You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

551 lines
17 KiB

import ast
import builtins
import dis
import enum
import inspect
import re
import typing
import warnings
from textwrap import dedent
from typing import Type
import torch
from torch._C import (
_GeneratorType,
AnyType,
AwaitType,
BoolType,
ComplexType,
DeviceObjType,
DictType,
EnumType,
FloatType,
FutureType,
InterfaceType,
IntType,
ListType,
NoneType,
NumberType,
OptionalType,
StreamObjType,
StringType,
TensorType,
TupleType,
UnionType,
)
from torch._sources import get_source_lines_and_file
from .._jit_internal import ( # type: ignore[attr-defined]
_Await,
_qualified_name,
Any,
BroadcastingList1,
BroadcastingList2,
BroadcastingList3,
Dict,
Future,
is_await,
is_dict,
is_future,
is_ignored_fn,
is_list,
is_optional,
is_tuple,
is_union,
List,
Optional,
Tuple,
Union,
)
from ._state import _get_script_class
if torch.distributed.rpc.is_available():
from torch._C import RRefType
from .._jit_internal import is_rref, RRef
from torch._ops import OpOverloadPacket
class Module:
def __init__(self, name, members):
self.name = name
self.members = members
def __getattr__(self, name):
try:
return self.members[name]
except KeyError:
raise RuntimeError(
f"Module {self.name} has no member called {name}"
) from None
class EvalEnv:
env = {
"torch": Module("torch", {"Tensor": torch.Tensor}),
"Tensor": torch.Tensor,
"typing": Module("typing", {"Tuple": Tuple}),
"Tuple": Tuple,
"List": List,
"Dict": Dict,
"Optional": Optional,
"Union": Union,
"Future": Future,
"Await": _Await,
}
def __init__(self, rcb):
self.rcb = rcb
if torch.distributed.rpc.is_available():
self.env["RRef"] = RRef
def __getitem__(self, name):
if name in self.env:
return self.env[name]
if self.rcb is not None:
return self.rcb(name)
return getattr(builtins, name, None)
def get_signature(fn, rcb, loc, is_method):
if isinstance(fn, OpOverloadPacket):
signature = try_real_annotations(fn.op, loc)
else:
signature = try_real_annotations(fn, loc)
if signature is not None and is_method:
# If this is a method, then the signature will include a type for
# `self`, but type comments do not contain a `self`. So strip it
# away here so everything is consistent (`inspect.ismethod` does
# not work here since `fn` is unbound at this point)
param_types, return_type = signature
param_types = param_types[1:]
signature = (param_types, return_type)
if signature is None:
type_line, source = None, None
try:
source = dedent("".join(get_source_lines_and_file(fn)[0]))
type_line = get_type_line(source)
except TypeError:
pass
# This might happen both because we failed to get the source of fn, or
# because it didn't have any annotations.
if type_line is not None:
signature = parse_type_line(type_line, rcb, loc)
return signature
def is_function_or_method(the_callable):
# A stricter version of `inspect.isroutine` that does not pass for built-in
# functions
return inspect.isfunction(the_callable) or inspect.ismethod(the_callable)
def is_vararg(the_callable):
if not is_function_or_method(the_callable) and callable(the_callable): # noqa: B004
# If `the_callable` is a class, de-sugar the call so we can still get
# the signature
the_callable = the_callable.__call__
if is_function_or_method(the_callable):
return inspect.getfullargspec(the_callable).varargs is not None
else:
return False
def get_param_names(fn, n_args):
if isinstance(fn, OpOverloadPacket):
fn = fn.op
if (
not is_function_or_method(fn)
and callable(fn)
and is_function_or_method(fn.__call__)
): # noqa: B004
# De-sugar calls to classes
fn = fn.__call__
if is_function_or_method(fn):
if is_ignored_fn(fn):
fn = inspect.unwrap(fn)
return inspect.getfullargspec(fn).args
else:
# The `fn` was not a method or function (maybe a class with a __call__
# method, so use a default param name list)
return [str(i) for i in range(n_args)]
def check_fn(fn, loc):
# Make sure the function definition is not a class instantiation
try:
source = dedent("".join(get_source_lines_and_file(fn)[0]))
except (OSError, TypeError):
return
if source is None:
return
py_ast = ast.parse(source)
if len(py_ast.body) == 1 and isinstance(py_ast.body[0], ast.ClassDef):
raise torch.jit.frontend.FrontendError(
loc,
f"Cannot instantiate class '{py_ast.body[0].name}' in a script function",
)
if len(py_ast.body) != 1 or not isinstance(py_ast.body[0], ast.FunctionDef):
raise torch.jit.frontend.FrontendError(
loc, "Expected a single top-level function"
)
def _eval_no_call(stmt, glob, loc):
"""Evaluate statement as long as it does not contain any method/function calls."""
bytecode = compile(stmt, "", mode="eval")
for insn in dis.get_instructions(bytecode):
if "CALL" in insn.opname:
raise RuntimeError(
f"Type annotation should not contain calls, but '{stmt}' does"
)
return eval(bytecode, glob, loc) # type: ignore[arg-type] # noqa: P204
def parse_type_line(type_line, rcb, loc):
"""Parse a type annotation specified as a comment.
Example inputs:
# type: (Tensor, torch.Tensor) -> Tuple[Tensor]
# type: (Tensor, Tuple[Tensor, Tensor]) -> Tensor
"""
arg_ann_str, ret_ann_str = split_type_line(type_line)
try:
arg_ann = _eval_no_call(arg_ann_str, {}, EvalEnv(rcb))
except (NameError, SyntaxError) as e:
raise RuntimeError(
"Failed to parse the argument list of a type annotation"
) from e
if not isinstance(arg_ann, tuple):
arg_ann = (arg_ann,)
try:
ret_ann = _eval_no_call(ret_ann_str, {}, EvalEnv(rcb))
except (NameError, SyntaxError) as e:
raise RuntimeError(
"Failed to parse the return type of a type annotation"
) from e
arg_types = [ann_to_type(ann, loc) for ann in arg_ann]
return arg_types, ann_to_type(ret_ann, loc)
def get_type_line(source):
"""Try to find the line containing a comment with the type annotation."""
type_comment = "# type:"
lines = source.split("\n")
lines = list(enumerate(lines))
type_lines = list(filter(lambda line: type_comment in line[1], lines))
# `type: ignore` comments may be needed in JIT'ed functions for mypy, due
# to the hack in torch/_VF.py.
# An ignore type comment can be of following format:
# 1) type: ignore
# 2) type: ignore[rule-code]
# This ignore statement must be at the end of the line
# adding an extra backslash before the space, to avoid triggering
# one of the checks in .github/workflows/lint.yml
type_pattern = re.compile("# type:\\ ignore(\\[[a-zA-Z-]+\\])?$")
type_lines = list(filter(lambda line: not type_pattern.search(line[1]), type_lines))
if len(type_lines) == 0:
# Catch common typo patterns like extra spaces, typo in 'ignore', etc.
wrong_type_pattern = re.compile("#[\t ]*type[\t ]*(?!: ignore(\\[.*\\])?$):")
wrong_type_lines = list(
filter(lambda line: wrong_type_pattern.search(line[1]), lines)
)
if len(wrong_type_lines) > 0:
raise RuntimeError(
"The annotation prefix in line "
+ str(wrong_type_lines[0][0])
+ " is probably invalid.\nIt must be '# type:'"
+ "\nSee PEP 484 (https://www.python.org/dev/peps/pep-0484/#suggested-syntax-for-python-2-7-and-straddling-code)" # noqa: B950
+ "\nfor examples"
)
return None
elif len(type_lines) == 1:
# Only 1 type line, quit now
return type_lines[0][1].strip()
# Parse split up argument types according to PEP 484
# https://www.python.org/dev/peps/pep-0484/#suggested-syntax-for-python-2-7-and-straddling-code
return_line = None
parameter_type_lines = []
for line_num, line in type_lines:
if "# type: (...) -> " in line:
return_line = (line_num, line)
break
elif type_comment in line:
parameter_type_lines.append(line)
if return_line is None:
raise RuntimeError(
"Return type line '# type: (...) -> ...' not found on multiline "
"type annotation\nfor type lines:\n"
+ "\n".join([line[1] for line in type_lines])
+ "\n(See PEP 484 https://www.python.org/dev/peps/pep-0484/#suggested-syntax-for-python-2-7-and-straddling-code)"
)
def get_parameter_type(line):
item_type = line[line.find(type_comment) + len(type_comment) :]
return item_type.strip()
types = map(get_parameter_type, parameter_type_lines)
parameter_types = ", ".join(types)
return return_line[1].replace("...", parameter_types)
def split_type_line(type_line):
"""Split the comment with the type annotation into parts for argument and return types.
For example, for an input of:
# type: (Tensor, torch.Tensor) -> Tuple[Tensor, Tensor]
This function will return:
("(Tensor, torch.Tensor)", "Tuple[Tensor, Tensor]")
"""
start_offset = len("# type:")
try:
arrow_pos = type_line.index("->")
except ValueError:
raise RuntimeError(
"Syntax error in type annotation (cound't find `->`)"
) from None
return type_line[start_offset:arrow_pos].strip(), type_line[arrow_pos + 2 :].strip()
def try_real_annotations(fn, loc):
"""Try to use the Py3.5+ annotation syntax to get the type."""
try:
# Note: anything annotated as `Optional[T]` will automatically
# be returned as `Union[T, None]` per
# https://github.com/python/typing/blob/master/src/typing.py#L850
sig = inspect.signature(fn)
except ValueError:
return None
all_annots = [sig.return_annotation] + [
p.annotation for p in sig.parameters.values()
]
if all(ann is sig.empty for ann in all_annots):
return None
arg_types = [ann_to_type(p.annotation, loc) for p in sig.parameters.values()]
return_type = ann_to_type(sig.return_annotation, loc)
return arg_types, return_type
# Finds common type for enum values belonging to an Enum class. If not all
# values have the same type, AnyType is returned.
def get_enum_value_type(e: Type[enum.Enum], loc):
enum_values: List[enum.Enum] = list(e)
if not enum_values:
raise ValueError(f"No enum values defined for: '{e.__class__}'")
types = {type(v.value) for v in enum_values}
ir_types = [try_ann_to_type(t, loc) for t in types]
# If Enum values are of different types, an exception will be raised here.
# Even though Python supports this case, we chose to not implement it to
# avoid overcomplicate logic here for a rare use case. Please report a
# feature request if you find it necessary.
res = torch._C.unify_type_list(ir_types)
if not res:
return AnyType.get()
return res
def is_tensor(ann):
if issubclass(ann, torch.Tensor):
return True
if issubclass(
ann,
(
torch.LongTensor,
torch.DoubleTensor,
torch.FloatTensor,
torch.IntTensor,
torch.ShortTensor,
torch.HalfTensor,
torch.CharTensor,
torch.ByteTensor,
torch.BoolTensor,
),
):
warnings.warn(
"TorchScript will treat type annotations of Tensor "
"dtype-specific subtypes as if they are normal Tensors. "
"dtype constraints are not enforced in compilation either."
)
return True
return False
def _fake_rcb(inp):
return None
def try_ann_to_type(ann, loc, rcb=None):
ann_args = typing.get_args(ann) # always returns a tuple!
if ann is inspect.Signature.empty:
return TensorType.getInferred()
if ann is None:
return NoneType.get()
if inspect.isclass(ann) and is_tensor(ann):
return TensorType.get()
if is_tuple(ann):
# Special case for the empty Tuple type annotation `Tuple[()]`
if len(ann_args) == 1 and ann_args[0] == ():
return TupleType([])
return TupleType([try_ann_to_type(a, loc) for a in ann_args])
if is_list(ann):
elem_type = try_ann_to_type(ann_args[0], loc)
if elem_type:
return ListType(elem_type)
if is_dict(ann):
key = try_ann_to_type(ann_args[0], loc)
value = try_ann_to_type(ann_args[1], loc)
# Raise error if key or value is None
if key is None:
raise ValueError(
f"Unknown type annotation: '{ann_args[0]}' at {loc.highlight()}"
)
if value is None:
raise ValueError(
f"Unknown type annotation: '{ann_args[1]}' at {loc.highlight()}"
)
return DictType(key, value)
if is_optional(ann):
if issubclass(ann_args[1], type(None)):
contained = ann_args[0]
else:
contained = ann_args[1]
valid_type = try_ann_to_type(contained, loc)
msg = "Unsupported annotation {} could not be resolved because {} could not be resolved. At\n{}"
assert valid_type, msg.format(repr(ann), repr(contained), repr(loc))
return OptionalType(valid_type)
if is_union(ann):
# TODO: this is hack to recognize NumberType
if set(ann_args) == {int, float, complex}:
return NumberType.get()
inner: List = []
# We need these extra checks because both `None` and invalid
# values will return `None`
# TODO: Determine if the other cases need to be fixed as well
for a in typing.get_args(ann):
if a is None:
inner.append(NoneType.get())
maybe_type = try_ann_to_type(a, loc)
msg = "Unsupported annotation {} could not be resolved because {} could not be resolved. At\n{}"
assert maybe_type, msg.format(repr(ann), repr(maybe_type), repr(loc))
inner.append(maybe_type)
return UnionType(inner) # type: ignore[arg-type]
if torch.distributed.rpc.is_available() and is_rref(ann):
return RRefType(try_ann_to_type(ann_args[0], loc))
if is_future(ann):
return FutureType(try_ann_to_type(ann_args[0], loc))
if is_await(ann):
elementType = try_ann_to_type(ann_args[0], loc) if ann_args else AnyType.get()
return AwaitType(elementType)
if ann is float:
return FloatType.get()
if ann is complex:
return ComplexType.get()
if ann is int or ann is torch.SymInt:
return IntType.get()
if ann is str:
return StringType.get()
if ann is bool:
return BoolType.get()
if ann is Any:
return AnyType.get()
if ann is type(None):
return NoneType.get()
if inspect.isclass(ann) and hasattr(ann, "__torch_script_interface__"):
return InterfaceType(ann.__torch_script_interface__)
if ann is torch.device:
return DeviceObjType.get()
if ann is torch.Generator:
return _GeneratorType.get()
if ann is torch.Stream:
return StreamObjType.get()
if ann is torch.dtype:
return IntType.get() # dtype not yet bound in as its own type
if inspect.isclass(ann) and issubclass(ann, enum.Enum):
if _get_script_class(ann) is None:
scripted_class = torch.jit._script._recursive_compile_class(ann, loc)
name = scripted_class.qualified_name()
else:
name = _qualified_name(ann)
return EnumType(name, get_enum_value_type(ann, loc), list(ann))
if inspect.isclass(ann):
maybe_script_class = _get_script_class(ann)
if maybe_script_class is not None:
return maybe_script_class
if torch._jit_internal.can_compile_class(ann):
return torch.jit._script._recursive_compile_class(ann, loc)
# Maybe resolve a NamedTuple to a Tuple Type
if rcb is None:
rcb = _fake_rcb
return torch._C._resolve_type_from_object(ann, loc, rcb)
def ann_to_type(ann, loc, rcb=None):
the_type = try_ann_to_type(ann, loc, rcb)
if the_type is not None:
return the_type
raise ValueError(f"Unknown type annotation: '{ann}' at {loc.highlight()}")
__all__ = [
"Any",
"List",
"BroadcastingList1",
"BroadcastingList2",
"BroadcastingList3",
"Tuple",
"is_tuple",
"is_list",
"Dict",
"is_dict",
"is_optional",
"is_union",
"TensorType",
"TupleType",
"FloatType",
"ComplexType",
"IntType",
"ListType",
"StringType",
"DictType",
"AnyType",
"Module",
# TODO: Consider not exporting these during wildcard import (reserve
# that for the types; for idiomatic typing code.)
"get_signature",
"check_fn",
"get_param_names",
"parse_type_line",
"get_type_line",
"split_type_line",
"try_real_annotations",
"try_ann_to_type",
"ann_to_type",
]