You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1974 lines
101 KiB
1974 lines
101 KiB
"""
|
|
Python implementation of ``__torch_function__``
|
|
|
|
While most of the torch API and handling for ``__torch_function__`` happens
|
|
at the C++ level, some of the torch API is written in Python so we need
|
|
python-level handling for ``__torch_function__`` overrides as well. The main
|
|
developer-facing functionality in this file are handle_torch_function and
|
|
has_torch_function. See torch/functional.py and test/test_overrides.py
|
|
for usage examples.
|
|
|
|
Note
|
|
----
|
|
heavily inspired by NumPy's ``__array_function__`` (see:
|
|
https://github.com/pytorch/pytorch/issues/24015 and
|
|
https://www.numpy.org/neps/nep-0018-array-function-protocol.html
|
|
)
|
|
|
|
If changing this file in a way that can affect ``__torch_function__`` overhead,
|
|
please report the benchmarks in ``benchmarks/overrides_benchmark``. See the
|
|
instructions in the ``README.md`` in that directory.
|
|
"""
|
|
|
|
import __future__ # noqa: F404
|
|
|
|
import collections
|
|
import functools
|
|
import types
|
|
import warnings
|
|
from typing import Dict, Set, List, Any, Callable, Iterable, Type, Tuple
|
|
from functools import wraps
|
|
import contextlib
|
|
|
|
import torch
|
|
from torch._C import (
|
|
_has_torch_function, _has_torch_function_unary,
|
|
_has_torch_function_variadic, _add_docstr,
|
|
_push_on_torch_function_stack, _pop_torch_function_stack, _get_function_stack_at, _len_torch_function_stack,
|
|
_is_torch_function_mode_enabled)
|
|
|
|
__all__ = [
|
|
"get_ignored_functions",
|
|
"get_overridable_functions",
|
|
"get_testing_overrides",
|
|
"handle_torch_function",
|
|
"has_torch_function",
|
|
"resolve_name",
|
|
"is_tensor_like",
|
|
"is_tensor_method_or_property",
|
|
"wrap_torch_function",
|
|
"enable_reentrant_dispatch",
|
|
]
|
|
|
|
|
|
def _disable_user_warnings(
|
|
func: Callable, regex: str = '.*is deprecated, please use.*', module: str = 'torch') -> Callable:
|
|
"""
|
|
Decorator that temporarily disables ``UserWarning``s for the given ``module`` if the warning message matches the
|
|
given ``regex`` pattern.
|
|
|
|
Arguments
|
|
---------
|
|
func : function
|
|
Function to disable the warnings for.
|
|
regex : str
|
|
A regex pattern compilable by ``re.compile``. This is used to match the ``UserWarning`` message.
|
|
module : str
|
|
The python module to which the filtering should be restricted.
|
|
|
|
Returns
|
|
-------
|
|
function
|
|
The wrapped function.
|
|
"""
|
|
|
|
@wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
with warnings.catch_warnings():
|
|
warnings.filterwarnings("ignore", category=UserWarning, message=regex, module=module)
|
|
return func(*args, **kwargs)
|
|
return wrapper
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
@_disable_user_warnings
|
|
def get_ignored_functions() -> Set[Callable]:
|
|
"""
|
|
Return public functions that cannot be overridden by ``__torch_function__``.
|
|
|
|
Returns
|
|
-------
|
|
Set[Callable]
|
|
A tuple of functions that are publicly available in the torch API but cannot
|
|
be overridden with ``__torch_function__``. Mostly this is because none of the
|
|
arguments of these functions are tensors or tensor-likes.
|
|
|
|
Examples
|
|
--------
|
|
>>> torch.Tensor.as_subclass in torch.overrides.get_ignored_functions()
|
|
True
|
|
>>> torch.add in torch.overrides.get_ignored_functions()
|
|
False
|
|
"""
|
|
Tensor = torch.Tensor
|
|
return {
|
|
torch.typename,
|
|
torch.is_tensor,
|
|
torch.is_storage,
|
|
torch.set_default_tensor_type,
|
|
torch.set_default_device,
|
|
torch.get_default_device,
|
|
torch.set_rng_state,
|
|
torch.get_rng_state,
|
|
torch.manual_seed,
|
|
torch.initial_seed,
|
|
torch.seed,
|
|
torch.save,
|
|
torch.load,
|
|
torch.set_printoptions,
|
|
torch.fork,
|
|
torch.get_default_dtype,
|
|
torch.get_num_interop_threads,
|
|
torch.get_num_threads,
|
|
torch.init_num_threads,
|
|
torch.import_ir_module,
|
|
torch.import_ir_module_from_buffer,
|
|
torch.is_anomaly_enabled,
|
|
torch.is_anomaly_check_nan_enabled,
|
|
torch.is_grad_enabled,
|
|
torch.merge_type_from_type_comment,
|
|
torch.parse_ir,
|
|
torch.parse_schema,
|
|
torch.parse_type_comment,
|
|
torch.set_anomaly_enabled,
|
|
torch.set_flush_denormal,
|
|
torch.set_num_interop_threads,
|
|
torch.set_num_threads,
|
|
torch.wait,
|
|
torch.as_tensor,
|
|
torch.from_numpy,
|
|
torch.get_device,
|
|
torch.tensor,
|
|
torch.default_generator,
|
|
torch.has_cuda,
|
|
torch.has_cudnn,
|
|
torch.has_lapack,
|
|
torch.device,
|
|
torch.dtype,
|
|
torch.finfo,
|
|
torch.has_mkl,
|
|
torch.has_mps,
|
|
torch.has_mkldnn,
|
|
torch.has_openmp,
|
|
torch.iinfo,
|
|
torch.memory_format,
|
|
torch.qscheme,
|
|
torch.set_grad_enabled,
|
|
torch.no_grad,
|
|
torch.enable_grad,
|
|
torch.inference_mode,
|
|
torch.is_inference_mode_enabled,
|
|
torch.layout,
|
|
torch.align_tensors,
|
|
torch.arange,
|
|
torch.as_strided,
|
|
torch.bartlett_window,
|
|
torch.blackman_window,
|
|
torch.broadcast_shapes,
|
|
torch.can_cast,
|
|
torch.compile,
|
|
torch.cudnn_affine_grid_generator,
|
|
torch.cudnn_batch_norm,
|
|
torch.cudnn_convolution,
|
|
torch.cudnn_convolution_transpose,
|
|
torch.cudnn_convolution_relu,
|
|
torch.cudnn_convolution_add_relu,
|
|
torch.cudnn_grid_sampler,
|
|
torch.cudnn_is_acceptable,
|
|
torch.empty,
|
|
torch.empty_permuted,
|
|
torch.empty_strided,
|
|
torch.empty_quantized,
|
|
torch.export.dynamic_dim,
|
|
torch.export.export,
|
|
torch.export.load,
|
|
torch.export.register_dataclass,
|
|
torch.export.save,
|
|
torch.eye,
|
|
torch.fft.fftfreq,
|
|
torch.fft.rfftfreq,
|
|
torch.from_file,
|
|
torch.full,
|
|
torch.fill,
|
|
torch.hamming_window,
|
|
torch.hann_window,
|
|
torch.kaiser_window,
|
|
torch.linspace,
|
|
torch.logspace,
|
|
torch.mkldnn_adaptive_avg_pool2d,
|
|
torch.mkldnn_convolution,
|
|
torch.mkldnn_max_pool2d,
|
|
torch.mkldnn_max_pool3d,
|
|
torch.mkldnn_linear_backward_weights,
|
|
torch.mkldnn_rnn_layer,
|
|
torch.normal,
|
|
torch.ones,
|
|
torch.promote_types,
|
|
torch.rand,
|
|
torch.randn,
|
|
torch.randint,
|
|
torch.randperm,
|
|
torch.range,
|
|
torch.result_type,
|
|
torch.scalar_tensor,
|
|
torch.sparse_coo_tensor,
|
|
torch.sparse_compressed_tensor,
|
|
torch.sparse_csr_tensor,
|
|
torch.sparse_csc_tensor,
|
|
torch.sparse_bsr_tensor,
|
|
torch.sparse_bsc_tensor,
|
|
torch.sym_constrain_range,
|
|
torch.sym_constrain_range_for_size,
|
|
torch.tril_indices,
|
|
torch.triu_indices,
|
|
torch.vander,
|
|
torch.zeros,
|
|
torch._jit_internal.boolean_dispatch,
|
|
torch.nn.functional.assert_int_or_pair,
|
|
torch.nn.functional.upsample,
|
|
torch.nn.functional.upsample_bilinear,
|
|
torch.nn.functional.upsample_nearest,
|
|
torch.nn.functional.has_torch_function,
|
|
torch.nn.functional.has_torch_function_unary,
|
|
torch.nn.functional.has_torch_function_variadic,
|
|
torch.nn.functional.handle_torch_function,
|
|
torch.nn.functional.sigmoid,
|
|
torch.nn.functional.hardsigmoid,
|
|
torch.nn.functional.tanh,
|
|
torch.nn.functional._canonical_mask,
|
|
torch.nn.functional._none_or_dtype,
|
|
# Doesn't actually take or return tensor arguments
|
|
torch.nn.init.calculate_gain,
|
|
# These are deprecated; don't test them
|
|
torch.nn.init.uniform,
|
|
torch.nn.init.normal,
|
|
torch.nn.init.constant,
|
|
torch.nn.init.eye,
|
|
torch.nn.init.dirac,
|
|
torch.nn.init.xavier_uniform,
|
|
torch.nn.init.xavier_normal,
|
|
torch.nn.init.kaiming_uniform,
|
|
torch.nn.init.kaiming_normal,
|
|
torch.nn.init.orthogonal,
|
|
torch.nn.init.sparse,
|
|
torch.nested.to_padded_tensor,
|
|
has_torch_function,
|
|
handle_torch_function,
|
|
torch.set_autocast_enabled,
|
|
torch.is_autocast_enabled,
|
|
torch.clear_autocast_cache,
|
|
torch.set_autocast_cpu_enabled,
|
|
torch.is_autocast_cpu_enabled,
|
|
torch.set_autocast_xla_enabled,
|
|
torch.is_autocast_xla_enabled,
|
|
torch.set_autocast_ipu_enabled,
|
|
torch.is_autocast_ipu_enabled,
|
|
torch.set_autocast_cpu_dtype,
|
|
torch.get_autocast_cpu_dtype,
|
|
torch.set_autocast_ipu_dtype,
|
|
torch.get_autocast_ipu_dtype,
|
|
torch.get_autocast_gpu_dtype,
|
|
torch.set_autocast_gpu_dtype,
|
|
torch.get_autocast_xla_dtype,
|
|
torch.set_autocast_xla_dtype,
|
|
torch.autocast_increment_nesting,
|
|
torch.autocast_decrement_nesting,
|
|
torch.is_autocast_cache_enabled,
|
|
torch.set_autocast_cache_enabled,
|
|
torch.nn.functional.hardswish,
|
|
torch.is_vulkan_available,
|
|
torch.are_deterministic_algorithms_enabled,
|
|
torch.use_deterministic_algorithms,
|
|
torch.is_deterministic_algorithms_warn_only_enabled,
|
|
torch.set_deterministic_debug_mode,
|
|
torch.get_deterministic_debug_mode,
|
|
torch.set_float32_matmul_precision,
|
|
torch.get_float32_matmul_precision,
|
|
torch.unify_type_list,
|
|
torch.is_warn_always_enabled,
|
|
torch.set_warn_always,
|
|
torch.vitals_enabled,
|
|
torch.set_vital,
|
|
torch.read_vitals,
|
|
torch.vmap,
|
|
torch.cond,
|
|
torch.frombuffer,
|
|
torch.asarray,
|
|
torch._functional_sym_constrain_range,
|
|
torch._make_dep_token,
|
|
Tensor.__delitem__,
|
|
Tensor.__dir__,
|
|
Tensor.__getattribute__,
|
|
Tensor.__init__,
|
|
Tensor.__iter__,
|
|
Tensor.__init_subclass__,
|
|
Tensor.__delattr__,
|
|
Tensor.__setattr__,
|
|
Tensor.__torch_function__,
|
|
Tensor.__torch_dispatch__,
|
|
Tensor.__new__,
|
|
Tensor.__class__,
|
|
Tensor.__subclasshook__,
|
|
Tensor.__hash__,
|
|
Tensor.as_subclass,
|
|
Tensor.eig,
|
|
Tensor.lstsq,
|
|
Tensor.reinforce,
|
|
Tensor.new,
|
|
Tensor.new_tensor,
|
|
Tensor.new_empty,
|
|
Tensor.new_empty_strided,
|
|
Tensor.new_zeros,
|
|
Tensor.new_ones,
|
|
Tensor.new_full,
|
|
Tensor._make_subclass,
|
|
Tensor.solve,
|
|
Tensor.symeig,
|
|
Tensor.stride,
|
|
Tensor.unflatten,
|
|
Tensor.to_sparse_coo,
|
|
Tensor.to_sparse_csr,
|
|
Tensor.to_sparse_csc,
|
|
Tensor.to_sparse_bsr,
|
|
Tensor.to_sparse_bsc,
|
|
Tensor._to_sparse,
|
|
Tensor._to_sparse_csr,
|
|
Tensor._to_sparse_csc,
|
|
Tensor._to_sparse_bsr,
|
|
Tensor._to_sparse_bsc,
|
|
Tensor._typed_storage,
|
|
Tensor._reduce_ex_internal,
|
|
Tensor._fix_weakref,
|
|
Tensor._view_func,
|
|
Tensor._view_func_unsafe,
|
|
Tensor._rev_view_func_unsafe,
|
|
Tensor._make_wrapper_subclass,
|
|
Tensor._python_dispatch.__get__,
|
|
Tensor._has_symbolic_sizes_strides.__get__,
|
|
Tensor._conj,
|
|
Tensor._conj_physical,
|
|
Tensor._lazy_clone,
|
|
Tensor._neg_view,
|
|
Tensor._is_zerotensor,
|
|
Tensor._is_all_true,
|
|
Tensor._is_any_true,
|
|
Tensor._addmm_activation,
|
|
Tensor.to_padded_tensor,
|
|
}
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def get_default_nowrap_functions() -> Set[Callable]:
|
|
"""
|
|
Return public functions that do not wrap in a subclass when invoked by
|
|
the default ``Tensor.__torch_function__`` that preserves subclasses. Typically,
|
|
these functions represent field accesses (i.e., retrieving a Tensor that
|
|
is stored somewhere on the Tensor) as opposed to computation. Users of
|
|
these functions expect object identity to be preserved over multiple accesses
|
|
(e.g., ``a.grad is a.grad``) which cannot be upheld if we're wrapping on
|
|
the fly every time (furthermore, the tensor stored here might already be
|
|
the subclass, in which case wrapping really ought not to happen).
|
|
|
|
Not ALL property accessors have this property; for example ``Tensor.T`` actually
|
|
just creates a new transposed tensor on the fly, and so we SHOULD interpose on
|
|
these calls (you need to check the implementation of the function to see if
|
|
this is the case or not). Additionally, if a property accessor doesn't return a Tensor,
|
|
it doesn't have to be on this list (though it is harmless if it is).
|
|
"""
|
|
Tensor = torch.Tensor
|
|
return {
|
|
Tensor._base.__get__,
|
|
Tensor.grad.__get__,
|
|
Tensor._grad.__get__,
|
|
}
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
@_disable_user_warnings
|
|
def get_testing_overrides() -> Dict[Callable, Callable]:
|
|
"""Return a dict containing dummy overrides for all overridable functions
|
|
|
|
Returns
|
|
-------
|
|
Dict[Callable, Callable]
|
|
A dictionary that maps overridable functions in the PyTorch API to
|
|
lambda functions that have the same signature as the real function
|
|
and unconditionally return -1. These lambda functions are useful
|
|
for testing API coverage for a type that defines ``__torch_function__``.
|
|
|
|
Examples
|
|
--------
|
|
>>> import inspect
|
|
>>> my_add = torch.overrides.get_testing_overrides()[torch.add]
|
|
>>> inspect.signature(my_add)
|
|
<Signature (input, other, out=None)>
|
|
"""
|
|
# Every function in the PyTorchAPI that can be overriden needs an entry
|
|
# in this dict.
|
|
#
|
|
# Optimally we would use inspect to get the function signature and define
|
|
# the lambda function procedurally but that is blocked by generating
|
|
# function signatures for native kernels that can be consumed by inspect.
|
|
# See Issue #28233.
|
|
Tensor = torch.Tensor
|
|
ret: Dict[Callable, Callable] = {
|
|
torch.abs: lambda input, out=None: -1,
|
|
torch.absolute: lambda input, out=None: -1,
|
|
torch.adaptive_avg_pool1d: lambda input, output_size: -1,
|
|
torch.adaptive_max_pool1d: lambda inputs, output_size: -1,
|
|
torch.acos: lambda input, out=None: -1,
|
|
torch.adjoint: lambda input: -1,
|
|
torch.arccos: lambda input, out=None: -1,
|
|
torch.acosh: lambda input, out=None: -1,
|
|
torch.arccosh: lambda input, out=None: -1,
|
|
torch.add: lambda input, other, out=None: -1,
|
|
torch.addbmm: lambda input, batch1, batch2, alpha=1, beta=1, out=None: -1,
|
|
torch.addcdiv: lambda input, tensor1, tensor2, value=1, out=None: -1,
|
|
torch.addcmul: lambda input, tensor1, tensor2, value=1, out=None: -1,
|
|
torch.addmm: lambda input, mat1, mat2, beta=1, alpha=1, out=None: -1,
|
|
torch.addmv: lambda input, mat, vec, beta=1, alpha=1, out=None: -1,
|
|
torch.addr: lambda input, vec1, vec2, beta=1, alpha=1, out=None: -1,
|
|
torch.affine_grid_generator: lambda theta, size, align_corners: -1,
|
|
torch.all: lambda input, dim=None: -1,
|
|
torch.allclose: lambda input, other, trol=1e-05, atol=1e-08, equal_nan=False: -1,
|
|
torch.alpha_dropout: lambda input, p, train, inplace=False: -1,
|
|
torch.amax: lambda input, dim=None: -1,
|
|
torch.amin: lambda input, dim=None: -1,
|
|
torch.aminmax: lambda input, dim=None, keepdim=False, out=None: -1,
|
|
torch.angle: lambda input, out=None: -1,
|
|
torch.any: lambda input, dim=None, keepdim=False, out=None: -1,
|
|
torch.argmax: lambda input: -1,
|
|
torch.argmin: lambda input: -1,
|
|
torch.argsort: lambda input, dim=None: -1,
|
|
torch.asin: lambda input, out=None: -1,
|
|
torch._assert_async: lambda input, msg: -1,
|
|
torch.arcsin: lambda input, out=None: -1,
|
|
torch.asinh: lambda input, out=None: -1,
|
|
torch.arcsinh: lambda input, out=None: -1,
|
|
torch.atan: lambda input, out=None: -1,
|
|
torch.arctan: lambda input, out=None: -1,
|
|
torch.atan2: lambda input, other, out=None: -1,
|
|
torch.arctan2: lambda input, other, out=None: -1,
|
|
torch.atanh: lambda input, out=None: -1,
|
|
torch.arctanh: lambda input, out=None: -1,
|
|
torch.atleast_1d: lambda *tensors: -1,
|
|
torch.atleast_2d: lambda *tensors: -1,
|
|
torch.atleast_3d: lambda *tensors: -1,
|
|
torch.avg_pool1d: lambda input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True: -1,
|
|
torch.baddbmm: lambda input, batch1, batch2, alpha=1, beta=1, out=None: -1,
|
|
torch.batch_norm: lambda input, weight, bias, running_mean, running_var, training, momentum, eps, cudnn_enabled: -1,
|
|
torch.batch_norm_backward_elemt: lambda grad_out, input, mean, invstd, weight, sum_dy, sum_dy_xmu, count_tensor: -1,
|
|
torch.batch_norm_backward_reduce: lambda grad_out, input, mean, invstd, weight, input_g, weight_g, bias_g: -1,
|
|
torch.batch_norm_elemt: lambda input, weight, bias, mean, invstd, eps: -1,
|
|
torch.batch_norm_gather_stats: lambda input, mean, invstd, running_mean, running_var, momentum, eps, count: -1,
|
|
torch.batch_norm_gather_stats_with_counts: lambda input, mean, invstd, running_mean, running_var, momentum, eps, count: -1,
|
|
torch.batch_norm_stats: lambda input, eps: -1,
|
|
torch.batch_norm_update_stats: lambda input, running_mean, running_var, momentum: -1,
|
|
torch.bernoulli: lambda input, generator=None, out=None: -1,
|
|
torch.bilinear: lambda input1, input2, weight, bias: -1,
|
|
torch.binary_cross_entropy_with_logits: (lambda input, target, weight=None, size_average=None, reduce=None,
|
|
reduction='mean', pos_weight=None: -1),
|
|
torch.bincount: lambda input, weights=None, minlength=0: -1,
|
|
torch.binomial: lambda count, prob, generator=None: -1,
|
|
torch.bitwise_and: lambda input, other, out=None: -1,
|
|
torch.bitwise_not: lambda input, out=None: -1,
|
|
torch.bitwise_or: lambda input, other, out=None: -1,
|
|
torch.bitwise_xor: lambda input, other, out=None: -1,
|
|
torch.bitwise_left_shift: lambda input, other, out=None: -1,
|
|
torch.bitwise_right_shift: lambda input, other, out=None: -1,
|
|
torch.block_diag: lambda *tensors: -1,
|
|
torch.bmm: lambda input, mat2, out=None: -1,
|
|
torch.broadcast_tensors: lambda *tensors: -1,
|
|
torch.broadcast_to: lambda self, size: -1,
|
|
torch.bucketize: lambda input, boundaries, out_int32=False, right=False, out=None: -1,
|
|
torch.cartesian_prod: lambda *tensors: -1,
|
|
torch.cat: lambda tensors, dim=0, out=None: -1,
|
|
torch.concat: lambda tensors, dim=0, out=None: -1, # alias for torch.cat
|
|
torch.concatenate: lambda tensors, dim=0, out=None: -1, # alias for torch.concatenate
|
|
torch.cdist: lambda x1, x2, p=2.0, compute_mode='use_mm_for_euclid_dist_if_necessary': -1,
|
|
torch.ceil: lambda input, out=None: -1,
|
|
torch.celu: lambda input, alpha=1., inplace=False: -1,
|
|
torch.chain_matmul: lambda *matrices, out=None: -1,
|
|
torch.channel_shuffle: lambda input, groups : -1,
|
|
torch.cholesky: lambda input, upper=False, out=None: -1,
|
|
torch.linalg.cholesky: lambda input, out=None: -1,
|
|
torch.linalg.cholesky_ex: lambda input, check_errors=False, out=None: -1,
|
|
torch.cholesky_inverse: lambda input, upper=False, out=None: -1,
|
|
torch.cholesky_solve: lambda input1, input2, upper=False, out=None: -1,
|
|
torch.choose_qparams_optimized: lambda input, numel, n_bins, ratio, bit_width: -1,
|
|
torch.chunk: lambda input, chunks, dim=0: -1,
|
|
torch.clamp: lambda input, min=None, max=None, out=None: -1,
|
|
torch.clip: lambda input, min=None, max=None, out=None: -1,
|
|
torch.clamp_min: lambda input, min, out=None: -1,
|
|
torch.clamp_max: lambda input, max, out=None: -1,
|
|
torch.column_stack: lambda tensors, out=None: -1,
|
|
torch.cov: lambda input, correction=1, fweights=None, aweights=None: -1,
|
|
torch.clone: lambda input: -1,
|
|
torch.combinations: lambda input, r=2, with_replacement=False: -1,
|
|
torch.complex: lambda real, imag: -1,
|
|
torch.copysign: lambda input, other, out=None: -1,
|
|
torch.polar: lambda abs, ang: -1,
|
|
torch.linalg.cond: lambda input, ord=None: -1,
|
|
torch.conj: lambda input, out=None: -1,
|
|
torch.conj_physical: lambda input, out=None: -1,
|
|
torch.resolve_conj: lambda input, out=None: -1,
|
|
torch.resolve_neg: lambda input, out=None: -1,
|
|
torch.constant_pad_nd: lambda input, pad, value=0: -1,
|
|
torch.conv1d: lambda input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1: -1,
|
|
torch.conv2d: lambda input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1: -1,
|
|
torch.conv3d: lambda input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1: -1,
|
|
torch.convolution: lambda input, weight, bias, stride, padding, dilation, transposed, output_adding, groups: -1,
|
|
torch.conv_tbc: lambda input, weight, bias, pad=0: -1,
|
|
torch.conv_transpose1d: lambda input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1: -1,
|
|
torch.conv_transpose2d: lambda input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1: -1,
|
|
torch.conv_transpose3d: lambda input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1: -1,
|
|
torch.corrcoef: lambda input: -1,
|
|
torch.cos: lambda input, out=None: -1,
|
|
torch.cosine_embedding_loss: lambda input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean': -1,
|
|
torch.cosh: lambda input, out=None: -1,
|
|
torch.cosine_similarity: lambda x1, x2, dim=1, eps=1e-8: -1,
|
|
torch.count_nonzero: lambda input: -1,
|
|
torch.cross: lambda input, other, dim=None, out=None: -1,
|
|
torch.linalg.cross: lambda input, other, dim=-1, out=None: -1,
|
|
torch.ctc_loss: (lambda log_probs, targets, input_lengths, target_lengths, blank=0, reduction='mean',
|
|
zero_infinity=False: -1),
|
|
torch.cummax: lambda input, dim, out=None: -1,
|
|
torch.cummin: lambda input, dim, out=None: -1,
|
|
torch.cumprod: lambda input, dim, out=None, dtype=None: -1,
|
|
torch.cumsum: lambda input, dim, out=None, dtype=None: -1,
|
|
torch.cumulative_trapezoid: lambda y, x=None, dim=-1: -1,
|
|
torch.logcumsumexp: lambda input, dim, out=None: -1,
|
|
torch.deg2rad: lambda input, out=None: -1,
|
|
torch.dequantize: lambda input: -1,
|
|
torch.det: lambda input: -1,
|
|
torch.linalg.det: lambda input: -1, # alias for torch.det # type: ignore[attr-defined]
|
|
torch.detach: lambda input: -1,
|
|
torch.diag: lambda input, diagonal=0, out=None: -1,
|
|
torch.diag_embed: lambda input, diagonal=0, out=None: -1,
|
|
torch.diagflat: lambda input, offset=0: -1,
|
|
torch.diff: lambda input, n=1, dim=-1, prepend=None, append=None, out=None: -1,
|
|
torch.diagonal: lambda input, offset=0, dim1=0, dim2=1: -1,
|
|
torch.linalg.diagonal: lambda input, offset=0, dim1=-2, dim2=-1: -1,
|
|
torch.diagonal_scatter: lambda input, src, offset=0, dim1=0, dim2=1: -1,
|
|
torch.as_strided_scatter: lambda self, src, size, stride, storage_offset=None: -1,
|
|
torch.digamma: lambda input, out=None: -1,
|
|
torch.dist: lambda input, other, p=2: -1,
|
|
torch.div: lambda input, other, rounding_mode=None, out=None: -1,
|
|
torch.divide: lambda input, other, rounding_mode=None, out=None: -1,
|
|
torch.dot: lambda input, other, out=None: -1,
|
|
torch.dropout: lambda input, p, train, inplace=False: -1,
|
|
torch.dsmm: lambda input, mat2: -1,
|
|
torch.hsmm: lambda mat1, mat2: -1,
|
|
torch.dsplit: lambda input, indices_or_sections: -1,
|
|
torch.dstack: lambda tensors, out=None: -1,
|
|
torch.linalg.eig: lambda input, out=None: -1,
|
|
torch.linalg.eigvals: lambda input, out=None: -1,
|
|
torch.linalg.eigh: lambda input, UPLO="L", out=None: -1,
|
|
torch.linalg.eigvalsh: lambda input, UPLO="L", out=None: -1,
|
|
torch.einsum: lambda equation, *operands: -1,
|
|
torch.embedding: (lambda input, weight, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False,
|
|
sparse=False: -1),
|
|
torch.embedding_bag: (lambda input, weight, offsets, max_norm=None, norm_type=2, scale_grad_by_freq=False,
|
|
mode='mean', sparse=False, per_sample_weights=None, padding_idx=None: -1),
|
|
torch.empty_like: lambda input, dtype=None, layout=None, device=None, requires_grad=False: -1,
|
|
torch.eq: lambda input, other, out=None: -1,
|
|
torch.equal: lambda input, other: -1,
|
|
torch.erf: lambda input, out=None: -1,
|
|
torch.erfc: lambda input, out=None: -1,
|
|
torch.erfinv: lambda input, out=None: -1,
|
|
torch.exp: lambda input, out=None: -1,
|
|
torch.exp2: lambda input, out=None: -1,
|
|
torch.expm1: lambda input, out=None: -1,
|
|
torch.fake_quantize_per_channel_affine: lambda input, scale, zero_point, axis, quant_min, quant_max: -1,
|
|
torch.fake_quantize_per_tensor_affine: lambda input, scale, zero_point, quant_min, quant_max: -1,
|
|
torch.fused_moving_avg_obs_fake_quant: (lambda x, observer_on, fake_quant_on, averaging_const, running_min,
|
|
running_max, scale, zero_point, quant_min, quant_max, ch_axis,
|
|
per_row_fake_quant=False, symmetric_quant=False: -1),
|
|
torch.fbgemm_linear_fp16_weight: lambda input, packed_weight, bias: -1,
|
|
torch.fbgemm_linear_fp16_weight_fp32_activation: lambda input, packed_weight, bias: -1,
|
|
torch.fbgemm_linear_int8_weight: lambda input, weight, packed, col_offsets, weight_scale, weight_zero_point, bias: -1,
|
|
torch.fbgemm_linear_int8_weight_fp32_activation: (lambda input, weight, packed, col_offsets, weight_scale,
|
|
weight_zero_point, bias: -1),
|
|
torch.fbgemm_linear_quantize_weight: lambda input: -1,
|
|
torch.fbgemm_pack_gemm_matrix_fp16: lambda input: -1,
|
|
torch.fbgemm_pack_quantized_matrix: lambda input, a, b: -1,
|
|
torch.feature_alpha_dropout: lambda input, p, train: -1,
|
|
torch.feature_dropout: lambda input, p, train: -1,
|
|
torch.fft.ifft: lambda input, n=None, dim=-1, norm=None: -1,
|
|
torch.fft.rfft: lambda input, n=None, dim=-1, norm=None: -1,
|
|
torch.fft.irfft: lambda input, n=None, dim=-1, norm=None: -1,
|
|
torch.fft.hfft: lambda input, n=None, dim=-1, norm=None: -1,
|
|
torch.fft.ihfft: lambda input, n=None, dim=-1, norm=None: -1,
|
|
torch.fft.hfft2: lambda input, s=None, dim=(-2, -1), norm=None: -1,
|
|
torch.fft.ihfft2: lambda input, s=None, dim=(-2, -1), norm=None: -1,
|
|
torch.fft.hfftn: lambda input, s=None, dim=-1, norm=None: -1,
|
|
torch.fft.ihfftn: lambda input, s=None, dim=-1, norm=None: -1,
|
|
torch.fft.fftn: lambda input, s=None, dim=None, norm=None: -1,
|
|
torch.fft.ifftn: lambda input, s=None, dim=None, norm=None: -1,
|
|
torch.fft.rfftn: lambda input, s=None, dim=None, norm=None: -1,
|
|
torch.fft.irfftn: lambda input, s=None, dim=None, norm=None: -1,
|
|
torch.fft.fft2: lambda input, s=None, dim=(-2, -1), norm=None: -1,
|
|
torch.fft.ifft2: lambda input, s=None, dim=(-2, -1), norm=None: -1,
|
|
torch.fft.rfft2: lambda input, s=None, dim=(-2, -1), norm=None: -1,
|
|
torch.fft.irfft2: lambda input, s=None, dim=(-2, -1), norm=None: -1,
|
|
torch.fft.fftshift: lambda input, dim=None: -1,
|
|
torch.fft.ifftshift: lambda input, dim=None: -1,
|
|
torch.fft.fft: lambda input, n=None, dim=-1, norm=None: -1,
|
|
torch.fix: lambda input, out=None: -1,
|
|
torch.flatten: lambda input, start_dim=0, end_dim=-1: -1,
|
|
torch.flip: lambda input, dims: -1,
|
|
torch.fliplr: lambda input: -1,
|
|
torch.flipud: lambda input: -1,
|
|
torch.frobenius_norm: lambda input, dim=None, keepdim=False, out=None: -1,
|
|
torch.floor: lambda input, out=None: -1,
|
|
torch.floor_divide: lambda input, other: -1,
|
|
torch.float_power: lambda input, exponent, out=None: -1,
|
|
torch.fmod: lambda input, other, out=None: -1,
|
|
torch.frac: lambda input, out=None: -1,
|
|
torch.frexp: lambda input, out=None: -1,
|
|
torch.full_like: lambda input, fill_value, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False: -1,
|
|
torch._functional_assert_async: lambda input, msg, dep_token: -1,
|
|
torch.lu_unpack: lambda LU_data, LU_pivots, unpack_data=True, unpack_pivots=True: -1,
|
|
torch.gather: lambda input, dim, index, out=None, sparse_grad=False: -1,
|
|
torch.gcd: lambda input, other, out=None: -1,
|
|
torch.ge: lambda input, other, out=None: -1,
|
|
torch.greater_equal: lambda input, other, out=None: -1,
|
|
torch.geqrf: lambda input, out=None: -1,
|
|
torch.i0: lambda input, out=None: -1,
|
|
torch.inner: lambda input, other, out=None: -1,
|
|
torch.outer: lambda input, vec2, out=None: -1,
|
|
torch.ger: lambda input, vec2, out=None: -1, # alias for torch.outer
|
|
torch.gradient: lambda input, spacing=None, dim=None, edge_order=1: -1,
|
|
torch.grid_sampler: lambda input, grid, interpolation_mode, padding_mode, align_corners: -1,
|
|
torch.grid_sampler_2d: lambda input, grid, interpolation_mode, padding_mode, align_corners: -1,
|
|
torch.grid_sampler_3d: lambda input, grid, interpolation_mode, padding_mode, align_corners: -1,
|
|
torch.group_norm: lambda input, num_groups, weight=None, bias=None, eps=1e-05, cudnn_enabled=True: -1,
|
|
torch.gru: lambda input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first: -1,
|
|
torch.gru_cell: lambda input, hx, w_ih, w_hh, b_ih=None, b_hh=None: -1,
|
|
torch.gt: lambda input, other, out=None: -1,
|
|
torch.greater: lambda input, other, out=None: -1,
|
|
torch.hardshrink: lambda input, lambd=0.5: -1,
|
|
torch.heaviside: lambda input, values, out=None: -1,
|
|
torch.hinge_embedding_loss: lambda input, target, margin=1.0, size_average=None, reduce=None, reduction='mean': -1,
|
|
torch.histc: lambda input, bins=100, min=0, max=0, out=None: -1,
|
|
torch.histogram: lambda input, bins=100, min=None, max=None, weight=None, density=False, out=None: -1,
|
|
torch.histogramdd: lambda input, bins, range=None, weight=None, density=False: -1,
|
|
torch.linalg.householder_product: lambda input, tau: -1,
|
|
torch.hspmm: lambda mat1, mat2, out=None: -1,
|
|
torch.hsplit: lambda input, indices_or_sections: -1,
|
|
torch.hstack: lambda tensors, out=None: -1,
|
|
torch.hypot: lambda input, other, out=None: -1,
|
|
torch.igamma: lambda input, other, out=None: -1,
|
|
torch.igammac: lambda input, other, out=None: -1,
|
|
torch.imag: lambda input, out=None: -1,
|
|
torch.index_add: lambda input, dim, index, source: -1,
|
|
torch.index_copy: lambda input, dim, index, source: -1,
|
|
torch.index_put: lambda input, indices, values, accumulate=False: -1,
|
|
torch.index_select: lambda input, dim, index, out=None: -1,
|
|
torch.index_fill: lambda input, dim, index, value: -1,
|
|
torch.index_reduce: lambda input, dim, index, source, reduce, include_input=True: -1,
|
|
torch.isfinite: lambda tensor: -1,
|
|
torch.isin: lambda e, te, assume_unique=False, invert=False: -1,
|
|
torch.isinf: lambda tensor: -1,
|
|
torch.isreal: lambda tensor: -1,
|
|
torch.isposinf: lambda input, out=None: -1,
|
|
torch.isneginf: lambda input, out=None: -1,
|
|
torch.instance_norm: (lambda input, running_mean, running_var, weight, bias, use_input_stats, momentum, eps,
|
|
cudnn_enabled: -1),
|
|
torch.int_repr: lambda input: -1,
|
|
torch.inverse: lambda input, out=None: -1,
|
|
torch.linalg.inv: lambda input, out=None: -1,
|
|
torch.linalg.inv_ex: lambda input, check_errors=False, out=None: -1,
|
|
torch.is_complex: lambda input: -1,
|
|
torch.is_conj: lambda input: -1,
|
|
torch.is_neg: lambda input: -1,
|
|
torch.is_distributed: lambda input: -1,
|
|
torch.is_inference: lambda input: -1,
|
|
torch.is_floating_point: lambda input: -1,
|
|
torch.is_nonzero: lambda input: -1,
|
|
torch.is_same_size: lambda input, other: -1,
|
|
torch.is_signed: lambda input: -1,
|
|
torch.isclose: lambda input, other, rtol=1e-05, atol=1e-08, equal_nan=False: -1,
|
|
torch.isnan: lambda input: -1,
|
|
torch.istft: (lambda input, n_fft, hop_length=None, win_length=None, window=None, center=True,
|
|
normalized=False, onesided=None, length=None, return_complex=False: -1),
|
|
torch.kl_div: lambda input, target, size_average=None, reduce=None, reduction='mean', log_target=False: -1,
|
|
torch.kron: lambda input, other: -1,
|
|
torch.kthvalue: lambda input, k, dim=None, keepdim=False, out=None: -1,
|
|
torch.linalg.ldl_factor_ex: lambda input, hermitian=False, check_errors=False, out=None: -1,
|
|
torch.linalg.ldl_factor: lambda input, hermitian=False, out=None: -1,
|
|
torch.linalg.ldl_solve: lambda LD, pivots, B, hermitian=False, out=None: -1,
|
|
torch.layer_norm: lambda input, normalized_shape, weight=None, bias=None, esp=1e-05, cudnn_enabled=True: -1,
|
|
torch.lcm: lambda input, other, out=None: -1,
|
|
torch.ldexp: lambda input, other, out=None: -1,
|
|
torch.le: lambda input, other, out=None: -1,
|
|
torch.less_equal: lambda input, other, out=None: -1,
|
|
torch.lerp: lambda input, end, weight, out=None: -1,
|
|
torch.lgamma: lambda input, out=None: -1,
|
|
torch.lobpcg: lambda input, k=None, B=None, X=None, n=None, iK=None, niter=None, tol=None, largest=None, method=None,
|
|
tracker=None, ortho_iparams=None, ortho_fparams=None, ortho_bparams=None: -1,
|
|
torch.log: lambda input, out=None: -1,
|
|
torch.log_softmax: lambda input, dim, dtype=None: -1,
|
|
torch.log10: lambda input, out=None: -1,
|
|
torch.log1p: lambda input, out=None: -1,
|
|
torch.log2: lambda input, out=None: -1,
|
|
torch.logaddexp: lambda input, other, out=None: -1,
|
|
torch.logaddexp2: lambda input, other, out=None: -1,
|
|
torch.logdet: lambda input: -1,
|
|
torch.xlogy: lambda x, y, out=None: -1,
|
|
torch.logical_and: lambda input, other, out=None: -1,
|
|
torch.logical_not: lambda input, out=None: -1,
|
|
torch.logical_or: lambda input, other, out=None: -1,
|
|
torch.logical_xor: lambda input, other, out=None: -1,
|
|
torch.logit: lambda input, eps=None: -1,
|
|
torch.logsumexp: lambda input, names, keepdim=False, out=None: -1,
|
|
torch.lstm: lambda data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional: -1,
|
|
torch.lstm_cell: lambda input, hx, w_ih, w_hh, b_ih=None, b_hh=None: -1,
|
|
torch.lt: lambda input, other, out=None: -1,
|
|
torch.less: lambda input, other, out=None: -1,
|
|
torch.lu: lambda A, pivot=True, get_infos=False, out=None: -1,
|
|
torch.lu_solve: lambda b, LU_data, LU_pivots, out=None: -1,
|
|
torch.margin_ranking_loss: lambda input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean': -1, # type: ignore[attr-defined] # noqa: B950
|
|
torch.masked_fill: lambda input, mask, value: -1,
|
|
torch.masked_scatter: lambda input, mask, source: -1,
|
|
torch.masked_select: lambda input, mask, out=None: -1,
|
|
torch.matmul: lambda input, other, out=None: -1,
|
|
torch.linalg.lu: lambda input, pivot=True, out=None: -1,
|
|
torch.linalg.lu_factor: lambda input, pivot=True, out=None: -1,
|
|
torch.linalg.lu_factor_ex: lambda input, pivot=True, check_errors=False, out=None: -1,
|
|
torch.linalg.lu_solve: lambda LU, pivots, B, left=True, adjoint=False, out=None: -1,
|
|
torch.linalg.matmul: lambda input, other, out=None: -1, # alias for torch.matmul
|
|
torch.matrix_power: lambda input, n: -1,
|
|
torch.linalg.matrix_power: lambda input, n, out=None: -1,
|
|
torch.linalg.matrix_rank: lambda input, tol=None, hermitian=False: -1,
|
|
torch.linalg.multi_dot: lambda tensors, out=None: -1,
|
|
torch.matrix_exp: lambda input: -1,
|
|
torch.linalg.matrix_exp: lambda input: -1,
|
|
torch.max: lambda input, out=None: -1,
|
|
torch.maximum: lambda input, other, out=None: -1,
|
|
torch.fmax: lambda input, other, out=None: -1,
|
|
torch.max_pool1d: lambda input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False: -1,
|
|
torch.max_pool2d: lambda input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False: -1,
|
|
torch.max_pool3d: lambda input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False: -1,
|
|
torch.max_pool1d_with_indices: (lambda input, kernel_size, stride=None, padding=0, dilation=1,
|
|
return_indices=False, ceil_mode=False: -1),
|
|
torch.mean: lambda input, dim=None: -1,
|
|
torch.nanmean: lambda input, dim=None, keepdim=False, dtype=None, out=None: -1,
|
|
torch.median: lambda input, dim=None: -1,
|
|
torch.nanmedian: lambda input, dim=None: -1,
|
|
torch.meshgrid: lambda *tensors, **kwargs: -1,
|
|
torch.min: lambda input, out=None: -1,
|
|
torch.minimum: lambda input, other, out=None: -1,
|
|
torch.fmin: lambda input, other, out=None: -1,
|
|
torch.miopen_batch_norm: (lambda input, weight, bias, running_mean, running_var, training,
|
|
exponential_average_factor, epsilon: -1),
|
|
torch.miopen_convolution: lambda input, weight, bias, padding, stride, dilation, groups, benchmark, deterministic: -1,
|
|
torch.miopen_convolution_add_relu: lambda input, weight, z, alpha, bias, stride, padding, dilation, groups: -1,
|
|
torch.miopen_convolution_relu: lambda input, weight, bias, stride, padding, dilation, groups: -1,
|
|
torch.miopen_convolution_transpose: (lambda input, weight, bias, padding, output_padding, stride, dilation,
|
|
groups, benchmark, deterministic: -1),
|
|
torch.miopen_depthwise_convolution: (lambda input, weight, bias, padding, stride, dilation, groups, benchmark,
|
|
deterministic: -1),
|
|
torch.miopen_rnn: (lambda input, weight, weight_stride0, hx, cx, mode, hidden_size, num_layers, batch_first,
|
|
dropout, train, bidirectional, batch_sizes, dropout_state: -1),
|
|
torch.mm: lambda input, mat2, out=None: -1,
|
|
torch.mode: lambda input, dim=-1, keepdim=False, out=None: -1,
|
|
torch.movedim: lambda input, source, destination: -1,
|
|
torch.moveaxis: lambda input, source, destination: -1,
|
|
torch.msort: lambda input, descending=False, out=None: -1,
|
|
torch.mul: lambda input, other, out=None: -1,
|
|
torch.multiply: lambda input, other, out=None: -1,
|
|
torch.multinomial: lambda input, num_samples, replacement=False, out=None: -1,
|
|
torch.mv: lambda input, vec, out=None: -1,
|
|
torch.mvlgamma: lambda input, p: -1,
|
|
torch.narrow: lambda input, dim, start, length: -1,
|
|
torch.nan_to_num: lambda input, nan=0.0, posinf=None, neginf=None, out=None: -1,
|
|
torch.native_batch_norm: lambda input, weight, bias, running_mean, running_var, training, momentum, eps: -1,
|
|
torch._native_batch_norm_legit: lambda input, weight, bias, training, momentum, eps: -1,
|
|
torch.native_dropout: lambda input, p, train: -1,
|
|
torch.native_layer_norm: lambda input, normalized_shape, weight=None, bias=None, eps=1e-05: -1,
|
|
torch.native_group_norm: lambda input, weight, bias, N, C, HxW, group, eps: -1,
|
|
torch.native_norm: lambda input, p=2, dim=None, keepdim=False, dtype=None: -1,
|
|
torch.native_channel_shuffle: lambda input, groups : -1,
|
|
torch.ne: lambda input, other, out=None: -1,
|
|
torch.not_equal: lambda input, other, out=None: -1,
|
|
torch.neg: lambda input, out=None: -1,
|
|
torch.negative: lambda input, out=None: -1,
|
|
torch.nextafter: lambda input, other, out=None: -1,
|
|
torch.nn.functional.adaptive_avg_pool2d: lambda input, output_size: -1,
|
|
torch.nn.functional.adaptive_avg_pool3d: lambda input, output_size: -1,
|
|
torch.nn.functional.adaptive_max_pool1d: lambda input, output_size, return_indices=False: -1,
|
|
torch.nn.functional.adaptive_max_pool1d_with_indices: lambda input, output_size, return_indices=False: -1,
|
|
torch.nn.functional.adaptive_max_pool2d: lambda input, output_size, return_indices=False: -1,
|
|
torch.nn.functional.adaptive_max_pool2d_with_indices: lambda input, output_size, return_indices=False: -1,
|
|
torch.nn.functional.adaptive_max_pool3d: lambda input, output_size, return_indices=False: -1,
|
|
torch.nn.functional.adaptive_max_pool3d_with_indices: lambda input, output_size, return_indices=False: -1,
|
|
torch.nn.functional.affine_grid: lambda theta, size, align_corners=None: -1,
|
|
torch.nn.functional.alpha_dropout: lambda input, p=0.5, training=False, inplace=False: -1,
|
|
torch.nn.functional.avg_pool2d: (lambda input, kernel_size, stride=None, padding=0, ceil_mode=False,
|
|
count_include_pad=True, divisor_override=None: -1),
|
|
torch.nn.functional.avg_pool3d: (lambda input, kernel_size, stride=None, padding=0, ceil_mode=False,
|
|
count_include_pad=True, divisor_override=None: -1),
|
|
torch.nn.functional.batch_norm: (lambda input, running_mean, running_var, weight=None, bias=None, training=False,
|
|
momentum=0.1, eps=1e-05: -1),
|
|
torch.nn.functional.bilinear: lambda input1, input2, weight, bias=None: -1,
|
|
torch.nn.functional.binary_cross_entropy: (lambda input, target, weight=None, size_average=None, reduce=None,
|
|
reduction="mean": -1),
|
|
torch.nn.functional.binary_cross_entropy_with_logits: (lambda input, target, weight=None, size_average=None,
|
|
reduce=None, reduction="mean", pos_weight=None: -1),
|
|
torch.nn.functional.celu: lambda input, alpha=1.0, inplace=False: -1,
|
|
torch.nn.functional.cosine_embedding_loss: (lambda input1, input2, target, margin=0, size_average=None,
|
|
reduce=None, reduction='mean': -1),
|
|
torch.nn.functional.cross_entropy: (lambda input, target, weight=None, size_average=None, ignore_index=-100,
|
|
reduce=None, reduction="mean", label_smoothing=0.0: -1),
|
|
torch.nn.functional.ctc_loss: (lambda log_probs, targets, input_lengths, target_lengths, blank=0,
|
|
reduction='mean', zero_infinity=False: -1),
|
|
torch.nn.functional.dropout: lambda input, p=0.5, training=True, inplace=False: -1,
|
|
torch.nn.functional.dropout1d: lambda input, p=0.5, training=True, inplace=False: -1,
|
|
torch.nn.functional.dropout2d: lambda input, p=0.5, training=True, inplace=False: -1,
|
|
torch.nn.functional.dropout3d: lambda input, p=0.5, training=True, inplace=False: -1,
|
|
torch.nn.functional.elu: lambda input, alpha=1.0, inplace=False: -1,
|
|
torch.nn.functional.embedding: (lambda input, weight, padding_idx=None, max_norm=None, norm_type=2.0,
|
|
scale_grad_by_freq=False, sparse=False: -1),
|
|
torch.nn.functional.embedding_bag: (lambda input, weight, offsets=None, max_norm=None, norm_type=2,
|
|
scale_grad_by_freq=False, mode='mean', sparse=False, per_sample_weights=None,
|
|
include_last_offset=False, padding_idx=None: -1),
|
|
torch.nn.functional.feature_alpha_dropout: lambda input, p=0.5, training=False, inplace=False: -1,
|
|
torch.nn.functional.fold: lambda input, output_size, kernel_size, dilation=1, padding=0, stride=1: -1,
|
|
torch.nn.functional.fractional_max_pool2d: (lambda input, kernel_size, output_size=None, output_ratio=None,
|
|
return_indices=False, _random_samples=None: -1),
|
|
torch.nn.functional.fractional_max_pool2d_with_indices: (
|
|
lambda input, kernel_size, output_size=None, output_ratio=None, return_indices=False,
|
|
_random_samples=None: -1),
|
|
torch.nn.functional.fractional_max_pool3d: (lambda input, kernel_size, output_size=None, output_ratio=None,
|
|
return_indices=False, _random_samples=None: -1),
|
|
torch.nn.functional.fractional_max_pool3d_with_indices: (
|
|
lambda input, kernel_size, output_size=None, output_ratio=None, return_indices=False,
|
|
_random_samples=None: -1),
|
|
torch.nn.functional.gaussian_nll_loss: lambda input, target, var, full=False, eps=1e-06, reduction='mean': -1,
|
|
torch.nn.functional.gelu: lambda input, approximate='none': -1,
|
|
torch.nn.functional.glu: lambda input, dim=-1: -1,
|
|
torch.nn.functional.grid_sample: lambda input, grid, mode='bilinear', padding_mode='zeros', align_corners=None: -1,
|
|
torch.nn.functional.group_norm: lambda input, num_groups, weight=None, bias=None, eps=1e-05: -1,
|
|
torch.nn.functional.gumbel_softmax: lambda logits, tau=1, hard=False, eps=1e-10, dim=-1: -1,
|
|
torch.nn.functional.hardshrink: lambda input, lambd=0.5: -1,
|
|
torch.nn.functional.hardtanh: lambda input, min_val=-1., max_val=1., inplace=False: -1,
|
|
torch.nn.functional.hinge_embedding_loss: (lambda input, target, margin=1.0, size_average=None, reduce=None,
|
|
reduction='mean': -1),
|
|
torch.nn.functional.instance_norm: (lambda input, running_mean=None, running_var=None, weight=None, bias=None,
|
|
use_input_stats=True, momentum=0.1, eps=1e-05: -1),
|
|
torch.nn.functional.interpolate: (lambda input, size=None, scale_factor=None, mode='nearest', align_corners=None,
|
|
recompute_scale_factor=None, antialias=False: -1),
|
|
torch.nn.functional.kl_div: lambda input, target, size_average=None, reduce=None, reduction='mean', log_target=False: -1,
|
|
torch.nn.functional.l1_loss: lambda input, target, size_average=None, reduce=None, reduction='mean': -1,
|
|
torch.nn.functional.layer_norm: lambda input, normalized_shape, weight=None, bias=None, eps=1e-05: -1,
|
|
torch.nn.functional.leaky_relu: lambda input, negative_slope=0.01, inplace=False: -1,
|
|
torch.nn.functional.linear: lambda input, weight, bias=None: -1,
|
|
torch.nn.functional.local_response_norm: lambda input, size, alpha=0.0001, beta=0.75, k=1.0: -1,
|
|
torch.nn.functional.log_softmax: lambda input, dim=None, _stacklevel=3, dtype=None: -1,
|
|
torch.nn.functional.logsigmoid: lambda input: -1,
|
|
torch.nn.functional.lp_pool1d: lambda input, norm_type, kernel_size, stride=None, ceil_mode=False: -1,
|
|
torch.nn.functional.lp_pool2d: lambda input, norm_type, kernel_size, stride=None, ceil_mode=False: -1,
|
|
torch.nn.functional.lp_pool3d: lambda input, norm_type, kernel_size, stride=None, ceil_mode=False: -1,
|
|
torch.nn.functional.margin_ranking_loss: (lambda input1, input2, target, margin=0, size_average=None,
|
|
reduce=None, reduction='mean': -1),
|
|
torch.nn.functional.max_pool1d: (lambda input, kernel_size, stride=None, padding=0, dilation=1,
|
|
ceil_mode=False, return_indices=False: -1),
|
|
torch.nn.functional.max_pool1d_with_indices: (lambda input, kernel_size, stride=None, padding=0, dilation=1,
|
|
return_indices=False, ceil_mode=False: -1),
|
|
torch.nn.functional.max_pool2d: (lambda input, kernel_size, stride=None, padding=0, dilation=1,
|
|
ceil_mode=False, return_indices=False: -1),
|
|
torch.nn.functional.max_pool2d_with_indices: (lambda input, kernel_size, stride=None, padding=0, dilation=1,
|
|
return_indices=False, ceil_mode=False: -1),
|
|
torch.nn.functional.max_pool3d: (lambda input, kernel_size, stride=None, padding=0, dilation=1,
|
|
return_indices=False, ceil_mode=False: -1),
|
|
torch.nn.functional.max_pool3d_with_indices: (lambda input, kernel_size, stride=None, padding=0, dilation=1,
|
|
return_indices=False, ceil_mode=False: -1),
|
|
torch.nn.functional.max_unpool1d: lambda input, indices, kernel_size, stride=None, padding=0, output_size=None: -1,
|
|
torch.nn.functional.max_unpool2d: lambda input, indices, kernel_size, stride=None, padding=0, output_size=None: -1,
|
|
torch.nn.functional.max_unpool3d: lambda input, indices, kernel_size, stride=None, padding=0, output_size=None: -1,
|
|
torch.nn.functional.mse_loss: lambda input, target, size_average=None, reduce=None, reduction='mean': -1,
|
|
torch.nn.functional.multi_head_attention_forward: (
|
|
lambda query, key, value, embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, bias_k, bias_v,
|
|
add_zero_attn, dropout_p, out_proj_weight, out_proj_bias, training=True, key_padding_mask=None,
|
|
need_weights=True, attn_mask=None, use_separate_proj_weight=False, q_proj_weight=None, k_proj_weight=None,
|
|
v_proj_weight=None, static_k=None, static_v=None, average_attn_weights=None, is_causal=False: -1),
|
|
torch.nn.functional.multi_margin_loss: (lambda input, target, p=1, margin=1.0, weight=None, size_average=None,
|
|
reduce=None, reduction='mean': -1),
|
|
torch.nn.functional.multilabel_margin_loss: (lambda input, target, size_average=None, reduce=None,
|
|
reduction='mean': -1),
|
|
torch.nn.functional.multilabel_soft_margin_loss: (lambda input, target, weight=None, size_average=None,
|
|
reduce=None, reduction='mean': -1),
|
|
torch.nn.functional.nll_loss: (lambda input, target, weight=None, size_average=None, ignore_index=-100,
|
|
reduce=None, reduction='mean': -1),
|
|
torch.nn.functional.normalize: lambda input, p=2, dim=1, eps=1e-12, out=None: -1,
|
|
torch.nn.functional.one_hot: lambda tensor, num_classes=-1: -1,
|
|
torch.nn.functional.pad: lambda input, pad, mode='constant', value=0: -1,
|
|
torch.nn.functional.pairwise_distance: lambda x1, x2, p=2.0, eps=1e-06, keepdim=False: -1,
|
|
torch.nn.functional.poisson_nll_loss: (lambda input, target, log_input=True, full=False, size_average=None,
|
|
eps=1e-08, reduce=None, reduction='mean': -1),
|
|
torch.nn.functional.prelu: lambda input, weight: -1,
|
|
torch.nn.functional.relu: lambda input, inplace=False: -1,
|
|
torch.nn.functional.relu6: lambda input, inplace=False: -1,
|
|
torch.nn.functional.rrelu: lambda input, lower=0.125, upper=0.3333333333333333, training=False, inplace=False: -1,
|
|
torch.nn.functional.selu: lambda input, inplace=False: -1,
|
|
torch.nn.functional.silu: lambda input, inplace=False: -1,
|
|
torch.nn.functional.mish: lambda input, inplace=False: -1,
|
|
torch.nn.functional.scaled_dot_product_attention: lambda query, key, value, attn_mask=None, dropout_p=0.0: -1,
|
|
torch.nn.functional.smooth_l1_loss: lambda input, target, size_average=None, reduce=None, reduction='mean', beta=1.: -1,
|
|
torch.nn.functional.huber_loss: lambda input, target, reduction='mean', delta=1.: -1,
|
|
torch.nn.functional.soft_margin_loss: lambda input, target, size_average=None, reduce=None, reduction='mean': -1,
|
|
torch.nn.functional.softmax: lambda input, dim=None, _stacklevel=3, dtype=None: -1,
|
|
torch.nn.functional.softmin: lambda input, dim=None, _stacklevel=3, dtype=None: -1,
|
|
torch.nn.functional.softplus: lambda input, beta=1, threshold=20: -1,
|
|
torch.nn.functional.softshrink: lambda input, lambd=0.5: -1,
|
|
torch.nn.functional.softsign: lambda input: -1,
|
|
torch.nn.functional.tanhshrink: lambda input: -1,
|
|
torch.nn.functional.threshold: lambda input, threshold, value, inplace=False: -1,
|
|
torch.nn.functional.triplet_margin_loss: (lambda anchor, positive, negative, margin=1.0, p=2, eps=1e-06,
|
|
swap=False, size_average=None, reduce=None, reduction='mean': -1),
|
|
torch.nn.functional.triplet_margin_with_distance_loss: (lambda anchor, positive, negative, *,
|
|
distance_function=None, margin=1.0,
|
|
swap=False, reduction='mean': -1),
|
|
torch.nn.functional.unfold: lambda input, kernel_size, dilation=1, padding=0, stride=1: -1,
|
|
torch.nn.init.uniform_: lambda tensor, a=0., b=1., generator=None: -1,
|
|
torch.nn.init.normal_: lambda tensor, mean=0., std=1., generator=None: -1,
|
|
torch.nn.init.constant_: lambda tensor, val: -1,
|
|
torch.nn.init.kaiming_uniform_: lambda tensor, a=0, mode='fan_in', nonlinearity='leaky_relu', generator=None: -1,
|
|
torch.nonzero: lambda input, as_tuple=False: -1,
|
|
torch.nonzero_static: lambda input, *, size, fill_value=-1: -1,
|
|
torch.argwhere: lambda input: -1,
|
|
torch.norm: lambda input, p='fro', dim=None, keepdim=False, out=None, dtype=None: -1,
|
|
torch.linalg.norm: lambda input, ord=None, dim=None, keepdim=False, out=None, dtype=None: -1,
|
|
torch.linalg.vector_norm: lambda input, ord=2, dim=None, keepdim=False, out=None, dtype=None: -1,
|
|
torch.linalg.matrix_norm: lambda input, ord='fro', dim=(-2, -1), keepdim=False, out=None, dtype=None: -1,
|
|
torch.norm_except_dim: lambda v, pow=2, dim=0: -1,
|
|
torch.nuclear_norm: lambda input, p='fro', dim=None, keepdim=False, out=None, dtype=None: -1,
|
|
torch.numel: lambda input: -1,
|
|
torch.orgqr: lambda input, tau: -1,
|
|
torch.ormqr: lambda input, input2, input3, left=True, transpose=False: -1,
|
|
torch.pairwise_distance: lambda x1, x2, p=2.0, eps=1e-06, keepdim=False: -1,
|
|
torch.permute: lambda self, dim: -1,
|
|
torch.pca_lowrank: lambda input, q=None, center=True, niter=2: -1,
|
|
torch.pdist: lambda input, p=2: -1,
|
|
torch.pinverse: lambda input, rcond=1e-15: -1,
|
|
torch.linalg.pinv: lambda input, rcond=1e-15, hermitian=False: -1,
|
|
torch.pixel_shuffle: lambda input, upscale_factor: -1,
|
|
torch.pixel_unshuffle: lambda input, downscale_factor: -1,
|
|
torch.poisson: lambda input, generator=None: -1,
|
|
torch.poisson_nll_loss: lambda input, target, log_input, full, eps, reduction: -1,
|
|
torch.polygamma: lambda input, n, out=None: -1,
|
|
torch.positive: lambda input, out=None: -1,
|
|
torch.prelu: lambda input, weight: -1,
|
|
torch.ones_like: lambda input, dtype=None, layout=None, device=None, requires_grad=False: -1,
|
|
torch.pow: lambda input, exponent, out=None: -1,
|
|
torch.prod: lambda input, dtype=None: -1,
|
|
torch.put: lambda input, index, source, accumulate=False: -1,
|
|
torch.q_per_channel_axis: lambda input: -1,
|
|
torch.q_per_channel_scales: lambda input: -1,
|
|
torch.q_per_channel_zero_points: lambda input: -1,
|
|
torch.q_scale: lambda input: -1,
|
|
torch.q_zero_point: lambda input: -1,
|
|
torch.qr: lambda input, some=True, out=None: -1,
|
|
torch.linalg.qr: lambda input, mode='reduced', out=None: -1,
|
|
torch.quantile: lambda input, q, dim=None, keepdim=False, interpolation='linear', out=None: -1,
|
|
torch.nanquantile: lambda input, q, dim=None, keepdim=False, interpolation='linear', out=None: -1,
|
|
torch.quantize_per_channel: lambda input, scales, zero_points, axis, dtype: -1,
|
|
torch.quantize_per_tensor: lambda input, scale, zero_point, dtype: -1,
|
|
torch.quantize_per_tensor_dynamic: lambda input, dtype, reduce_range: -1,
|
|
torch.quantized_batch_norm: lambda input, weight, bias, mean, var, eps, output_scale, output_zero_point: -1,
|
|
torch.quantized_gru_cell: (lambda input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih,
|
|
col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh: -1),
|
|
|
|
torch.quantized_lstm_cell: (lambda input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih,
|
|
col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh: -1),
|
|
torch.quantized_max_pool1d: (lambda input, kernel_size, stride=tuple(), padding=(0,),
|
|
dilation=(1,), ceil_mode=False: -1),
|
|
torch.quantized_max_pool2d: (lambda input, kernel_size, stride=tuple(), padding=(0, 0),
|
|
dilation=(1, 1), ceil_mode=False: -1),
|
|
torch.quantized_max_pool3d: (lambda input, kernel_size, stride=tuple(), padding=(0, 0, 0),
|
|
dilation=(1, 1, 1), ceil_mode=False: -1),
|
|
torch.quantized_rnn_relu_cell: (lambda input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih,
|
|
col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh: -1),
|
|
torch.quantized_rnn_tanh_cell: (lambda input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih,
|
|
col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh: -1),
|
|
torch.rad2deg: lambda input, out=None: -1,
|
|
torch.rand_like: lambda input, dtype=None, layout=None, device=None, requires_grad=False: -1,
|
|
torch.randint_like: lambda input, high, dtype=None, layout=torch.strided, device=None, requires_grad=False: -1,
|
|
torch.randn_like: lambda input, dtype=None, layout=None, device=None, requires_grad=False: -1,
|
|
torch.ravel: lambda input: -1,
|
|
torch.real: lambda input, out=None: -1,
|
|
torch.vdot: lambda input, other, out=None: -1,
|
|
torch.linalg.vecdot: lambda input, other, dim=-1, out=None: -1,
|
|
torch.view_as_real: lambda input: -1,
|
|
torch.view_as_complex: lambda input: -1,
|
|
torch.reciprocal: lambda input, out=None: -1,
|
|
torch.relu: lambda input, inplace=False: -1,
|
|
torch.remainder: lambda input, other, out=None: -1,
|
|
torch.renorm: lambda input, p, dim, maxnorm, out=None: -1,
|
|
torch.repeat_interleave: lambda input, dim=None: -1,
|
|
torch.reshape: lambda input, shape: -1,
|
|
torch.rnn_relu: lambda input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first: -1,
|
|
torch.rnn_relu_cell: lambda input, hx, w_ih, w_hh, b_ih=None, b_hh=None: -1,
|
|
torch.rnn_tanh: lambda input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first: -1,
|
|
torch.rnn_tanh_cell: lambda input, hx, w_ih, w_hh, b_ih=None, b_hh=None: -1,
|
|
torch.roll: lambda input, shifts, dims=None: -1,
|
|
torch.rot90: lambda input, k=1, dims=(0, 1): -1,
|
|
torch.round: lambda input, out=None: -1,
|
|
torch.row_stack: lambda tensors, out=None: -1, # alias for torch.vstack
|
|
torch._rowwise_prune: (lambda weight, mask, compressed_indices_dtype: -1),
|
|
torch.rrelu: lambda input, lower=1. / 8, upper=1. / 3, training=False, inplace=False: -1,
|
|
torch.rsqrt: lambda input, out=None: -1,
|
|
torch.rsub: lambda input, other, alpha=1: -1,
|
|
torch.saddmm: lambda input, mat1, mat2, beta=1, alpha=1, out=None: -1,
|
|
torch.scatter: lambda input, dim, index, src: -1,
|
|
torch.scatter_add: lambda input, dim, index, src: -1,
|
|
torch.scatter_reduce: lambda input, dim, index, src, reduce, include_self=True: -1,
|
|
torch.searchsorted: lambda sorted_sequence, input, out_int32=False, right=False, out=None: -1,
|
|
torch._segment_reduce: lambda data, reduce="max", lengths=None, indices=None, offsets=None, axis=0, unsafe=False: -1,
|
|
torch.select: lambda input, dim, index: -1,
|
|
torch.select_scatter: lambda input, src, dim, index: -1,
|
|
torch.slice_inverse: lambda input, src, dim=0, start=None, end=None, step=1: -1,
|
|
torch.slice_scatter: lambda input, src, dim=0, start=None, end=None, step=1: -1,
|
|
torch.selu: lambda input, inplace=False: -1,
|
|
torch.sigmoid: lambda input, out=None: -1,
|
|
torch.sign: lambda input, out=None: -1,
|
|
torch.signbit: lambda input, out=None: -1,
|
|
torch.sgn: lambda input, out=None: -1,
|
|
torch.sin: lambda input, out=None: -1,
|
|
torch.sinc: lambda input, out=None: -1,
|
|
torch.sinh: lambda input, out=None: -1,
|
|
torch.slogdet: lambda input: -1,
|
|
torch.linalg.slogdet: lambda input: -1,
|
|
torch.smm: lambda input, mat2: -1,
|
|
torch.spmm: lambda input, mat2: -1,
|
|
torch.softmax: lambda input, dim, dtype=None: -1,
|
|
torch.linalg.solve: lambda A, B, left=True, out=None: -1,
|
|
torch.linalg.solve_ex: lambda A, B, left=True, check_errors=False, out=None: -1,
|
|
torch.sort: lambda input, dim=-1, descending=False, *, stable=False, out=None: -1,
|
|
torch.split: lambda tensor, split_size_or_sections, dim=0: -1,
|
|
torch.split_with_sizes: lambda tensor, split_size_or_sections, dim=0: -1,
|
|
torch.sqrt: lambda input, out=None: -1,
|
|
torch.square: lambda input, out=None: -1,
|
|
torch.squeeze: lambda input, dim=None, out=None: -1,
|
|
torch.sspaddmm: lambda input, mat1, mat2, beta=1, alpha=1, out=None: -1,
|
|
torch.stack: lambda tensors, dim=0, out=None: -1,
|
|
torch.std: lambda input, dim=None: -1,
|
|
torch.std_mean: lambda input, dim=None: -1,
|
|
torch.stft: (lambda input, n_fft, hop_length=None, win_length=None, window=None, center=True,
|
|
pad_mode='reflect', normalized=False, onesided=True, return_complex=None: -1),
|
|
torch.sub: lambda input, other, out=None: -1,
|
|
torch.subtract: lambda input, other, out=None: -1,
|
|
torch.sum: lambda input, dim=None: -1,
|
|
torch.sym_float: lambda input: -1,
|
|
torch.sym_int: lambda input: -1,
|
|
torch.sym_max: lambda a, b: -1,
|
|
torch.sym_min: lambda a, b: -1,
|
|
torch.sym_not: lambda input: -1,
|
|
torch.sym_ite: lambda a, b, c: -1,
|
|
torch._sym_sqrt: lambda input: -1,
|
|
torch._sym_cos: lambda input: -1,
|
|
torch._sym_cosh: lambda input: -1,
|
|
torch._sym_sin: lambda input: -1,
|
|
torch._sym_sinh: lambda input: -1,
|
|
torch._sym_tan: lambda input: -1,
|
|
torch._sym_tanh: lambda input: -1,
|
|
torch._sym_asin: lambda input: -1,
|
|
torch._sym_acos: lambda input: -1,
|
|
torch._sym_atan: lambda input: -1,
|
|
torch.nansum: lambda input, dim=None: -1,
|
|
torch.svd: lambda input, some=True, compute_uv=True, out=None: -1,
|
|
torch.svd_lowrank: lambda input, q=6, niter=2, M=None: -1,
|
|
torch.linalg.svd: lambda input, full_matrices=True, out=None: -1,
|
|
torch.linalg.svdvals: lambda input, out=None: -1,
|
|
torch.swapaxes: lambda input, dim0, dim1: -1,
|
|
torch.swapdims: lambda input, axis0, axis1: -1,
|
|
torch.special.airy_ai: lambda input: -1,
|
|
torch.special.bessel_j0: lambda input: -1,
|
|
torch.special.bessel_j1: lambda input: -1,
|
|
torch.special.bessel_y0: lambda input: -1,
|
|
torch.special.bessel_y1: lambda input: -1,
|
|
torch.special.chebyshev_polynomial_t: lambda input, n, out=None: -1,
|
|
torch.special.chebyshev_polynomial_u: lambda input, n, out=None: -1,
|
|
torch.special.chebyshev_polynomial_v: lambda input, n, out=None: -1,
|
|
torch.special.chebyshev_polynomial_w: lambda input, n, out=None: -1,
|
|
torch.special.digamma: lambda input: -1,
|
|
torch.special.entr: lambda input: -1,
|
|
torch.special.erf: lambda input: -1,
|
|
torch.special.erfc: lambda input: -1,
|
|
torch.special.erfcx: lambda input: -1,
|
|
torch.special.erfinv: lambda input: -1,
|
|
torch.special.exp2: lambda input: -1,
|
|
torch.special.expit: lambda input: -1,
|
|
torch.special.expm1: lambda input: -1,
|
|
torch.special.gammainc: lambda input, other, out=None: -1,
|
|
torch.special.gammaincc: lambda input, other, out=None: -1,
|
|
torch.special.gammaln: lambda input: -1,
|
|
torch.special.hermite_polynomial_h: lambda input, n, out=None: -1,
|
|
torch.special.hermite_polynomial_he: lambda input, n, out=None: -1,
|
|
torch.special.i0: lambda input: -1,
|
|
torch.special.i0e: lambda input: -1,
|
|
torch.special.i1: lambda input: -1,
|
|
torch.special.i1e: lambda input: -1,
|
|
torch.special.laguerre_polynomial_l: lambda input, n, out=None: -1,
|
|
torch.special.legendre_polynomial_p: lambda input, n, out=None: -1,
|
|
torch.special.log1p: lambda input: -1,
|
|
torch.special.log_ndtr: lambda input: -1,
|
|
torch.special.log_softmax: lambda input, dim, dtype=None: -1,
|
|
torch.special.logit: lambda input: -1,
|
|
torch.special.logsumexp: lambda input, dim, keepdim=False, out=None: -1,
|
|
torch.special.modified_bessel_i0: lambda input: -1,
|
|
torch.special.modified_bessel_i1: lambda input: -1,
|
|
torch.special.modified_bessel_k0: lambda input: -1,
|
|
torch.special.modified_bessel_k1: lambda input: -1,
|
|
torch.special.multigammaln: lambda input, p: -1,
|
|
torch.special.ndtr: lambda input: -1,
|
|
torch.special.ndtri: lambda input: -1,
|
|
torch.special.polygamma: lambda input, n, out=None: -1,
|
|
torch.special.psi: lambda input: -1,
|
|
torch.special.round: lambda input: -1,
|
|
torch.special.scaled_modified_bessel_k0: lambda input: -1,
|
|
torch.special.scaled_modified_bessel_k1: lambda input: -1,
|
|
torch.special.shifted_chebyshev_polynomial_t: lambda input, n, out=None: -1,
|
|
torch.special.shifted_chebyshev_polynomial_u: lambda input, n, out=None: -1,
|
|
torch.special.shifted_chebyshev_polynomial_v: lambda input, n, out=None: -1,
|
|
torch.special.shifted_chebyshev_polynomial_w: lambda input, n, out=None: -1,
|
|
torch.special.sinc: lambda input: -1,
|
|
torch.special.softmax: lambda input, dim, dtype=None: -1,
|
|
torch.special.spherical_bessel_j0: lambda input: -1,
|
|
torch.special.xlog1py: lambda input, other, out=None: -1,
|
|
torch.special.xlogy: lambda input, other, out=None: -1,
|
|
torch.special.zeta: lambda self, other, out=None: -1,
|
|
torch.t: lambda input: -1,
|
|
torch.take: lambda input, index: -1,
|
|
torch.take_along_dim: lambda input, indices, dim=None, out=None: -1,
|
|
torch.tan: lambda input, out=None: -1,
|
|
torch.tanh: lambda input, out=None: -1,
|
|
torch.linalg.tensorinv: lambda a, ind=2: -1,
|
|
torch.linalg.tensorsolve: lambda a, b, dims=None: -1,
|
|
torch.tensordot: lambda a, b, dims=2, out=None: -1,
|
|
torch.tensor_split: lambda input, indices_or_sections, dim=0: -1,
|
|
torch.threshold: lambda input, threshold, value, inplace=False: -1,
|
|
torch.tile: lambda input, dims: -1,
|
|
torch.topk: lambda input, k, dim=-1, descending=False, out=None: -1,
|
|
torch.trace: lambda input: -1,
|
|
torch.transpose: lambda input, dim0, dim1: -1,
|
|
torch.trapz: lambda y, x=None, dim=-1: -1,
|
|
torch.trapezoid: lambda y, x=None, dim=-1: -1,
|
|
torch.triangular_solve: lambda input, A, upper=True, transpose=False, unitriangular=False: -1,
|
|
torch.linalg.solve_triangular: lambda input, B, upper, left=True, unitriangular=False: -1,
|
|
torch.tril: lambda input, diagonal=0, out=None: -1,
|
|
torch.triplet_margin_loss: (lambda anchor, positive, negative, margin=1.0, p=2, eps=1e-06, swap=False,
|
|
|
|
size_average=None, reduce=None, reduction='mean': -1),
|
|
torch.triu: lambda input, diagonal=0, out=None: -1,
|
|
torch.true_divide: lambda input, other: -1,
|
|
torch.trunc: lambda input, out=None: -1,
|
|
torch.unbind: lambda input, dim=0: -1,
|
|
torch.unflatten: lambda input, dim, sizes, names: -1,
|
|
torch.unique: lambda input, sorted=True, return_inverse=False, return_counts=False, dim=None: -1,
|
|
torch.unique_consecutive: lambda input, return_inverse=False, return_counts=False, dim=None: -1,
|
|
torch.unravel_index: lambda indices, shape: -1,
|
|
torch.unsafe_chunk: lambda input, chunks, dim=0: -1,
|
|
torch.unsafe_split: lambda tensor, split_size_or_sections, dim=0: -1,
|
|
torch.unsafe_split_with_sizes: lambda tensor, split_size_or_sections, dim=0: -1,
|
|
torch.unsqueeze: lambda input, dim, out=None: -1,
|
|
torch.linalg.vander: lambda x, N=None: -1,
|
|
torch.var: lambda input, dim=None: -1,
|
|
torch.var_mean: lambda input, dim=None: -1,
|
|
torch.vsplit: lambda input, indices_or_sections: -1,
|
|
torch.vstack: lambda tensors, out=None: -1,
|
|
torch.where: lambda condition, x=None, y=None: -1,
|
|
torch.zeros_like: lambda input, dtype=None, layout=None, device=None, requires_grad=False: -1,
|
|
torch._fw_primal_copy: lambda self, level: -1,
|
|
torch._make_dual_copy: lambda primal, tangent, level: -1,
|
|
torch.view_as_real_copy: lambda self: -1,
|
|
torch.view_as_complex_copy: lambda self: -1,
|
|
torch._conj_copy: lambda self: -1,
|
|
torch._neg_view_copy: lambda self: -1,
|
|
torch.as_strided_copy: lambda self, size, stride, storage_offset=None: -1,
|
|
torch._sparse_broadcast_to_copy: lambda self, size: -1,
|
|
torch.diagonal_copy: lambda self, offset=0, dim1=0, dim2=1: -1,
|
|
torch.expand_copy: lambda self, size, *, implicit=False: -1,
|
|
torch.narrow_copy: lambda self, dim, start, length: -1,
|
|
torch.permute_copy: lambda self, dims: -1,
|
|
torch._reshape_alias_copy: lambda self, size, stride: -1,
|
|
torch.select_copy: lambda self, dim, index: -1,
|
|
torch.detach_copy: lambda self: -1,
|
|
torch.slice_copy: lambda self, dim=0, start=None, end=None, step=1: -1,
|
|
torch.split_copy: lambda self, split_size, dim=0: -1,
|
|
torch.split_with_sizes_copy: lambda self, split_sizes, dim=0: -1,
|
|
torch.squeeze_copy: lambda self, dim: -1,
|
|
torch.t_copy: lambda self: -1,
|
|
torch.transpose_copy: lambda self, dim0, dim1: -1,
|
|
torch.unsqueeze_copy: lambda self, dim: -1,
|
|
torch._indices_copy: lambda self: -1,
|
|
torch._values_copy: lambda self: -1,
|
|
torch.indices_copy: lambda self: -1,
|
|
torch.values_copy: lambda self: -1,
|
|
torch.crow_indices_copy: lambda self: -1,
|
|
torch.col_indices_copy: lambda self: -1,
|
|
torch.ccol_indices_copy: lambda self: -1,
|
|
torch.row_indices_copy: lambda self: -1,
|
|
torch.unbind_copy: lambda self, dim=0: -1,
|
|
torch.view_copy: lambda self, dtype: -1,
|
|
torch.unfold_copy: lambda self, dimension, size, step: -1,
|
|
torch.alias_copy: lambda self: -1,
|
|
Tensor.__floordiv__: lambda self, other: -1,
|
|
Tensor.__rfloordiv__: lambda self, other: -1,
|
|
Tensor.__ifloordiv__: lambda self, other: -1,
|
|
Tensor.__truediv__: lambda self, other: -1,
|
|
Tensor.__rtruediv__: lambda self, other: -1,
|
|
Tensor.__itruediv__: lambda self, other: -1,
|
|
Tensor.__lshift__: lambda self, other: -1,
|
|
Tensor.__rlshift__: lambda self, other: -1,
|
|
Tensor.__ilshift__: lambda self, other: -1,
|
|
Tensor.__rshift__: lambda self, other: -1,
|
|
Tensor.__rrshift__: lambda self, other: -1,
|
|
Tensor.__irshift__: lambda self, other: -1,
|
|
Tensor.__and__: lambda self, other: -1,
|
|
Tensor.__or__: lambda self, other: -1,
|
|
Tensor.__xor__: lambda self, other: -1,
|
|
Tensor.__float__: lambda self: -1,
|
|
Tensor.__complex__: lambda self: -1,
|
|
Tensor.__array__: lambda self, dtype: -1,
|
|
Tensor.__bool__: lambda self: -1,
|
|
Tensor.__contains__: lambda self, other: -1,
|
|
Tensor.__neg__: lambda self: -1,
|
|
Tensor.__invert__: lambda self: -1,
|
|
Tensor.__mod__: lambda self, other: -1,
|
|
Tensor.__rmod__: lambda self, other: -1,
|
|
Tensor.__imod__: lambda self, other: -1,
|
|
Tensor.__array_wrap__: lambda self, array: -1,
|
|
Tensor.__getitem__: lambda self, idx: -1,
|
|
Tensor.__deepcopy__: lambda self, memo: -1,
|
|
Tensor.__int__: lambda self: -1,
|
|
Tensor.__long__: lambda self: -1,
|
|
Tensor.__index__: lambda self: -1,
|
|
Tensor.__len__: lambda self: -1,
|
|
Tensor.__format__: lambda self, format_spec: -1,
|
|
Tensor.__reduce_ex__: lambda self, proto: -1,
|
|
Tensor.__reversed__: lambda self: -1,
|
|
Tensor.__repr__: lambda self, *, tensor_contents=None: -1,
|
|
Tensor.__setitem__: lambda self, k, v: -1,
|
|
Tensor.__setstate__: lambda self, d: -1,
|
|
Tensor.T.__get__: lambda self: -1,
|
|
Tensor.H.__get__: lambda self: -1,
|
|
Tensor.mT.__get__: lambda self: -1,
|
|
Tensor.mH.__get__: lambda self: -1,
|
|
Tensor._backward_hooks.__get__: lambda self: -1,
|
|
Tensor._post_accumulate_grad_hooks.__get__: lambda self: -1,
|
|
Tensor._base.__get__: lambda self: -1,
|
|
Tensor._cdata.__get__: lambda self: -1,
|
|
Tensor.grad.__get__: lambda self: -1,
|
|
Tensor._grad.__get__: lambda self: -1,
|
|
Tensor._grad_fn.__get__: lambda self: -1,
|
|
Tensor.grad_fn.__get__: lambda self: -1,
|
|
Tensor._version.__get__: lambda self: -1,
|
|
Tensor._autocast_to_reduced_precision: lambda self, cuda_enabled, cpu_enabled, cuda_dtype, cpu_dtype: -1,
|
|
Tensor._autocast_to_full_precision: lambda self, cuda_enabled, cpu_enabled: -1,
|
|
Tensor.data.__get__: lambda self: -1,
|
|
Tensor.device.__get__: lambda self: -1,
|
|
Tensor.dtype.__get__: lambda self: -1,
|
|
Tensor.is_cuda.__get__: lambda self: -1,
|
|
Tensor.is_cpu.__get__: lambda self: -1,
|
|
Tensor.is_xla.__get__: lambda self: -1,
|
|
Tensor.is_xpu.__get__: lambda self: -1,
|
|
Tensor.is_ipu.__get__: lambda self: -1,
|
|
Tensor.is_leaf.__get__: lambda self: -1,
|
|
Tensor.retains_grad.__get__: lambda self: -1,
|
|
Tensor.is_meta.__get__: lambda self: -1,
|
|
Tensor.is_mps.__get__: lambda self: -1,
|
|
Tensor.is_mtia.__get__: lambda self: -1,
|
|
Tensor.is_nested.__get__: lambda self: -1,
|
|
Tensor.is_ort.__get__: lambda self: -1,
|
|
Tensor.is_mkldnn.__get__: lambda self: -1,
|
|
Tensor.is_quantized.__get__: lambda self: -1,
|
|
Tensor.is_sparse.__get__: lambda self: -1,
|
|
Tensor.is_sparse_csr.__get__: lambda self: -1,
|
|
Tensor.is_vulkan.__get__: lambda self: -1,
|
|
Tensor.itemsize.__get__: lambda self: -1,
|
|
Tensor.layout.__get__: lambda self: -1,
|
|
Tensor.name.__get__: lambda self: -1,
|
|
Tensor.names.__get__: lambda self: -1,
|
|
Tensor.nbytes.__get__: lambda self: -1,
|
|
Tensor.ndim.__get__: lambda self: -1,
|
|
Tensor.output_nr.__get__: lambda self: -1,
|
|
Tensor.requires_grad.__get__: lambda self: -1,
|
|
Tensor.shape.__get__: lambda self: -1,
|
|
Tensor.volatile.__get__: lambda self: -1,
|
|
Tensor.real.__get__: lambda self: -1,
|
|
Tensor.imag.__get__: lambda self: -1,
|
|
Tensor.__cuda_array_interface__.__get__: lambda self: -1,
|
|
Tensor.type: lambda self, dtype=None, non_blocking=False, **kwargs: -1,
|
|
Tensor._dimI: lambda self: -1,
|
|
Tensor._dimV: lambda self: -1,
|
|
Tensor._indices: lambda self: -1,
|
|
Tensor._is_view: lambda self: -1,
|
|
Tensor._nnz: lambda self: -1,
|
|
Tensor.crow_indices: lambda self: -1,
|
|
Tensor.col_indices: lambda self: -1,
|
|
Tensor.ccol_indices: lambda self: -1,
|
|
Tensor.row_indices: lambda self: -1,
|
|
Tensor._update_names: lambda self, names, inplace: -1,
|
|
Tensor._values: lambda self: -1,
|
|
Tensor.adjoint: lambda self: -1,
|
|
Tensor.align_as: lambda self, other: -1,
|
|
Tensor.align_to: lambda self, order, ellipsis_idx: -1,
|
|
Tensor.apply_: lambda self, callable: -1,
|
|
Tensor.as_strided: lambda self, size, stride: -1,
|
|
Tensor.as_strided_: lambda self, size, stride: -1,
|
|
Tensor.backward: lambda self, gradient=None, retain_graph=None, create_graph=False, inputs=None: -1,
|
|
Tensor.bfloat16: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.bool: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.byte: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.char: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.cauchy_: lambda self, median=0, sigma=1, *, generator=None: -1,
|
|
Tensor.coalesce: lambda self: -1,
|
|
Tensor._coalesced_: lambda self, coalesced: -1,
|
|
Tensor.contiguous: lambda self, memory_format=torch.contiguous_format: -1,
|
|
Tensor.copy_: lambda self, src, non_blocking=False: -1,
|
|
Tensor.cpu: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.cuda: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.xpu: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.ipu: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.data_ptr: lambda self: -1,
|
|
Tensor.dense_dim: lambda self: -1,
|
|
Tensor.diagonal_scatter: lambda self, src, offset=0, dim1=0, dim2=1: -1,
|
|
Tensor.dim: lambda self: -1,
|
|
Tensor.dim_order: lambda self: -1,
|
|
Tensor.double: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.cdouble: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.element_size: lambda self: -1,
|
|
Tensor.expand: lambda self, size: -1,
|
|
Tensor.expand_as: lambda self, other: -1,
|
|
Tensor.exponential_: lambda self, lambd=1, *, generator=None: -1,
|
|
Tensor.fill_: lambda self, value: -1,
|
|
Tensor.fill_diagonal_: lambda self, value: -1,
|
|
Tensor.float: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.cfloat: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.geometric_: lambda self, p, *, generator=None: -1,
|
|
Tensor.get_device: lambda self: -1,
|
|
Tensor.half: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.chalf: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.has_names: lambda self: -1,
|
|
Tensor.indices: lambda self: -1,
|
|
Tensor.int: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.is_coalesced: lambda self: -1,
|
|
Tensor.is_contiguous: lambda self: -1,
|
|
Tensor.is_inference: lambda self: -1,
|
|
Tensor.is_pinned: lambda self: -1,
|
|
Tensor.is_set_to: lambda self, tensor: -1,
|
|
Tensor.is_shared: lambda self: -1,
|
|
Tensor.item: lambda self: -1,
|
|
Tensor.log_normal_: lambda self, mean=1, std=2, *, generator=None: -1,
|
|
Tensor.log_softmax: lambda self, dim: -1,
|
|
Tensor.long: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.map_: lambda self, tensor, callable: -1,
|
|
Tensor.map2_: lambda self, x, y, callable: -1,
|
|
Tensor.mm: lambda self, mat2: -1,
|
|
Tensor.module_load: lambda self, other, assign=False: -1,
|
|
Tensor.narrow_copy: lambda self, dimension, start, length: -1,
|
|
Tensor.ndimension: lambda self: -1,
|
|
Tensor.nelement: lambda self: -1,
|
|
Tensor._nested_tensor_size: lambda self: -1,
|
|
Tensor._nested_tensor_storage_offsets: lambda self: -1,
|
|
Tensor._nested_tensor_strides: lambda self: -1,
|
|
Tensor.normal_: lambda self: -1,
|
|
Tensor.numpy: lambda self: -1,
|
|
Tensor.permute: lambda self, dim: -1,
|
|
Tensor.pin_memory: lambda self: -1,
|
|
Tensor.put_: lambda self, indices, tensor, accumulate=False: -1,
|
|
Tensor.qscheme: lambda self: -1,
|
|
Tensor.random_: lambda self, from_=0, to=None, *, generator=None: -1,
|
|
Tensor.record_stream: lambda self, stream: -1,
|
|
Tensor.refine_names: lambda self, names: -1,
|
|
Tensor.register_hook: lambda self, hook: -1,
|
|
Tensor.register_post_accumulate_grad_hook: lambda self, hook: -1,
|
|
Tensor.rename: lambda self, name: -1,
|
|
Tensor.repeat: lambda self, *size: -1,
|
|
Tensor.requires_grad_: lambda self, requires_grad=True: -1,
|
|
Tensor.reshape_as: lambda self, other: -1,
|
|
Tensor.resize: lambda self, *size: -1,
|
|
Tensor.resize_: lambda self, size: -1,
|
|
Tensor.resize_as: lambda self, other: -1,
|
|
Tensor.resize_as_sparse_: lambda self, other: -1,
|
|
Tensor.retain_grad: lambda self: -1,
|
|
Tensor.set_: lambda self, source=None, storage_offset=0, size=None, stride=None: -1,
|
|
Tensor.select_scatter: lambda self, src, dim, index: -1,
|
|
Tensor.share_memory_: lambda self: -1,
|
|
Tensor.short: lambda self, memory_format=torch.preserve_format: -1,
|
|
Tensor.size: lambda self: -1,
|
|
Tensor.slice_scatter: lambda self, src, dim=0, start=None, end=None, step=1: -1,
|
|
Tensor.sparse_dim: lambda self: -1,
|
|
Tensor.sparse_mask: lambda self, mask: -1,
|
|
Tensor._sparse_mask_projection: lambda self, mask, accumulate_matches=False: -1,
|
|
Tensor.sparse_resize_: lambda self, size1, size2, dense_dim: -1,
|
|
Tensor.sparse_resize_and_clear_: lambda self, size1, size2, dense_dim: -1,
|
|
Tensor.sspaddmm: lambda self, mat1, mat2, beta=1, alpha=1, out=None: -1,
|
|
Tensor.storage: lambda self: -1,
|
|
Tensor.untyped_storage: lambda self: -1,
|
|
Tensor.storage_offset: lambda self: -1,
|
|
Tensor.storage_type: lambda self: -1,
|
|
Tensor.sum_to_size: lambda self, size: -1,
|
|
Tensor.tile: lambda self, *reps: -1,
|
|
Tensor.to: lambda self, dtype, non_blocking=False, copy=False, memory_format=torch.preserve_format: -1,
|
|
Tensor.to_dense: lambda self, dtype=None, *, masked_grad=None: -1,
|
|
Tensor._to_dense: lambda self, dtype=None, masked_grad=None: -1,
|
|
Tensor.to_sparse: lambda self: -1,
|
|
Tensor.tolist: lambda self: -1,
|
|
Tensor.to_mkldnn: lambda self: -1,
|
|
Tensor.type_as: lambda self, other: -1,
|
|
Tensor.unfold: lambda self, dimension, size, step: -1,
|
|
Tensor.uniform_: lambda self, from_=0, to=1: -1,
|
|
Tensor.values: lambda self: -1,
|
|
Tensor.view: lambda self, shape: -1,
|
|
Tensor.view_as: lambda self, other: -1,
|
|
Tensor.zero_: lambda self: -1,
|
|
Tensor.__dlpack__: lambda self, stream=None: -1,
|
|
Tensor.__dlpack_device__: lambda self: -1,
|
|
torch.linalg.lstsq: lambda self, b, cond=None, driver=None: -1,
|
|
}
|
|
|
|
ret2 = {}
|
|
ignored = get_ignored_functions()
|
|
|
|
for k, v in ret.items():
|
|
# Generate methods like __add__ and add_ by default from add
|
|
names = [
|
|
k.__name__, # Default method
|
|
k.__name__ + "_", # Inplace variant
|
|
"__" + k.__name__ + "__", # Dunder method
|
|
"__i" + k.__name__ + "__", # Inplace dunder method
|
|
"__r" + k.__name__ + "__", # Reverse dunder method
|
|
]
|
|
|
|
if k.__name__.startswith("bitwise_"):
|
|
# bitwise_<op> have dunder methods of the form __<op>__
|
|
# And so on.
|
|
subname = k.__name__[len("bitwise_"):]
|
|
names.extend([
|
|
"__" + subname + "__",
|
|
"__i" + subname + "__",
|
|
"__r" + subname + "__"
|
|
])
|
|
|
|
for name in names:
|
|
func = getattr(Tensor, name, None)
|
|
if callable(func) and func not in ret and func not in ignored:
|
|
ret2[func] = v
|
|
|
|
ret.update(ret2)
|
|
return ret
|
|
|
|
def wrap_torch_function(dispatcher: Callable):
|
|
"""Wraps a given function with ``__torch_function__`` -related functionality.
|
|
|
|
Parameters
|
|
----------
|
|
dispatcher: Callable
|
|
A callable that returns an iterable of Tensor-likes passed into the function.
|
|
|
|
Note
|
|
----
|
|
This decorator may reduce the performance of your code. Generally, it's enough to express
|
|
your code as a series of functions that, themselves, support __torch_function__. If you
|
|
find yourself in the rare situation where this is not the case, e.g. if you're wrapping a
|
|
low-level library and you also need it to work for Tensor-likes, then this function is available.
|
|
|
|
Examples
|
|
--------
|
|
>>> def dispatcher(a): # Must have the same signature as func
|
|
... return (a,)
|
|
>>> @torch.overrides.wrap_torch_function(dispatcher)
|
|
>>> def func(a): # This will make func dispatchable by __torch_function__
|
|
... return a + 0
|
|
"""
|
|
def inner(func):
|
|
@functools.wraps(func)
|
|
def wrapped(*args, **kwargs):
|
|
relevant_args = dispatcher(*args, **kwargs)
|
|
if has_torch_function(relevant_args):
|
|
return handle_torch_function(wrapped, relevant_args, *args, **kwargs)
|
|
|
|
return func(*args, **kwargs)
|
|
|
|
return wrapped
|
|
|
|
return inner
|
|
|
|
def _get_overloaded_args(relevant_args: Iterable[Any], get_type_fn: Callable[[Any], Type] = None) -> List[Any]:
|
|
"""Returns a list of arguments on which to call __torch_function__.
|
|
|
|
Checks arguments in relevant_args for __torch_function__ implementations,
|
|
storing references to the arguments and their types in overloaded_args and
|
|
overloaded_types in order of calling precedence. Only distinct types are
|
|
considered. If a type is a subclass of another type it will have higher
|
|
precedence, otherwise the precedence order is the same as the order of
|
|
arguments in relevant_args, that is, from left-to-right in the argument list.
|
|
|
|
The precedence-determining algorithm implemented in this function is
|
|
described in `NEP-0018`_.
|
|
|
|
See torch::append_overloaded_arg for the equivalent function in the C++
|
|
implementation.
|
|
|
|
Parameters
|
|
----------
|
|
relevant_args : iterable of array-like
|
|
Iterable of array-like arguments to check for __torch_function__
|
|
methods.
|
|
|
|
get_type_fn : callable, optional
|
|
Function to call on each argument in relevant_args to get its type.
|
|
|
|
Returns
|
|
-------
|
|
overloaded_args : list
|
|
Arguments from relevant_args on which to call __torch_function__
|
|
methods, in the order in which they should be called.
|
|
|
|
.. _NEP-0018:
|
|
https://numpy.org/neps/nep-0018-array-function-protocol.html
|
|
"""
|
|
if get_type_fn is None:
|
|
get_type_fn = type
|
|
|
|
# If torch function is not enabled, there are no overloaded types
|
|
if not torch._C._is_torch_function_enabled():
|
|
return []
|
|
# Runtime is O(num_arguments * num_unique_types)
|
|
overloaded_types: Set[Type] = set()
|
|
overloaded_args: List[Any] = []
|
|
for arg in relevant_args:
|
|
arg_type = get_type_fn(arg)
|
|
# We only collect arguments if they have a unique type, which ensures
|
|
# reasonable performance even with a long list of possibly overloaded
|
|
# arguments.
|
|
#
|
|
# NB: Important to exclude _disabled_torch_function_impl, otherwise
|
|
# https://github.com/pytorch/pytorch/issues/64687
|
|
if (arg_type not in overloaded_types and hasattr(arg_type, '__torch_function__') and
|
|
arg_type.__torch_function__ != torch._C._disabled_torch_function_impl):
|
|
# Create lists explicitly for the first type (usually the only one
|
|
# done) to avoid setting up the iterator for overloaded_args.
|
|
if overloaded_types:
|
|
overloaded_types.add(arg_type)
|
|
# By default, insert argument at the end, but if it is
|
|
# subclass of another argument, insert it before that argument.
|
|
# This ensures "subclasses before superclasses".
|
|
index = len(overloaded_args)
|
|
for i, old_arg in enumerate(overloaded_args):
|
|
if issubclass(arg_type, get_type_fn(old_arg)):
|
|
index = i
|
|
break
|
|
overloaded_args.insert(index, arg)
|
|
else:
|
|
overloaded_types = {arg_type}
|
|
overloaded_args = [arg]
|
|
return overloaded_args
|
|
|
|
|
|
def handle_torch_function(
|
|
public_api: Callable, relevant_args: Iterable[Any], *args, **kwargs) -> Any:
|
|
"""Implement a function with checks for ``__torch_function__`` overrides.
|
|
|
|
See torch::autograd::handle_torch_function for the equivalent of this
|
|
function in the C++ implementation.
|
|
|
|
Arguments
|
|
---------
|
|
public_api : function
|
|
Function exposed by the public torch API originally called like
|
|
``public_api(*args, **kwargs)`` on which arguments are now being
|
|
checked.
|
|
relevant_args : iterable
|
|
Iterable of arguments to check for __torch_function__ methods.
|
|
args : tuple
|
|
Arbitrary positional arguments originally passed into ``public_api``.
|
|
kwargs : tuple
|
|
Arbitrary keyword arguments originally passed into ``public_api``.
|
|
|
|
Returns
|
|
-------
|
|
object
|
|
Result from calling ``implementation`` or an ``__torch_function__``
|
|
method, as appropriate.
|
|
|
|
Raises
|
|
------
|
|
TypeError : if no implementation is found.
|
|
|
|
Example
|
|
-------
|
|
>>> def func(a):
|
|
... if has_torch_function_unary(a):
|
|
... return handle_torch_function(func, (a,), a)
|
|
... return a + 0
|
|
"""
|
|
# Check for __torch_function__ methods.
|
|
overloaded_args = _get_overloaded_args(relevant_args)
|
|
# overloaded_args already have unique types.
|
|
types = tuple(map(type, overloaded_args))
|
|
|
|
# Check for __torch_function__ mode.
|
|
if _is_torch_function_mode_enabled():
|
|
# if we're here, the mode must be set to a TorchFunctionStackMode
|
|
# this unsets it and calls directly into TorchFunctionStackMode's torch function
|
|
with _pop_mode_temporarily() as mode:
|
|
result = mode.__torch_function__(public_api, types, args, kwargs)
|
|
if result is not NotImplemented:
|
|
return result
|
|
|
|
# Call overrides
|
|
for overloaded_arg in overloaded_args:
|
|
# This call needs to become a classmethod call in the future.
|
|
# See https://github.com/pytorch/pytorch/issues/63767
|
|
torch_func_method = overloaded_arg.__torch_function__
|
|
if hasattr(torch_func_method, "__self__") and torch_func_method.__self__ is overloaded_arg and \
|
|
torch_func_method is not torch._C._disabled_torch_function_impl:
|
|
warnings.warn("Defining your `__torch_function__ as a plain method is deprecated and "
|
|
"will be an error in future, please define it as a classmethod.",
|
|
DeprecationWarning)
|
|
|
|
# Use `public_api` instead of `implementation` so __torch_function__
|
|
# implementations can do equality/identity comparisons.
|
|
result = torch_func_method(public_api, types, args, kwargs)
|
|
|
|
if result is not NotImplemented:
|
|
return result
|
|
|
|
func_name = f'{public_api.__module__}.{public_api.__name__}'
|
|
msg = (
|
|
f"no implementation found for '{func_name}' on types that implement "
|
|
f'__torch_function__: {[type(arg) for arg in overloaded_args]}'
|
|
)
|
|
if _is_torch_function_mode_enabled():
|
|
msg += f" nor in mode {_get_current_function_mode()}"
|
|
raise TypeError(msg)
|
|
|
|
has_torch_function = _add_docstr(
|
|
_has_torch_function,
|
|
r"""Check for __torch_function__ implementations in the elements of an iterable
|
|
or if a __torch_function__ mode is enabled. Considers exact ``Tensor`` s
|
|
and ``Parameter`` s non-dispatchable. Use this to guard a call to
|
|
:func:`handle_torch_function`; don't use it to test if something
|
|
is Tensor-like, use :func:`is_tensor_like` instead.
|
|
Arguments
|
|
---------
|
|
relevant_args : iterable
|
|
Iterable or arguments to check for __torch_function__ methods.
|
|
Returns
|
|
-------
|
|
bool
|
|
True if any of the elements of relevant_args have __torch_function__
|
|
implementations, False otherwise.
|
|
See Also
|
|
________
|
|
torch.is_tensor_like
|
|
Checks if something is a Tensor-like, including an exact ``Tensor``.
|
|
"""
|
|
)
|
|
|
|
has_torch_function_unary = _add_docstr(
|
|
_has_torch_function_unary,
|
|
r"""Special case of `has_torch_function` for single inputs.
|
|
Instead of:
|
|
`has_torch_function((t,))`
|
|
call:
|
|
`has_torch_function_unary(t)`
|
|
which skips unnecessary packing and unpacking work.
|
|
"""
|
|
)
|
|
|
|
has_torch_function_variadic = _add_docstr(
|
|
_has_torch_function_variadic,
|
|
r"""Special case of `has_torch_function` that skips tuple creation.
|
|
|
|
This uses the METH_FASTCALL protocol introduced in Python 3.7
|
|
|
|
Instead of:
|
|
`has_torch_function((a, b))`
|
|
call:
|
|
`has_torch_function_variadic(a, b)`
|
|
which skips unnecessary packing and unpacking work.
|
|
"""
|
|
)
|
|
|
|
@functools.lru_cache(None)
|
|
def _get_overridable_functions() -> Tuple[Dict[Any, List[Callable]], Dict[Callable, str]]:
|
|
overridable_funcs = collections.defaultdict(list)
|
|
index = {}
|
|
tested_namespaces = [
|
|
("torch", torch, torch.__all__),
|
|
("torch.functional", torch.functional, torch.functional.__all__),
|
|
("torch.nn.functional", torch.nn.functional, dir(torch.nn.functional)),
|
|
("torch.nn.init", torch.nn.init, dir(torch.nn.init)),
|
|
("torch.Tensor", torch.Tensor, dir(torch.Tensor)),
|
|
("torch.linalg", torch.linalg, dir(torch.linalg)),
|
|
("torch.fft", torch.fft, dir(torch.fft)),
|
|
("torch.special", torch.special, dir(torch.special)),
|
|
]
|
|
for namespace_str, namespace, ns_funcs in tested_namespaces:
|
|
for func_name in ns_funcs:
|
|
ignore = False
|
|
# ignore private functions or functions that are deleted in torch.__init__
|
|
if namespace is not torch.Tensor:
|
|
if func_name.startswith('__'):
|
|
continue
|
|
elif func_name.startswith('_'):
|
|
ignore = True
|
|
elif func_name.endswith('_'):
|
|
ignore = True
|
|
elif not func_name[0].islower():
|
|
ignore = True
|
|
elif func_name == 'unique_dim':
|
|
continue
|
|
else:
|
|
func = getattr(namespace, func_name)
|
|
if getattr(object, func_name, None) == func:
|
|
continue
|
|
if func_name == '__weakref__':
|
|
continue
|
|
func = getattr(namespace, func_name)
|
|
if namespace is torch.Tensor and getattr(object, func_name, None) == func:
|
|
continue
|
|
# ignore re-exported modules
|
|
if isinstance(func, types.ModuleType):
|
|
continue
|
|
# ignore __future__ imports
|
|
if isinstance(func, __future__._Feature):
|
|
continue
|
|
|
|
if not callable(func) and hasattr(func, "__get__"):
|
|
index[func.__get__] = f"{namespace_str}.{func_name}.__get__"
|
|
index[func.__set__] = f"{namespace_str}.{func_name}.__set__"
|
|
if ignore:
|
|
continue
|
|
if func.__get__ in get_ignored_functions():
|
|
msg = ("{}.{} is in the tuple returned by torch._overrides.get_ignored_functions "
|
|
"but still has an explicit override")
|
|
assert func.__get__ not in get_testing_overrides(), msg.format(namespace, func.__name__)
|
|
continue
|
|
else:
|
|
overridable_funcs[func].append(func.__get__)
|
|
continue
|
|
|
|
if not callable(func):
|
|
continue
|
|
|
|
index[func] = f"{namespace_str}.{func_name}"
|
|
|
|
if ignore:
|
|
continue
|
|
|
|
# cannot be overriden by __torch_function__
|
|
if func in get_ignored_functions():
|
|
msg = ("{}.{} is in the tuple returned by torch._overrides.get_ignored_functions "
|
|
"but still has an explicit override")
|
|
assert func not in get_testing_overrides(), msg.format(namespace, func.__name__)
|
|
continue
|
|
overridable_funcs[namespace].append(func)
|
|
return overridable_funcs, index
|
|
|
|
@_disable_user_warnings
|
|
def get_overridable_functions() -> Dict[Any, List[Callable]]:
|
|
"""List functions that are overridable via __torch_function__
|
|
|
|
Returns
|
|
-------
|
|
Dict[Any, List[Callable]]
|
|
A dictionary that maps namespaces that contain overridable functions
|
|
to functions in that namespace that can be overridden.
|
|
"""
|
|
return _get_overridable_functions()[0]
|
|
|
|
@_disable_user_warnings
|
|
def resolve_name(f):
|
|
"""Get a human readable string name for a function passed to
|
|
__torch_function__
|
|
|
|
Arguments
|
|
---------
|
|
f : Callable
|
|
Function to resolve the name of.
|
|
|
|
Returns
|
|
-------
|
|
str
|
|
Name of the function; if eval'ed it should give back the input
|
|
function.
|
|
"""
|
|
if isinstance(f, (torch._ops.OpOverload, torch._ops.OpOverloadPacket)):
|
|
return str(f)
|
|
return _get_overridable_functions()[1].get(f)
|
|
|
|
@functools.lru_cache(None)
|
|
def _get_tensor_methods() -> Set[Callable]:
|
|
""" Returns a set of the overridable methods on ``torch.Tensor`` """
|
|
overridable_funcs = get_overridable_functions()
|
|
methods = set(overridable_funcs[torch.Tensor])
|
|
return methods
|
|
|
|
@_disable_user_warnings
|
|
def is_tensor_method_or_property(func: Callable) -> bool:
|
|
"""
|
|
Returns True if the function passed in is a handler for a
|
|
method or property belonging to ``torch.Tensor``, as passed
|
|
into ``__torch_function__``.
|
|
|
|
.. note::
|
|
For properties, their ``__get__`` method must be passed in.
|
|
|
|
This may be needed, in particular, for the following reasons:
|
|
|
|
1. Methods/properties sometimes don't contain a `__module__` slot.
|
|
2. They require that the first passed-in argument is an instance
|
|
of ``torch.Tensor``.
|
|
|
|
Examples
|
|
--------
|
|
>>> is_tensor_method_or_property(torch.Tensor.add)
|
|
True
|
|
>>> is_tensor_method_or_property(torch.add)
|
|
False
|
|
"""
|
|
return func in _get_tensor_methods() or func.__name__ == "__get__"
|
|
|
|
def is_tensor_like(inp):
|
|
"""
|
|
Returns ``True`` if the passed-in input is a Tensor-like.
|
|
|
|
Currently, this occurs whenever there's a ``__torch_function__``
|
|
attribute on the type of the input.
|
|
|
|
Examples
|
|
--------
|
|
A subclass of tensor is generally a Tensor-like.
|
|
|
|
>>> class SubTensor(torch.Tensor): ...
|
|
>>> is_tensor_like(SubTensor([0]))
|
|
True
|
|
|
|
Built-in or user types aren't usually Tensor-like.
|
|
|
|
>>> is_tensor_like(6)
|
|
False
|
|
>>> is_tensor_like(None)
|
|
False
|
|
>>> class NotATensor: ...
|
|
>>> is_tensor_like(NotATensor())
|
|
False
|
|
|
|
But, they can be made Tensor-like by implementing __torch_function__.
|
|
|
|
>>> class TensorLike:
|
|
... @classmethod
|
|
... def __torch_function__(cls, func, types, args, kwargs):
|
|
... return -1
|
|
>>> is_tensor_like(TensorLike())
|
|
True
|
|
"""
|
|
return type(inp) is torch.Tensor or hasattr(inp, "__torch_function__")
|
|
|
|
class TorchFunctionMode:
|
|
"""
|
|
A ``TorchFunctionMode`` allows you to override the meaning of all
|
|
``__torch_function__`` overrideable functions within a dynamic scope,
|
|
without having to actually create a tensor subclass or manually
|
|
monkey-patch functions in the PyTorch API. Some common situations
|
|
where you should use a mode:
|
|
|
|
* You want to override the meaning of factory functions, or other
|
|
functions that do not otherwise take a tensor as an argument
|
|
(these cannot be overridden with tensor subclasses).
|
|
|
|
* You want to override the behavior of all functions without needing
|
|
to wrap your inputs in tensor subclasses; e.g., if you are just
|
|
interested in logging intermediate computations.
|
|
|
|
* You want to control the order of execution of various tensor
|
|
subclasses explicitly, rather than implicitly via the return of
|
|
``NotImplemented``.
|
|
|
|
Independent subclasses of :class:`TorchFunctionMode` are compositional:
|
|
modes can be pushed onto a stack using ``with MyMode():``.
|
|
When you call functions in the PyTorch API inside your
|
|
``__torch_function__`` implementation, by default, they will forward on to
|
|
the next mode on the mode stack. If you want recursively call back into
|
|
your current ``__torch_function__`` implementation, either explicitly
|
|
invoke ``self.__torch_function__(...)``, or use the context manager
|
|
``enable_torch_function_mode(self, replace=self.inner)`` to make PyTorch
|
|
API self-referential (beware of infinite loops, in this case!)
|
|
"""
|
|
inner: "TorchFunctionMode"
|
|
|
|
# Force metaclass to generate constructor at the base of the hierarchy
|
|
def __init__(self):
|
|
pass
|
|
|
|
def __torch_function__(self, func, types, args=(), kwargs=None):
|
|
raise NotImplementedError()
|
|
|
|
def __enter__(self):
|
|
_push_mode(self)
|
|
return self
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
_pop_mode()
|
|
|
|
@classmethod
|
|
def push(cls, *args, **kwargs):
|
|
warnings.warn("`Mode.push()` is no longer necessary and can be replaced with just `with Mode()`")
|
|
instance = cls(*args, **kwargs)
|
|
return instance
|
|
|
|
|
|
def _get_current_function_mode():
|
|
stack_len = _len_torch_function_stack()
|
|
return _get_function_stack_at(stack_len - 1) if stack_len > 0 else None
|
|
|
|
|
|
def _get_current_function_mode_stack():
|
|
stack_len = _len_torch_function_stack()
|
|
return [_get_function_stack_at(i) for i in range(stack_len)]
|
|
|
|
def _push_mode(mode):
|
|
_push_on_torch_function_stack(mode)
|
|
|
|
|
|
def _pop_mode():
|
|
old = _pop_torch_function_stack()
|
|
return old
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def _pop_mode_temporarily():
|
|
old = _pop_mode()
|
|
try:
|
|
yield old
|
|
finally:
|
|
_push_mode(old)
|
|
|
|
class BaseTorchFunctionMode(TorchFunctionMode):
|
|
def __torch_function__(self, func, types, args=(), kwargs=None):
|
|
if kwargs is None:
|
|
kwargs = {}
|
|
return func(*args, **kwargs)
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def enable_reentrant_dispatch():
|
|
# NB: this can't simply be
|
|
# `enable_reentrant_dispatch = torch._C._RestorePythonTLSSnapshot`
|
|
# because:
|
|
# 1. torch._C._RestorePythonTLSSnapshot is unavailable when this file
|
|
# initially gets imported. Probably an import order thing.
|
|
# 2. enable_reentrant_dispatch is technically public API; assigning
|
|
# it the object would change the __module__ to look private.
|
|
with torch._C._RestorePythonTLSSnapshot():
|
|
try:
|
|
yield
|
|
finally:
|
|
pass
|