You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
97 lines
3.4 KiB
97 lines
3.4 KiB
import os
|
|
from pathlib import Path
|
|
from typing import Any, Callable, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
from PIL import Image
|
|
|
|
from .utils import download_url
|
|
from .vision import VisionDataset
|
|
|
|
|
|
class USPS(VisionDataset):
|
|
"""`USPS <https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#usps>`_ Dataset.
|
|
The data-format is : [label [index:value ]*256 \\n] * num_lines, where ``label`` lies in ``[1, 10]``.
|
|
The value for each pixel lies in ``[-1, 1]``. Here we transform the ``label`` into ``[0, 9]``
|
|
and make pixel values in ``[0, 255]``.
|
|
|
|
Args:
|
|
root (str or ``pathlib.Path``): Root directory of dataset to store``USPS`` data files.
|
|
train (bool, optional): If True, creates dataset from ``usps.bz2``,
|
|
otherwise from ``usps.t.bz2``.
|
|
transform (callable, optional): A function/transform that takes in a PIL image
|
|
and returns a transformed version. E.g, ``transforms.RandomCrop``
|
|
target_transform (callable, optional): A function/transform that takes in the
|
|
target and transforms it.
|
|
download (bool, optional): If true, downloads the dataset from the internet and
|
|
puts it in root directory. If dataset is already downloaded, it is not
|
|
downloaded again.
|
|
|
|
"""
|
|
|
|
split_list = {
|
|
"train": [
|
|
"https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/usps.bz2",
|
|
"usps.bz2",
|
|
"ec16c51db3855ca6c91edd34d0e9b197",
|
|
],
|
|
"test": [
|
|
"https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/usps.t.bz2",
|
|
"usps.t.bz2",
|
|
"8ea070ee2aca1ac39742fdd1ef5ed118",
|
|
],
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
root: Union[str, Path],
|
|
train: bool = True,
|
|
transform: Optional[Callable] = None,
|
|
target_transform: Optional[Callable] = None,
|
|
download: bool = False,
|
|
) -> None:
|
|
super().__init__(root, transform=transform, target_transform=target_transform)
|
|
split = "train" if train else "test"
|
|
url, filename, checksum = self.split_list[split]
|
|
full_path = os.path.join(self.root, filename)
|
|
|
|
if download and not os.path.exists(full_path):
|
|
download_url(url, self.root, filename, md5=checksum)
|
|
|
|
import bz2
|
|
|
|
with bz2.open(full_path) as fp:
|
|
raw_data = [line.decode().split() for line in fp.readlines()]
|
|
tmp_list = [[x.split(":")[-1] for x in data[1:]] for data in raw_data]
|
|
imgs = np.asarray(tmp_list, dtype=np.float32).reshape((-1, 16, 16))
|
|
imgs = ((imgs + 1) / 2 * 255).astype(dtype=np.uint8)
|
|
targets = [int(d[0]) - 1 for d in raw_data]
|
|
|
|
self.data = imgs
|
|
self.targets = targets
|
|
|
|
def __getitem__(self, index: int) -> Tuple[Any, Any]:
|
|
"""
|
|
Args:
|
|
index (int): Index
|
|
|
|
Returns:
|
|
tuple: (image, target) where target is index of the target class.
|
|
"""
|
|
img, target = self.data[index], int(self.targets[index])
|
|
|
|
# doing this so that it is consistent with all other datasets
|
|
# to return a PIL Image
|
|
img = Image.fromarray(img, mode="L")
|
|
|
|
if self.transform is not None:
|
|
img = self.transform(img)
|
|
|
|
if self.target_transform is not None:
|
|
target = self.target_transform(target)
|
|
|
|
return img, target
|
|
|
|
def __len__(self) -> int:
|
|
return len(self.data)
|