You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

89 lines
3.4 KiB

import json
import pathlib
from typing import Any, Callable, List, Optional, Tuple, Union
from urllib.parse import urlparse
from PIL import Image
from .utils import download_and_extract_archive, verify_str_arg
from .vision import VisionDataset
class CLEVRClassification(VisionDataset):
"""`CLEVR <https://cs.stanford.edu/people/jcjohns/clevr/>`_ classification dataset.
The number of objects in a scene are used as label.
Args:
root (str or ``pathlib.Path``): Root directory of dataset where directory ``root/clevr`` exists or will be saved to if download is
set to True.
split (string, optional): The dataset split, supports ``"train"`` (default), ``"val"``, or ``"test"``.
transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed
version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in them target and transforms it.
download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If
dataset is already downloaded, it is not downloaded again.
"""
_URL = "https://dl.fbaipublicfiles.com/clevr/CLEVR_v1.0.zip"
_MD5 = "b11922020e72d0cd9154779b2d3d07d2"
def __init__(
self,
root: Union[str, pathlib.Path],
split: str = "train",
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
download: bool = False,
) -> None:
self._split = verify_str_arg(split, "split", ("train", "val", "test"))
super().__init__(root, transform=transform, target_transform=target_transform)
self._base_folder = pathlib.Path(self.root) / "clevr"
self._data_folder = self._base_folder / pathlib.Path(urlparse(self._URL).path).stem
if download:
self._download()
if not self._check_exists():
raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
self._image_files = sorted(self._data_folder.joinpath("images", self._split).glob("*"))
self._labels: List[Optional[int]]
if self._split != "test":
with open(self._data_folder / "scenes" / f"CLEVR_{self._split}_scenes.json") as file:
content = json.load(file)
num_objects = {scene["image_filename"]: len(scene["objects"]) for scene in content["scenes"]}
self._labels = [num_objects[image_file.name] for image_file in self._image_files]
else:
self._labels = [None] * len(self._image_files)
def __len__(self) -> int:
return len(self._image_files)
def __getitem__(self, idx: int) -> Tuple[Any, Any]:
image_file = self._image_files[idx]
label = self._labels[idx]
image = Image.open(image_file).convert("RGB")
if self.transform:
image = self.transform(image)
if self.target_transform:
label = self.target_transform(label)
return image, label
def _check_exists(self) -> bool:
return self._data_folder.exists() and self._data_folder.is_dir()
def _download(self) -> None:
if self._check_exists():
return
download_and_extract_archive(self._URL, str(self._base_folder), md5=self._MD5)
def extra_repr(self) -> str:
return f"split={self._split}"