapping into a one-to-many mapping.
`many_to_one` must be a dictionary whose keys and values are all
:term:`hashable`.
The return value is a dictionary mapping values from `many_to_one`
to sets of keys from `many_to_one` that have that value.
Examples
--------
>>> from networkx.utils import groups
>>> many_to_one = {"a": 1, "b": 1, "c": 2, "d": 3, "e": 3}
>>> groups(many_to_one) # doctest: +SKIP
{1: {'a', 'b'}, 2: {'c'}, 3: {'e', 'd'}}
"""
one_to_many = defaultdict(set)
for v, k in many_to_one.items():
one_to_many[k].add(v)
return dict(one_to_many)
def create_random_state(random_state=None):
"""Returns a numpy.random.RandomState or numpy.random.Generator instance
depending on input.
Parameters
----------
random_state : int or NumPy RandomState or Generator instance, optional (default=None)
If int, return a numpy.random.RandomState instance set with seed=int.
if `numpy.random.RandomState` instance, return it.
if `numpy.random.Generator` instance, return it.
if None or numpy.random, return the global random number generator used
by numpy.random.
"""
import numpy as np
if random_state is None or random_state is np.random:
return np.random.mtrand._rand
if isinstance(random_state, np.random.RandomState):
return random_state
if isinstance(random_state, int):
return np.random.RandomState(random_state)
if isinstance(random_state, np.random.Generator):
return random_state
msg = (
f"{random_state} cannot be used to create a numpy.random.RandomState or\n"
"numpy.random.Generator instance"
)
raise ValueError(msg)
class PythonRandomViaNumpyBits(random.Random):
"""Provide the random.random algorithms using a numpy.random bit generator
The intent is to allow people to contribute code that uses Python's random
library, but still allow users to provide a single easily controlled random
bit-stream for all work with NetworkX. This implementation is based on helpful
comments and code from Robert Kern on NumPy's GitHub Issue #24458.
This implementation supercedes that of `PythonRandomInterface` which rewrote
methods to account for subtle differences in API between `random` and
`numpy.random`. Instead this subclasses `random.Random` and overwrites
the methods `random`, `getrandbits`, `getstate`, `setstate` and `seed`.
It makes them use the rng values from an input numpy `RandomState` or `Generator`.
Those few methods allow the rest of the `random.Random` methods to provide
the API interface of `random.random` while using randomness generated by
a numpy generator.
"""
def __init__(self, rng=None):
try:
import numpy as np
except ImportError:
msg = "numpy not found, only random.random available."
warnings.warn(msg, ImportWarning)
if rng is None:
self._rng = np.random.mtrand._rand
else:
self._rng = rng
# Not necessary, given our overriding of gauss() below, but it's
# in the superclass and nominally public, so initialize it here.
self.gauss_next = None
def random(self):
"""Get the next random number in the range 0.0 <= X < 1.0."""
return self._rng.random()
def getrandbits(self, k):
"""getrandbits(k) -> x. Generates an int with k random bits."""
if k < 0:
raise ValueError("number of bits must be non-negative")
numbytes = (k + 7) // 8 # bits / 8 and rounded up
x = int.from_bytes(self._rng.bytes(numbytes), "big")
return x >> (numbytes * 8 - k) # trim excess bits
def getstate(self):
return self._rng.__getstate__()
def setstate(self, state):
self._rng.__setstate__(state)
def seed(self, *args, **kwds):
"Do nothing override method."
raise NotImplementedError("seed() not implemented in PythonRandomViaNumpyBits")
##################################################################
class PythonRandomInterface:
"""PythonRandomInterface is included for backward compatibility
New code should use PythonRandomViaNumpyBits instead.
"""
def __init__(self, rng=None):
try:
import numpy as np
except ImportError:
msg = "numpy not found, only random.random available."
warnings.warn(msg, ImportWarning)
if rng is None:
self._rng = np.random.mtrand._rand
else:
self._rng = rng
def random(self):
return self._rng.random()
def uniform(self, a, b):
return a + (b - a) * self._rng.random()
def randrange(self, a, b=None):
import numpy as np
if b is None:
a, b = 0, a
if b > 9223372036854775807: # from np.iinfo(np.int64).max
tmp_rng = PythonRandomViaNumpyBits(self._rng)
return tmp_rng.randrange(a, b)
if isinstance(self._rng, np.random.Generator):
return self._rng.integers(a, b)
return self._rng.randint(a, b)
# NOTE: the numpy implementations of `choice` don't support strings, so
# this cannot be replaced with self._rng.choice
def choice(self, seq):
import numpy as np
if isinstance(self._rng, np.random.Generator):
idx = self._rng.integers(0, len(seq))
else:
idx = self._rng.randint(0, len(seq))
return seq[idx]
def gauss(self, mu, sigma):
return self._rng.normal(mu, sigma)
def shuffle(self, seq):
return self._rng.shuffle(seq)
# Some methods don't match API for numpy RandomState.
# Commented out versions are not used by NetworkX
def sample(self, seq, k):
return self._rng.choice(list(seq), size=(k,), replace=False)
def randint(self, a, b):
import numpy as np
if b > 9223372036854775807: # from np.iinfo(np.int64).max
tmp_rng = PythonRandomViaNumpyBits(self._rng)
return tmp_rng.randint(a, b)
if isinstance(self._rng, np.random.Generator):
return self._rng.integers(a, b + 1)
return self._rng.randint(a, b + 1)
# exponential as expovariate with 1/argument,
def expovariate(self, scale):
return self._rng.exponential(1 / scale)
# pareto as paretovariate with 1/argument,
def paretovariate(self, shape):
return self._rng.pareto(shape)
# weibull as weibullvariate multiplied by beta,
# def weibullvariate(self, alpha, beta):
# return self._rng.weibull(alpha) * beta
#
# def triangular(self, low, high, mode):
# return self._rng.triangular(low, mode, high)
#
# def choices(self, seq, weights=None, cum_weights=None, k=1):
# return self._rng.choice(seq
def create_py_random_state(random_state=None):
"""Returns a random.Random instance depending on input.
Parameters
----------
random_state : int or random number generator or None (default=None)
- If int, return a `random.Random` instance set with seed=int.
- If `random.Random` instance, return it.
- If None or the `np.random` package, return the global random number
generator used by `np.random`.
- If an `np.random.Generator` instance, or the `np.random` package, or
the global numpy random number generator, then return it.
wrapped in a `PythonRandomViaNumpyBits` class.
- If a `PythonRandomViaNumpyBits` instance, return it.
- If a `PythonRandomInterface` instance, return it.
- If a `np.random.RandomState` instance and not the global numpy default,
return it wrapped in `PythonRandomInterface` for backward bit-stream
matching with legacy code.
Notes
-----
- A diagram intending to illustrate the relationships behind our support
for numpy random numbers is called
`NetworkX Numpy Random Numbers <https://excalidraw.com/#room=b5303f2b03d3af7ccc6a,e5ZDIWdWWCTTsg8OqoRvPA>`_.
- More discussion about this support also appears in
`gh-6869#comment <https://github.com/networkx/networkx/pull/6869#issuecomment-1944799534>`_.
- Wrappers of numpy.random number generators allow them to mimic the Python random
number generation algorithms. For example, Python can create arbitrarily large
random ints, and the wrappers use Numpy bit-streams with CPython's random module
to choose arbitrarily large random integers too.
- We provide two wrapper classes:
`PythonRandomViaNumpyBits` is usually what you want and is always used for
`np.Generator` instances. But for users who need to recreate random numbers
produced in NetworkX 3.2 or earlier, we maintain the `PythonRandomInterface`
wrapper as well. We use it only used if passed a (non-default) `np.RandomState`
instance pre-initialized from a seed. Otherwise the newer wrapper is used.
"""
if random_state is None or random_state is random:
return random._inst
if isinstance(random_state, random.Random):
return random_state
if isinstance(random_state, int):
return random.Random(random_state)
try:
import numpy as np
except ImportError:
pass
else:
if isinstance(random_state, PythonRandomInterface | PythonRandomViaNumpyBits):
return random_state
if isinstance(random_state, np.random.Generator):
return PythonRandomViaNumpyBits(random_state)
if random_state is np.random:
return PythonRandomViaNumpyBits(np.random.mtrand._rand)
if isinstance(random_state, np.random.RandomState):
if random_state is np.random.mtrand._rand:
return PythonRandomViaNumpyBits(random_state)
# Only need older interface if specially constructed RandomState used
return PythonRandomInterface(random_state)
msg = f"{random_state} cannot be used to generate a random.Random instance"
raise ValueError(msg)
def nodes_equal(nodes1, nodes2):
"""Check if nodes are equal.
Equality here means equal as Python objects.
Node data must match if included.
The order of nodes is not relevant.
Parameters
----------
nodes1, nodes2 : iterables of nodes, or (node, datadict) tuples
Returns
-------
bool
True if nodes are equal, False otherwise.
"""
nlist1 = list(nodes1)
nlist2 = list(nodes2)
try:
d1 = dict(nlist1)
d2 = dict(nlist2)
except (ValueError, TypeError):
d1 = dict.fromkeys(nlist1)
d2 = dict.fromkeys(nlist2)
return d1 == d2
def edges_equal(edges1, edges2):
"""Check if edges are equal.
Equality here means equal as Python objects.
Edge data must match if included.
The order of the edges is not relevant.
Parameters
----------
edges1, edges2 : iterables of with u, v nodes as
edge tuples (u, v), or
edge tuples with data dicts (u, v, d), or
edge tuples with keys and data dicts (u, v, k, d)
Returns
-------
bool
True if edges are equal, False otherwise.
"""
from collections import defaultdict
d1 = defaultdict(dict)
d2 = defaultdict(dict)
c1 = 0
for c1, e in enumerate(edges1):
u, v = e[0], e[1]
data = [e[2:]]
if v in d1[u]:
data = d1[u][v] + data
d1[u][v] = data
d1[v][u] = data
c2 = 0
for c2, e in enumerate(edges2):
u, v = e[0], e[1]
data = [e[2:]]
if v in d2[u]:
data = d2[u][v] + data
d2[u][v] = data
d2[v][u] = data
if c1 != c2:
return False
# can check one direction because lengths are the same.
for n, nbrdict in d1.items():
for nbr, datalist in nbrdict.items():
if n not in d2:
return False
if nbr not in d2[n]:
return False
d2datalist = d2[n][nbr]
for data in datalist:
if datalist.count(data) != d2datalist.count(data):
return False
return True
def graphs_equal(graph1, graph2):
"""Check if graphs are equal.
Equality here means equal as Python objects (not isomorphism).
Node, edge and graph data must match.
Parameters
----------
graph1, graph2 : graph
Returns
-------
bool
True if graphs are equal, False otherwise.
"""
return (
graph1.adj == graph2.adj
and graph1.nodes == graph2.nodes
and graph1.graph == graph2.graph
)
def _clear_cache(G):
"""Clear the cache of a graph (currently stores converted graphs).
Caching is controlled via ``nx.config.cache_converted_graphs`` configuration.
"""
if cache := getattr(G, "__networkx_cache__", None):
cache.clear()