You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							176 lines
						
					
					
						
							7.1 KiB
						
					
					
				
			
		
		
	
	
							176 lines
						
					
					
						
							7.1 KiB
						
					
					
				| import os.path
 | |
| from pathlib import Path
 | |
| from typing import Any, Callable, cast, Optional, Tuple, Union
 | |
| 
 | |
| import numpy as np
 | |
| from PIL import Image
 | |
| 
 | |
| from .utils import check_integrity, download_and_extract_archive, verify_str_arg
 | |
| from .vision import VisionDataset
 | |
| 
 | |
| 
 | |
| class STL10(VisionDataset):
 | |
|     """`STL10 <https://cs.stanford.edu/~acoates/stl10/>`_ Dataset.
 | |
| 
 | |
|     Args:
 | |
|         root (str or ``pathlib.Path``): Root directory of dataset where directory
 | |
|             ``stl10_binary`` exists.
 | |
|         split (string): One of {'train', 'test', 'unlabeled', 'train+unlabeled'}.
 | |
|             Accordingly, dataset is selected.
 | |
|         folds (int, optional): One of {0-9} or None.
 | |
|             For training, loads one of the 10 pre-defined folds of 1k samples for the
 | |
|             standard evaluation procedure. If no value is passed, loads the 5k samples.
 | |
|         transform (callable, optional): A function/transform that takes in a PIL image
 | |
|             and returns a transformed version. E.g, ``transforms.RandomCrop``
 | |
|         target_transform (callable, optional): A function/transform that takes in the
 | |
|             target and transforms it.
 | |
|         download (bool, optional): If true, downloads the dataset from the internet and
 | |
|             puts it in root directory. If dataset is already downloaded, it is not
 | |
|             downloaded again.
 | |
|     """
 | |
| 
 | |
|     base_folder = "stl10_binary"
 | |
|     url = "http://ai.stanford.edu/~acoates/stl10/stl10_binary.tar.gz"
 | |
|     filename = "stl10_binary.tar.gz"
 | |
|     tgz_md5 = "91f7769df0f17e558f3565bffb0c7dfb"
 | |
|     class_names_file = "class_names.txt"
 | |
|     folds_list_file = "fold_indices.txt"
 | |
|     train_list = [
 | |
|         ["train_X.bin", "918c2871b30a85fa023e0c44e0bee87f"],
 | |
|         ["train_y.bin", "5a34089d4802c674881badbb80307741"],
 | |
|         ["unlabeled_X.bin", "5242ba1fed5e4be9e1e742405eb56ca4"],
 | |
|     ]
 | |
| 
 | |
|     test_list = [["test_X.bin", "7f263ba9f9e0b06b93213547f721ac82"], ["test_y.bin", "36f9794fa4beb8a2c72628de14fa638e"]]
 | |
|     splits = ("train", "train+unlabeled", "unlabeled", "test")
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         root: Union[str, Path],
 | |
|         split: str = "train",
 | |
|         folds: Optional[int] = None,
 | |
|         transform: Optional[Callable] = None,
 | |
|         target_transform: Optional[Callable] = None,
 | |
|         download: bool = False,
 | |
|     ) -> None:
 | |
|         super().__init__(root, transform=transform, target_transform=target_transform)
 | |
|         self.split = verify_str_arg(split, "split", self.splits)
 | |
|         self.folds = self._verify_folds(folds)
 | |
| 
 | |
|         if download:
 | |
|             self.download()
 | |
|         elif not self._check_integrity():
 | |
|             raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
 | |
| 
 | |
|         # now load the picked numpy arrays
 | |
|         self.labels: Optional[np.ndarray]
 | |
|         if self.split == "train":
 | |
|             self.data, self.labels = self.__loadfile(self.train_list[0][0], self.train_list[1][0])
 | |
|             self.labels = cast(np.ndarray, self.labels)
 | |
|             self.__load_folds(folds)
 | |
| 
 | |
|         elif self.split == "train+unlabeled":
 | |
|             self.data, self.labels = self.__loadfile(self.train_list[0][0], self.train_list[1][0])
 | |
|             self.labels = cast(np.ndarray, self.labels)
 | |
|             self.__load_folds(folds)
 | |
|             unlabeled_data, _ = self.__loadfile(self.train_list[2][0])
 | |
|             self.data = np.concatenate((self.data, unlabeled_data))
 | |
|             self.labels = np.concatenate((self.labels, np.asarray([-1] * unlabeled_data.shape[0])))
 | |
| 
 | |
|         elif self.split == "unlabeled":
 | |
|             self.data, _ = self.__loadfile(self.train_list[2][0])
 | |
|             self.labels = np.asarray([-1] * self.data.shape[0])
 | |
|         else:  # self.split == 'test':
 | |
|             self.data, self.labels = self.__loadfile(self.test_list[0][0], self.test_list[1][0])
 | |
| 
 | |
|         class_file = os.path.join(self.root, self.base_folder, self.class_names_file)
 | |
|         if os.path.isfile(class_file):
 | |
|             with open(class_file) as f:
 | |
|                 self.classes = f.read().splitlines()
 | |
| 
 | |
|     def _verify_folds(self, folds: Optional[int]) -> Optional[int]:
 | |
|         if folds is None:
 | |
|             return folds
 | |
|         elif isinstance(folds, int):
 | |
|             if folds in range(10):
 | |
|                 return folds
 | |
|             msg = "Value for argument folds should be in the range [0, 10), but got {}."
 | |
|             raise ValueError(msg.format(folds))
 | |
|         else:
 | |
|             msg = "Expected type None or int for argument folds, but got type {}."
 | |
|             raise ValueError(msg.format(type(folds)))
 | |
| 
 | |
|     def __getitem__(self, index: int) -> Tuple[Any, Any]:
 | |
|         """
 | |
|         Args:
 | |
|             index (int): Index
 | |
| 
 | |
|         Returns:
 | |
|             tuple: (image, target) where target is index of the target class.
 | |
|         """
 | |
|         target: Optional[int]
 | |
|         if self.labels is not None:
 | |
|             img, target = self.data[index], int(self.labels[index])
 | |
|         else:
 | |
|             img, target = self.data[index], None
 | |
| 
 | |
|         # doing this so that it is consistent with all other datasets
 | |
|         # to return a PIL Image
 | |
|         img = Image.fromarray(np.transpose(img, (1, 2, 0)))
 | |
| 
 | |
|         if self.transform is not None:
 | |
|             img = self.transform(img)
 | |
| 
 | |
|         if self.target_transform is not None:
 | |
|             target = self.target_transform(target)
 | |
| 
 | |
|         return img, target
 | |
| 
 | |
|     def __len__(self) -> int:
 | |
|         return self.data.shape[0]
 | |
| 
 | |
|     def __loadfile(self, data_file: str, labels_file: Optional[str] = None) -> Tuple[np.ndarray, Optional[np.ndarray]]:
 | |
|         labels = None
 | |
|         if labels_file:
 | |
|             path_to_labels = os.path.join(self.root, self.base_folder, labels_file)
 | |
|             with open(path_to_labels, "rb") as f:
 | |
|                 labels = np.fromfile(f, dtype=np.uint8) - 1  # 0-based
 | |
| 
 | |
|         path_to_data = os.path.join(self.root, self.base_folder, data_file)
 | |
|         with open(path_to_data, "rb") as f:
 | |
|             # read whole file in uint8 chunks
 | |
|             everything = np.fromfile(f, dtype=np.uint8)
 | |
|             images = np.reshape(everything, (-1, 3, 96, 96))
 | |
|             images = np.transpose(images, (0, 1, 3, 2))
 | |
| 
 | |
|         return images, labels
 | |
| 
 | |
|     def _check_integrity(self) -> bool:
 | |
|         for filename, md5 in self.train_list + self.test_list:
 | |
|             fpath = os.path.join(self.root, self.base_folder, filename)
 | |
|             if not check_integrity(fpath, md5):
 | |
|                 return False
 | |
|         return True
 | |
| 
 | |
|     def download(self) -> None:
 | |
|         if self._check_integrity():
 | |
|             print("Files already downloaded and verified")
 | |
|             return
 | |
|         download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5)
 | |
|         self._check_integrity()
 | |
| 
 | |
|     def extra_repr(self) -> str:
 | |
|         return "Split: {split}".format(**self.__dict__)
 | |
| 
 | |
|     def __load_folds(self, folds: Optional[int]) -> None:
 | |
|         # loads one of the folds if specified
 | |
|         if folds is None:
 | |
|             return
 | |
|         path_to_folds = os.path.join(self.root, self.base_folder, self.folds_list_file)
 | |
|         with open(path_to_folds) as f:
 | |
|             str_idx = f.read().splitlines()[folds]
 | |
|             list_idx = np.fromstring(str_idx, dtype=np.int64, sep=" ")
 | |
|             self.data = self.data[list_idx, :, :, :]
 | |
|             if self.labels is not None:
 | |
|                 self.labels = self.labels[list_idx]
 |