You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1132 lines
42 KiB
1132 lines
42 KiB
import copy
|
|
import math
|
|
from dataclasses import dataclass
|
|
from functools import partial
|
|
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union
|
|
|
|
import torch
|
|
from torch import nn, Tensor
|
|
from torchvision.ops import StochasticDepth
|
|
|
|
from ..ops.misc import Conv2dNormActivation, SqueezeExcitation
|
|
from ..transforms._presets import ImageClassification, InterpolationMode
|
|
from ..utils import _log_api_usage_once
|
|
from ._api import register_model, Weights, WeightsEnum
|
|
from ._meta import _IMAGENET_CATEGORIES
|
|
from ._utils import _make_divisible, _ovewrite_named_param, handle_legacy_interface
|
|
|
|
|
|
__all__ = [
|
|
"EfficientNet",
|
|
"EfficientNet_B0_Weights",
|
|
"EfficientNet_B1_Weights",
|
|
"EfficientNet_B2_Weights",
|
|
"EfficientNet_B3_Weights",
|
|
"EfficientNet_B4_Weights",
|
|
"EfficientNet_B5_Weights",
|
|
"EfficientNet_B6_Weights",
|
|
"EfficientNet_B7_Weights",
|
|
"EfficientNet_V2_S_Weights",
|
|
"EfficientNet_V2_M_Weights",
|
|
"EfficientNet_V2_L_Weights",
|
|
"efficientnet_b0",
|
|
"efficientnet_b1",
|
|
"efficientnet_b2",
|
|
"efficientnet_b3",
|
|
"efficientnet_b4",
|
|
"efficientnet_b5",
|
|
"efficientnet_b6",
|
|
"efficientnet_b7",
|
|
"efficientnet_v2_s",
|
|
"efficientnet_v2_m",
|
|
"efficientnet_v2_l",
|
|
]
|
|
|
|
|
|
@dataclass
|
|
class _MBConvConfig:
|
|
expand_ratio: float
|
|
kernel: int
|
|
stride: int
|
|
input_channels: int
|
|
out_channels: int
|
|
num_layers: int
|
|
block: Callable[..., nn.Module]
|
|
|
|
@staticmethod
|
|
def adjust_channels(channels: int, width_mult: float, min_value: Optional[int] = None) -> int:
|
|
return _make_divisible(channels * width_mult, 8, min_value)
|
|
|
|
|
|
class MBConvConfig(_MBConvConfig):
|
|
# Stores information listed at Table 1 of the EfficientNet paper & Table 4 of the EfficientNetV2 paper
|
|
def __init__(
|
|
self,
|
|
expand_ratio: float,
|
|
kernel: int,
|
|
stride: int,
|
|
input_channels: int,
|
|
out_channels: int,
|
|
num_layers: int,
|
|
width_mult: float = 1.0,
|
|
depth_mult: float = 1.0,
|
|
block: Optional[Callable[..., nn.Module]] = None,
|
|
) -> None:
|
|
input_channels = self.adjust_channels(input_channels, width_mult)
|
|
out_channels = self.adjust_channels(out_channels, width_mult)
|
|
num_layers = self.adjust_depth(num_layers, depth_mult)
|
|
if block is None:
|
|
block = MBConv
|
|
super().__init__(expand_ratio, kernel, stride, input_channels, out_channels, num_layers, block)
|
|
|
|
@staticmethod
|
|
def adjust_depth(num_layers: int, depth_mult: float):
|
|
return int(math.ceil(num_layers * depth_mult))
|
|
|
|
|
|
class FusedMBConvConfig(_MBConvConfig):
|
|
# Stores information listed at Table 4 of the EfficientNetV2 paper
|
|
def __init__(
|
|
self,
|
|
expand_ratio: float,
|
|
kernel: int,
|
|
stride: int,
|
|
input_channels: int,
|
|
out_channels: int,
|
|
num_layers: int,
|
|
block: Optional[Callable[..., nn.Module]] = None,
|
|
) -> None:
|
|
if block is None:
|
|
block = FusedMBConv
|
|
super().__init__(expand_ratio, kernel, stride, input_channels, out_channels, num_layers, block)
|
|
|
|
|
|
class MBConv(nn.Module):
|
|
def __init__(
|
|
self,
|
|
cnf: MBConvConfig,
|
|
stochastic_depth_prob: float,
|
|
norm_layer: Callable[..., nn.Module],
|
|
se_layer: Callable[..., nn.Module] = SqueezeExcitation,
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
if not (1 <= cnf.stride <= 2):
|
|
raise ValueError("illegal stride value")
|
|
|
|
self.use_res_connect = cnf.stride == 1 and cnf.input_channels == cnf.out_channels
|
|
|
|
layers: List[nn.Module] = []
|
|
activation_layer = nn.SiLU
|
|
|
|
# expand
|
|
expanded_channels = cnf.adjust_channels(cnf.input_channels, cnf.expand_ratio)
|
|
if expanded_channels != cnf.input_channels:
|
|
layers.append(
|
|
Conv2dNormActivation(
|
|
cnf.input_channels,
|
|
expanded_channels,
|
|
kernel_size=1,
|
|
norm_layer=norm_layer,
|
|
activation_layer=activation_layer,
|
|
)
|
|
)
|
|
|
|
# depthwise
|
|
layers.append(
|
|
Conv2dNormActivation(
|
|
expanded_channels,
|
|
expanded_channels,
|
|
kernel_size=cnf.kernel,
|
|
stride=cnf.stride,
|
|
groups=expanded_channels,
|
|
norm_layer=norm_layer,
|
|
activation_layer=activation_layer,
|
|
)
|
|
)
|
|
|
|
# squeeze and excitation
|
|
squeeze_channels = max(1, cnf.input_channels // 4)
|
|
layers.append(se_layer(expanded_channels, squeeze_channels, activation=partial(nn.SiLU, inplace=True)))
|
|
|
|
# project
|
|
layers.append(
|
|
Conv2dNormActivation(
|
|
expanded_channels, cnf.out_channels, kernel_size=1, norm_layer=norm_layer, activation_layer=None
|
|
)
|
|
)
|
|
|
|
self.block = nn.Sequential(*layers)
|
|
self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row")
|
|
self.out_channels = cnf.out_channels
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
result = self.block(input)
|
|
if self.use_res_connect:
|
|
result = self.stochastic_depth(result)
|
|
result += input
|
|
return result
|
|
|
|
|
|
class FusedMBConv(nn.Module):
|
|
def __init__(
|
|
self,
|
|
cnf: FusedMBConvConfig,
|
|
stochastic_depth_prob: float,
|
|
norm_layer: Callable[..., nn.Module],
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
if not (1 <= cnf.stride <= 2):
|
|
raise ValueError("illegal stride value")
|
|
|
|
self.use_res_connect = cnf.stride == 1 and cnf.input_channels == cnf.out_channels
|
|
|
|
layers: List[nn.Module] = []
|
|
activation_layer = nn.SiLU
|
|
|
|
expanded_channels = cnf.adjust_channels(cnf.input_channels, cnf.expand_ratio)
|
|
if expanded_channels != cnf.input_channels:
|
|
# fused expand
|
|
layers.append(
|
|
Conv2dNormActivation(
|
|
cnf.input_channels,
|
|
expanded_channels,
|
|
kernel_size=cnf.kernel,
|
|
stride=cnf.stride,
|
|
norm_layer=norm_layer,
|
|
activation_layer=activation_layer,
|
|
)
|
|
)
|
|
|
|
# project
|
|
layers.append(
|
|
Conv2dNormActivation(
|
|
expanded_channels, cnf.out_channels, kernel_size=1, norm_layer=norm_layer, activation_layer=None
|
|
)
|
|
)
|
|
else:
|
|
layers.append(
|
|
Conv2dNormActivation(
|
|
cnf.input_channels,
|
|
cnf.out_channels,
|
|
kernel_size=cnf.kernel,
|
|
stride=cnf.stride,
|
|
norm_layer=norm_layer,
|
|
activation_layer=activation_layer,
|
|
)
|
|
)
|
|
|
|
self.block = nn.Sequential(*layers)
|
|
self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row")
|
|
self.out_channels = cnf.out_channels
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
result = self.block(input)
|
|
if self.use_res_connect:
|
|
result = self.stochastic_depth(result)
|
|
result += input
|
|
return result
|
|
|
|
|
|
class EfficientNet(nn.Module):
|
|
def __init__(
|
|
self,
|
|
inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]],
|
|
dropout: float,
|
|
stochastic_depth_prob: float = 0.2,
|
|
num_classes: int = 1000,
|
|
norm_layer: Optional[Callable[..., nn.Module]] = None,
|
|
last_channel: Optional[int] = None,
|
|
) -> None:
|
|
"""
|
|
EfficientNet V1 and V2 main class
|
|
|
|
Args:
|
|
inverted_residual_setting (Sequence[Union[MBConvConfig, FusedMBConvConfig]]): Network structure
|
|
dropout (float): The droupout probability
|
|
stochastic_depth_prob (float): The stochastic depth probability
|
|
num_classes (int): Number of classes
|
|
norm_layer (Optional[Callable[..., nn.Module]]): Module specifying the normalization layer to use
|
|
last_channel (int): The number of channels on the penultimate layer
|
|
"""
|
|
super().__init__()
|
|
_log_api_usage_once(self)
|
|
|
|
if not inverted_residual_setting:
|
|
raise ValueError("The inverted_residual_setting should not be empty")
|
|
elif not (
|
|
isinstance(inverted_residual_setting, Sequence)
|
|
and all([isinstance(s, _MBConvConfig) for s in inverted_residual_setting])
|
|
):
|
|
raise TypeError("The inverted_residual_setting should be List[MBConvConfig]")
|
|
|
|
if norm_layer is None:
|
|
norm_layer = nn.BatchNorm2d
|
|
|
|
layers: List[nn.Module] = []
|
|
|
|
# building first layer
|
|
firstconv_output_channels = inverted_residual_setting[0].input_channels
|
|
layers.append(
|
|
Conv2dNormActivation(
|
|
3, firstconv_output_channels, kernel_size=3, stride=2, norm_layer=norm_layer, activation_layer=nn.SiLU
|
|
)
|
|
)
|
|
|
|
# building inverted residual blocks
|
|
total_stage_blocks = sum(cnf.num_layers for cnf in inverted_residual_setting)
|
|
stage_block_id = 0
|
|
for cnf in inverted_residual_setting:
|
|
stage: List[nn.Module] = []
|
|
for _ in range(cnf.num_layers):
|
|
# copy to avoid modifications. shallow copy is enough
|
|
block_cnf = copy.copy(cnf)
|
|
|
|
# overwrite info if not the first conv in the stage
|
|
if stage:
|
|
block_cnf.input_channels = block_cnf.out_channels
|
|
block_cnf.stride = 1
|
|
|
|
# adjust stochastic depth probability based on the depth of the stage block
|
|
sd_prob = stochastic_depth_prob * float(stage_block_id) / total_stage_blocks
|
|
|
|
stage.append(block_cnf.block(block_cnf, sd_prob, norm_layer))
|
|
stage_block_id += 1
|
|
|
|
layers.append(nn.Sequential(*stage))
|
|
|
|
# building last several layers
|
|
lastconv_input_channels = inverted_residual_setting[-1].out_channels
|
|
lastconv_output_channels = last_channel if last_channel is not None else 4 * lastconv_input_channels
|
|
layers.append(
|
|
Conv2dNormActivation(
|
|
lastconv_input_channels,
|
|
lastconv_output_channels,
|
|
kernel_size=1,
|
|
norm_layer=norm_layer,
|
|
activation_layer=nn.SiLU,
|
|
)
|
|
)
|
|
|
|
self.features = nn.Sequential(*layers)
|
|
self.avgpool = nn.AdaptiveAvgPool2d(1)
|
|
self.classifier = nn.Sequential(
|
|
nn.Dropout(p=dropout, inplace=True),
|
|
nn.Linear(lastconv_output_channels, num_classes),
|
|
)
|
|
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.kaiming_normal_(m.weight, mode="fan_out")
|
|
if m.bias is not None:
|
|
nn.init.zeros_(m.bias)
|
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
|
nn.init.ones_(m.weight)
|
|
nn.init.zeros_(m.bias)
|
|
elif isinstance(m, nn.Linear):
|
|
init_range = 1.0 / math.sqrt(m.out_features)
|
|
nn.init.uniform_(m.weight, -init_range, init_range)
|
|
nn.init.zeros_(m.bias)
|
|
|
|
def _forward_impl(self, x: Tensor) -> Tensor:
|
|
x = self.features(x)
|
|
|
|
x = self.avgpool(x)
|
|
x = torch.flatten(x, 1)
|
|
|
|
x = self.classifier(x)
|
|
|
|
return x
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
return self._forward_impl(x)
|
|
|
|
|
|
def _efficientnet(
|
|
inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]],
|
|
dropout: float,
|
|
last_channel: Optional[int],
|
|
weights: Optional[WeightsEnum],
|
|
progress: bool,
|
|
**kwargs: Any,
|
|
) -> EfficientNet:
|
|
if weights is not None:
|
|
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
|
|
|
|
model = EfficientNet(inverted_residual_setting, dropout, last_channel=last_channel, **kwargs)
|
|
|
|
if weights is not None:
|
|
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
|
|
|
|
return model
|
|
|
|
|
|
def _efficientnet_conf(
|
|
arch: str,
|
|
**kwargs: Any,
|
|
) -> Tuple[Sequence[Union[MBConvConfig, FusedMBConvConfig]], Optional[int]]:
|
|
inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]]
|
|
if arch.startswith("efficientnet_b"):
|
|
bneck_conf = partial(MBConvConfig, width_mult=kwargs.pop("width_mult"), depth_mult=kwargs.pop("depth_mult"))
|
|
inverted_residual_setting = [
|
|
bneck_conf(1, 3, 1, 32, 16, 1),
|
|
bneck_conf(6, 3, 2, 16, 24, 2),
|
|
bneck_conf(6, 5, 2, 24, 40, 2),
|
|
bneck_conf(6, 3, 2, 40, 80, 3),
|
|
bneck_conf(6, 5, 1, 80, 112, 3),
|
|
bneck_conf(6, 5, 2, 112, 192, 4),
|
|
bneck_conf(6, 3, 1, 192, 320, 1),
|
|
]
|
|
last_channel = None
|
|
elif arch.startswith("efficientnet_v2_s"):
|
|
inverted_residual_setting = [
|
|
FusedMBConvConfig(1, 3, 1, 24, 24, 2),
|
|
FusedMBConvConfig(4, 3, 2, 24, 48, 4),
|
|
FusedMBConvConfig(4, 3, 2, 48, 64, 4),
|
|
MBConvConfig(4, 3, 2, 64, 128, 6),
|
|
MBConvConfig(6, 3, 1, 128, 160, 9),
|
|
MBConvConfig(6, 3, 2, 160, 256, 15),
|
|
]
|
|
last_channel = 1280
|
|
elif arch.startswith("efficientnet_v2_m"):
|
|
inverted_residual_setting = [
|
|
FusedMBConvConfig(1, 3, 1, 24, 24, 3),
|
|
FusedMBConvConfig(4, 3, 2, 24, 48, 5),
|
|
FusedMBConvConfig(4, 3, 2, 48, 80, 5),
|
|
MBConvConfig(4, 3, 2, 80, 160, 7),
|
|
MBConvConfig(6, 3, 1, 160, 176, 14),
|
|
MBConvConfig(6, 3, 2, 176, 304, 18),
|
|
MBConvConfig(6, 3, 1, 304, 512, 5),
|
|
]
|
|
last_channel = 1280
|
|
elif arch.startswith("efficientnet_v2_l"):
|
|
inverted_residual_setting = [
|
|
FusedMBConvConfig(1, 3, 1, 32, 32, 4),
|
|
FusedMBConvConfig(4, 3, 2, 32, 64, 7),
|
|
FusedMBConvConfig(4, 3, 2, 64, 96, 7),
|
|
MBConvConfig(4, 3, 2, 96, 192, 10),
|
|
MBConvConfig(6, 3, 1, 192, 224, 19),
|
|
MBConvConfig(6, 3, 2, 224, 384, 25),
|
|
MBConvConfig(6, 3, 1, 384, 640, 7),
|
|
]
|
|
last_channel = 1280
|
|
else:
|
|
raise ValueError(f"Unsupported model type {arch}")
|
|
|
|
return inverted_residual_setting, last_channel
|
|
|
|
|
|
_COMMON_META: Dict[str, Any] = {
|
|
"categories": _IMAGENET_CATEGORIES,
|
|
}
|
|
|
|
|
|
_COMMON_META_V1 = {
|
|
**_COMMON_META,
|
|
"min_size": (1, 1),
|
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#efficientnet-v1",
|
|
}
|
|
|
|
|
|
_COMMON_META_V2 = {
|
|
**_COMMON_META,
|
|
"min_size": (33, 33),
|
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#efficientnet-v2",
|
|
}
|
|
|
|
|
|
class EfficientNet_B0_Weights(WeightsEnum):
|
|
IMAGENET1K_V1 = Weights(
|
|
# Weights ported from https://github.com/rwightman/pytorch-image-models/
|
|
url="https://download.pytorch.org/models/efficientnet_b0_rwightman-7f5810bc.pth",
|
|
transforms=partial(
|
|
ImageClassification, crop_size=224, resize_size=256, interpolation=InterpolationMode.BICUBIC
|
|
),
|
|
meta={
|
|
**_COMMON_META_V1,
|
|
"num_params": 5288548,
|
|
"_metrics": {
|
|
"ImageNet-1K": {
|
|
"acc@1": 77.692,
|
|
"acc@5": 93.532,
|
|
}
|
|
},
|
|
"_ops": 0.386,
|
|
"_file_size": 20.451,
|
|
"_docs": """These weights are ported from the original paper.""",
|
|
},
|
|
)
|
|
DEFAULT = IMAGENET1K_V1
|
|
|
|
|
|
class EfficientNet_B1_Weights(WeightsEnum):
|
|
IMAGENET1K_V1 = Weights(
|
|
# Weights ported from https://github.com/rwightman/pytorch-image-models/
|
|
url="https://download.pytorch.org/models/efficientnet_b1_rwightman-bac287d4.pth",
|
|
transforms=partial(
|
|
ImageClassification, crop_size=240, resize_size=256, interpolation=InterpolationMode.BICUBIC
|
|
),
|
|
meta={
|
|
**_COMMON_META_V1,
|
|
"num_params": 7794184,
|
|
"_metrics": {
|
|
"ImageNet-1K": {
|
|
"acc@1": 78.642,
|
|
"acc@5": 94.186,
|
|
}
|
|
},
|
|
"_ops": 0.687,
|
|
"_file_size": 30.134,
|
|
"_docs": """These weights are ported from the original paper.""",
|
|
},
|
|
)
|
|
IMAGENET1K_V2 = Weights(
|
|
url="https://download.pytorch.org/models/efficientnet_b1-c27df63c.pth",
|
|
transforms=partial(
|
|
ImageClassification, crop_size=240, resize_size=255, interpolation=InterpolationMode.BILINEAR
|
|
),
|
|
meta={
|
|
**_COMMON_META_V1,
|
|
"num_params": 7794184,
|
|
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-lr-wd-crop-tuning",
|
|
"_metrics": {
|
|
"ImageNet-1K": {
|
|
"acc@1": 79.838,
|
|
"acc@5": 94.934,
|
|
}
|
|
},
|
|
"_ops": 0.687,
|
|
"_file_size": 30.136,
|
|
"_docs": """
|
|
These weights improve upon the results of the original paper by using a modified version of TorchVision's
|
|
`new training recipe
|
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
|
|
""",
|
|
},
|
|
)
|
|
DEFAULT = IMAGENET1K_V2
|
|
|
|
|
|
class EfficientNet_B2_Weights(WeightsEnum):
|
|
IMAGENET1K_V1 = Weights(
|
|
# Weights ported from https://github.com/rwightman/pytorch-image-models/
|
|
url="https://download.pytorch.org/models/efficientnet_b2_rwightman-c35c1473.pth",
|
|
transforms=partial(
|
|
ImageClassification, crop_size=288, resize_size=288, interpolation=InterpolationMode.BICUBIC
|
|
),
|
|
meta={
|
|
**_COMMON_META_V1,
|
|
"num_params": 9109994,
|
|
"_metrics": {
|
|
"ImageNet-1K": {
|
|
"acc@1": 80.608,
|
|
"acc@5": 95.310,
|
|
}
|
|
},
|
|
"_ops": 1.088,
|
|
"_file_size": 35.174,
|
|
"_docs": """These weights are ported from the original paper.""",
|
|
},
|
|
)
|
|
DEFAULT = IMAGENET1K_V1
|
|
|
|
|
|
class EfficientNet_B3_Weights(WeightsEnum):
|
|
IMAGENET1K_V1 = Weights(
|
|
# Weights ported from https://github.com/rwightman/pytorch-image-models/
|
|
url="https://download.pytorch.org/models/efficientnet_b3_rwightman-b3899882.pth",
|
|
transforms=partial(
|
|
ImageClassification, crop_size=300, resize_size=320, interpolation=InterpolationMode.BICUBIC
|
|
),
|
|
meta={
|
|
**_COMMON_META_V1,
|
|
"num_params": 12233232,
|
|
"_metrics": {
|
|
"ImageNet-1K": {
|
|
"acc@1": 82.008,
|
|
"acc@5": 96.054,
|
|
}
|
|
},
|
|
"_ops": 1.827,
|
|
"_file_size": 47.184,
|
|
"_docs": """These weights are ported from the original paper.""",
|
|
},
|
|
)
|
|
DEFAULT = IMAGENET1K_V1
|
|
|
|
|
|
class EfficientNet_B4_Weights(WeightsEnum):
|
|
IMAGENET1K_V1 = Weights(
|
|
# Weights ported from https://github.com/rwightman/pytorch-image-models/
|
|
url="https://download.pytorch.org/models/efficientnet_b4_rwightman-23ab8bcd.pth",
|
|
transforms=partial(
|
|
ImageClassification, crop_size=380, resize_size=384, interpolation=InterpolationMode.BICUBIC
|
|
),
|
|
meta={
|
|
**_COMMON_META_V1,
|
|
"num_params": 19341616,
|
|
"_metrics": {
|
|
"ImageNet-1K": {
|
|
"acc@1": 83.384,
|
|
"acc@5": 96.594,
|
|
}
|
|
},
|
|
"_ops": 4.394,
|
|
"_file_size": 74.489,
|
|
"_docs": """These weights are ported from the original paper.""",
|
|
},
|
|
)
|
|
DEFAULT = IMAGENET1K_V1
|
|
|
|
|
|
class EfficientNet_B5_Weights(WeightsEnum):
|
|
IMAGENET1K_V1 = Weights(
|
|
# Weights ported from https://github.com/lukemelas/EfficientNet-PyTorch/
|
|
url="https://download.pytorch.org/models/efficientnet_b5_lukemelas-1a07897c.pth",
|
|
transforms=partial(
|
|
ImageClassification, crop_size=456, resize_size=456, interpolation=InterpolationMode.BICUBIC
|
|
),
|
|
meta={
|
|
**_COMMON_META_V1,
|
|
"num_params": 30389784,
|
|
"_metrics": {
|
|
"ImageNet-1K": {
|
|
"acc@1": 83.444,
|
|
"acc@5": 96.628,
|
|
}
|
|
},
|
|
"_ops": 10.266,
|
|
"_file_size": 116.864,
|
|
"_docs": """These weights are ported from the original paper.""",
|
|
},
|
|
)
|
|
DEFAULT = IMAGENET1K_V1
|
|
|
|
|
|
class EfficientNet_B6_Weights(WeightsEnum):
|
|
IMAGENET1K_V1 = Weights(
|
|
# Weights ported from https://github.com/lukemelas/EfficientNet-PyTorch/
|
|
url="https://download.pytorch.org/models/efficientnet_b6_lukemelas-24a108a5.pth",
|
|
transforms=partial(
|
|
ImageClassification, crop_size=528, resize_size=528, interpolation=InterpolationMode.BICUBIC
|
|
),
|
|
meta={
|
|
**_COMMON_META_V1,
|
|
"num_params": 43040704,
|
|
"_metrics": {
|
|
"ImageNet-1K": {
|
|
"acc@1": 84.008,
|
|
"acc@5": 96.916,
|
|
}
|
|
},
|
|
"_ops": 19.068,
|
|
"_file_size": 165.362,
|
|
"_docs": """These weights are ported from the original paper.""",
|
|
},
|
|
)
|
|
DEFAULT = IMAGENET1K_V1
|
|
|
|
|
|
class EfficientNet_B7_Weights(WeightsEnum):
|
|
IMAGENET1K_V1 = Weights(
|
|
# Weights ported from https://github.com/lukemelas/EfficientNet-PyTorch/
|
|
url="https://download.pytorch.org/models/efficientnet_b7_lukemelas-c5b4e57e.pth",
|
|
transforms=partial(
|
|
ImageClassification, crop_size=600, resize_size=600, interpolation=InterpolationMode.BICUBIC
|
|
),
|
|
meta={
|
|
**_COMMON_META_V1,
|
|
"num_params": 66347960,
|
|
"_metrics": {
|
|
"ImageNet-1K": {
|
|
"acc@1": 84.122,
|
|
"acc@5": 96.908,
|
|
}
|
|
},
|
|
"_ops": 37.746,
|
|
"_file_size": 254.675,
|
|
"_docs": """These weights are ported from the original paper.""",
|
|
},
|
|
)
|
|
DEFAULT = IMAGENET1K_V1
|
|
|
|
|
|
class EfficientNet_V2_S_Weights(WeightsEnum):
|
|
IMAGENET1K_V1 = Weights(
|
|
url="https://download.pytorch.org/models/efficientnet_v2_s-dd5fe13b.pth",
|
|
transforms=partial(
|
|
ImageClassification,
|
|
crop_size=384,
|
|
resize_size=384,
|
|
interpolation=InterpolationMode.BILINEAR,
|
|
),
|
|
meta={
|
|
**_COMMON_META_V2,
|
|
"num_params": 21458488,
|
|
"_metrics": {
|
|
"ImageNet-1K": {
|
|
"acc@1": 84.228,
|
|
"acc@5": 96.878,
|
|
}
|
|
},
|
|
"_ops": 8.366,
|
|
"_file_size": 82.704,
|
|
"_docs": """
|
|
These weights improve upon the results of the original paper by using a modified version of TorchVision's
|
|
`new training recipe
|
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
|
|
""",
|
|
},
|
|
)
|
|
DEFAULT = IMAGENET1K_V1
|
|
|
|
|
|
class EfficientNet_V2_M_Weights(WeightsEnum):
|
|
IMAGENET1K_V1 = Weights(
|
|
url="https://download.pytorch.org/models/efficientnet_v2_m-dc08266a.pth",
|
|
transforms=partial(
|
|
ImageClassification,
|
|
crop_size=480,
|
|
resize_size=480,
|
|
interpolation=InterpolationMode.BILINEAR,
|
|
),
|
|
meta={
|
|
**_COMMON_META_V2,
|
|
"num_params": 54139356,
|
|
"_metrics": {
|
|
"ImageNet-1K": {
|
|
"acc@1": 85.112,
|
|
"acc@5": 97.156,
|
|
}
|
|
},
|
|
"_ops": 24.582,
|
|
"_file_size": 208.01,
|
|
"_docs": """
|
|
These weights improve upon the results of the original paper by using a modified version of TorchVision's
|
|
`new training recipe
|
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
|
|
""",
|
|
},
|
|
)
|
|
DEFAULT = IMAGENET1K_V1
|
|
|
|
|
|
class EfficientNet_V2_L_Weights(WeightsEnum):
|
|
# Weights ported from https://github.com/google/automl/tree/master/efficientnetv2
|
|
IMAGENET1K_V1 = Weights(
|
|
url="https://download.pytorch.org/models/efficientnet_v2_l-59c71312.pth",
|
|
transforms=partial(
|
|
ImageClassification,
|
|
crop_size=480,
|
|
resize_size=480,
|
|
interpolation=InterpolationMode.BICUBIC,
|
|
mean=(0.5, 0.5, 0.5),
|
|
std=(0.5, 0.5, 0.5),
|
|
),
|
|
meta={
|
|
**_COMMON_META_V2,
|
|
"num_params": 118515272,
|
|
"_metrics": {
|
|
"ImageNet-1K": {
|
|
"acc@1": 85.808,
|
|
"acc@5": 97.788,
|
|
}
|
|
},
|
|
"_ops": 56.08,
|
|
"_file_size": 454.573,
|
|
"_docs": """These weights are ported from the original paper.""",
|
|
},
|
|
)
|
|
DEFAULT = IMAGENET1K_V1
|
|
|
|
|
|
@register_model()
|
|
@handle_legacy_interface(weights=("pretrained", EfficientNet_B0_Weights.IMAGENET1K_V1))
|
|
def efficientnet_b0(
|
|
*, weights: Optional[EfficientNet_B0_Weights] = None, progress: bool = True, **kwargs: Any
|
|
) -> EfficientNet:
|
|
"""EfficientNet B0 model architecture from the `EfficientNet: Rethinking Model Scaling for Convolutional
|
|
Neural Networks <https://arxiv.org/abs/1905.11946>`_ paper.
|
|
|
|
Args:
|
|
weights (:class:`~torchvision.models.EfficientNet_B0_Weights`, optional): The
|
|
pretrained weights to use. See
|
|
:class:`~torchvision.models.EfficientNet_B0_Weights` below for
|
|
more details, and possible values. By default, no pre-trained
|
|
weights are used.
|
|
progress (bool, optional): If True, displays a progress bar of the
|
|
download to stderr. Default is True.
|
|
**kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet``
|
|
base class. Please refer to the `source code
|
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_
|
|
for more details about this class.
|
|
.. autoclass:: torchvision.models.EfficientNet_B0_Weights
|
|
:members:
|
|
"""
|
|
weights = EfficientNet_B0_Weights.verify(weights)
|
|
|
|
inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b0", width_mult=1.0, depth_mult=1.0)
|
|
return _efficientnet(
|
|
inverted_residual_setting, kwargs.pop("dropout", 0.2), last_channel, weights, progress, **kwargs
|
|
)
|
|
|
|
|
|
@register_model()
|
|
@handle_legacy_interface(weights=("pretrained", EfficientNet_B1_Weights.IMAGENET1K_V1))
|
|
def efficientnet_b1(
|
|
*, weights: Optional[EfficientNet_B1_Weights] = None, progress: bool = True, **kwargs: Any
|
|
) -> EfficientNet:
|
|
"""EfficientNet B1 model architecture from the `EfficientNet: Rethinking Model Scaling for Convolutional
|
|
Neural Networks <https://arxiv.org/abs/1905.11946>`_ paper.
|
|
|
|
Args:
|
|
weights (:class:`~torchvision.models.EfficientNet_B1_Weights`, optional): The
|
|
pretrained weights to use. See
|
|
:class:`~torchvision.models.EfficientNet_B1_Weights` below for
|
|
more details, and possible values. By default, no pre-trained
|
|
weights are used.
|
|
progress (bool, optional): If True, displays a progress bar of the
|
|
download to stderr. Default is True.
|
|
**kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet``
|
|
base class. Please refer to the `source code
|
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_
|
|
for more details about this class.
|
|
.. autoclass:: torchvision.models.EfficientNet_B1_Weights
|
|
:members:
|
|
"""
|
|
weights = EfficientNet_B1_Weights.verify(weights)
|
|
|
|
inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b1", width_mult=1.0, depth_mult=1.1)
|
|
return _efficientnet(
|
|
inverted_residual_setting, kwargs.pop("dropout", 0.2), last_channel, weights, progress, **kwargs
|
|
)
|
|
|
|
|
|
@register_model()
|
|
@handle_legacy_interface(weights=("pretrained", EfficientNet_B2_Weights.IMAGENET1K_V1))
|
|
def efficientnet_b2(
|
|
*, weights: Optional[EfficientNet_B2_Weights] = None, progress: bool = True, **kwargs: Any
|
|
) -> EfficientNet:
|
|
"""EfficientNet B2 model architecture from the `EfficientNet: Rethinking Model Scaling for Convolutional
|
|
Neural Networks <https://arxiv.org/abs/1905.11946>`_ paper.
|
|
|
|
Args:
|
|
weights (:class:`~torchvision.models.EfficientNet_B2_Weights`, optional): The
|
|
pretrained weights to use. See
|
|
:class:`~torchvision.models.EfficientNet_B2_Weights` below for
|
|
more details, and possible values. By default, no pre-trained
|
|
weights are used.
|
|
progress (bool, optional): If True, displays a progress bar of the
|
|
download to stderr. Default is True.
|
|
**kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet``
|
|
base class. Please refer to the `source code
|
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_
|
|
for more details about this class.
|
|
.. autoclass:: torchvision.models.EfficientNet_B2_Weights
|
|
:members:
|
|
"""
|
|
weights = EfficientNet_B2_Weights.verify(weights)
|
|
|
|
inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b2", width_mult=1.1, depth_mult=1.2)
|
|
return _efficientnet(
|
|
inverted_residual_setting, kwargs.pop("dropout", 0.3), last_channel, weights, progress, **kwargs
|
|
)
|
|
|
|
|
|
@register_model()
|
|
@handle_legacy_interface(weights=("pretrained", EfficientNet_B3_Weights.IMAGENET1K_V1))
|
|
def efficientnet_b3(
|
|
*, weights: Optional[EfficientNet_B3_Weights] = None, progress: bool = True, **kwargs: Any
|
|
) -> EfficientNet:
|
|
"""EfficientNet B3 model architecture from the `EfficientNet: Rethinking Model Scaling for Convolutional
|
|
Neural Networks <https://arxiv.org/abs/1905.11946>`_ paper.
|
|
|
|
Args:
|
|
weights (:class:`~torchvision.models.EfficientNet_B3_Weights`, optional): The
|
|
pretrained weights to use. See
|
|
:class:`~torchvision.models.EfficientNet_B3_Weights` below for
|
|
more details, and possible values. By default, no pre-trained
|
|
weights are used.
|
|
progress (bool, optional): If True, displays a progress bar of the
|
|
download to stderr. Default is True.
|
|
**kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet``
|
|
base class. Please refer to the `source code
|
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_
|
|
for more details about this class.
|
|
.. autoclass:: torchvision.models.EfficientNet_B3_Weights
|
|
:members:
|
|
"""
|
|
weights = EfficientNet_B3_Weights.verify(weights)
|
|
|
|
inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b3", width_mult=1.2, depth_mult=1.4)
|
|
return _efficientnet(
|
|
inverted_residual_setting,
|
|
kwargs.pop("dropout", 0.3),
|
|
last_channel,
|
|
weights,
|
|
progress,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
@register_model()
|
|
@handle_legacy_interface(weights=("pretrained", EfficientNet_B4_Weights.IMAGENET1K_V1))
|
|
def efficientnet_b4(
|
|
*, weights: Optional[EfficientNet_B4_Weights] = None, progress: bool = True, **kwargs: Any
|
|
) -> EfficientNet:
|
|
"""EfficientNet B4 model architecture from the `EfficientNet: Rethinking Model Scaling for Convolutional
|
|
Neural Networks <https://arxiv.org/abs/1905.11946>`_ paper.
|
|
|
|
Args:
|
|
weights (:class:`~torchvision.models.EfficientNet_B4_Weights`, optional): The
|
|
pretrained weights to use. See
|
|
:class:`~torchvision.models.EfficientNet_B4_Weights` below for
|
|
more details, and possible values. By default, no pre-trained
|
|
weights are used.
|
|
progress (bool, optional): If True, displays a progress bar of the
|
|
download to stderr. Default is True.
|
|
**kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet``
|
|
base class. Please refer to the `source code
|
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_
|
|
for more details about this class.
|
|
.. autoclass:: torchvision.models.EfficientNet_B4_Weights
|
|
:members:
|
|
"""
|
|
weights = EfficientNet_B4_Weights.verify(weights)
|
|
|
|
inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b4", width_mult=1.4, depth_mult=1.8)
|
|
return _efficientnet(
|
|
inverted_residual_setting,
|
|
kwargs.pop("dropout", 0.4),
|
|
last_channel,
|
|
weights,
|
|
progress,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
@register_model()
|
|
@handle_legacy_interface(weights=("pretrained", EfficientNet_B5_Weights.IMAGENET1K_V1))
|
|
def efficientnet_b5(
|
|
*, weights: Optional[EfficientNet_B5_Weights] = None, progress: bool = True, **kwargs: Any
|
|
) -> EfficientNet:
|
|
"""EfficientNet B5 model architecture from the `EfficientNet: Rethinking Model Scaling for Convolutional
|
|
Neural Networks <https://arxiv.org/abs/1905.11946>`_ paper.
|
|
|
|
Args:
|
|
weights (:class:`~torchvision.models.EfficientNet_B5_Weights`, optional): The
|
|
pretrained weights to use. See
|
|
:class:`~torchvision.models.EfficientNet_B5_Weights` below for
|
|
more details, and possible values. By default, no pre-trained
|
|
weights are used.
|
|
progress (bool, optional): If True, displays a progress bar of the
|
|
download to stderr. Default is True.
|
|
**kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet``
|
|
base class. Please refer to the `source code
|
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_
|
|
for more details about this class.
|
|
.. autoclass:: torchvision.models.EfficientNet_B5_Weights
|
|
:members:
|
|
"""
|
|
weights = EfficientNet_B5_Weights.verify(weights)
|
|
|
|
inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b5", width_mult=1.6, depth_mult=2.2)
|
|
return _efficientnet(
|
|
inverted_residual_setting,
|
|
kwargs.pop("dropout", 0.4),
|
|
last_channel,
|
|
weights,
|
|
progress,
|
|
norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.01),
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
@register_model()
|
|
@handle_legacy_interface(weights=("pretrained", EfficientNet_B6_Weights.IMAGENET1K_V1))
|
|
def efficientnet_b6(
|
|
*, weights: Optional[EfficientNet_B6_Weights] = None, progress: bool = True, **kwargs: Any
|
|
) -> EfficientNet:
|
|
"""EfficientNet B6 model architecture from the `EfficientNet: Rethinking Model Scaling for Convolutional
|
|
Neural Networks <https://arxiv.org/abs/1905.11946>`_ paper.
|
|
|
|
Args:
|
|
weights (:class:`~torchvision.models.EfficientNet_B6_Weights`, optional): The
|
|
pretrained weights to use. See
|
|
:class:`~torchvision.models.EfficientNet_B6_Weights` below for
|
|
more details, and possible values. By default, no pre-trained
|
|
weights are used.
|
|
progress (bool, optional): If True, displays a progress bar of the
|
|
download to stderr. Default is True.
|
|
**kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet``
|
|
base class. Please refer to the `source code
|
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_
|
|
for more details about this class.
|
|
.. autoclass:: torchvision.models.EfficientNet_B6_Weights
|
|
:members:
|
|
"""
|
|
weights = EfficientNet_B6_Weights.verify(weights)
|
|
|
|
inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b6", width_mult=1.8, depth_mult=2.6)
|
|
return _efficientnet(
|
|
inverted_residual_setting,
|
|
kwargs.pop("dropout", 0.5),
|
|
last_channel,
|
|
weights,
|
|
progress,
|
|
norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.01),
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
@register_model()
|
|
@handle_legacy_interface(weights=("pretrained", EfficientNet_B7_Weights.IMAGENET1K_V1))
|
|
def efficientnet_b7(
|
|
*, weights: Optional[EfficientNet_B7_Weights] = None, progress: bool = True, **kwargs: Any
|
|
) -> EfficientNet:
|
|
"""EfficientNet B7 model architecture from the `EfficientNet: Rethinking Model Scaling for Convolutional
|
|
Neural Networks <https://arxiv.org/abs/1905.11946>`_ paper.
|
|
|
|
Args:
|
|
weights (:class:`~torchvision.models.EfficientNet_B7_Weights`, optional): The
|
|
pretrained weights to use. See
|
|
:class:`~torchvision.models.EfficientNet_B7_Weights` below for
|
|
more details, and possible values. By default, no pre-trained
|
|
weights are used.
|
|
progress (bool, optional): If True, displays a progress bar of the
|
|
download to stderr. Default is True.
|
|
**kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet``
|
|
base class. Please refer to the `source code
|
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_
|
|
for more details about this class.
|
|
.. autoclass:: torchvision.models.EfficientNet_B7_Weights
|
|
:members:
|
|
"""
|
|
weights = EfficientNet_B7_Weights.verify(weights)
|
|
|
|
inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b7", width_mult=2.0, depth_mult=3.1)
|
|
return _efficientnet(
|
|
inverted_residual_setting,
|
|
kwargs.pop("dropout", 0.5),
|
|
last_channel,
|
|
weights,
|
|
progress,
|
|
norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.01),
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
@register_model()
|
|
@handle_legacy_interface(weights=("pretrained", EfficientNet_V2_S_Weights.IMAGENET1K_V1))
|
|
def efficientnet_v2_s(
|
|
*, weights: Optional[EfficientNet_V2_S_Weights] = None, progress: bool = True, **kwargs: Any
|
|
) -> EfficientNet:
|
|
"""
|
|
Constructs an EfficientNetV2-S architecture from
|
|
`EfficientNetV2: Smaller Models and Faster Training <https://arxiv.org/abs/2104.00298>`_.
|
|
|
|
Args:
|
|
weights (:class:`~torchvision.models.EfficientNet_V2_S_Weights`, optional): The
|
|
pretrained weights to use. See
|
|
:class:`~torchvision.models.EfficientNet_V2_S_Weights` below for
|
|
more details, and possible values. By default, no pre-trained
|
|
weights are used.
|
|
progress (bool, optional): If True, displays a progress bar of the
|
|
download to stderr. Default is True.
|
|
**kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet``
|
|
base class. Please refer to the `source code
|
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_
|
|
for more details about this class.
|
|
.. autoclass:: torchvision.models.EfficientNet_V2_S_Weights
|
|
:members:
|
|
"""
|
|
weights = EfficientNet_V2_S_Weights.verify(weights)
|
|
|
|
inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_v2_s")
|
|
return _efficientnet(
|
|
inverted_residual_setting,
|
|
kwargs.pop("dropout", 0.2),
|
|
last_channel,
|
|
weights,
|
|
progress,
|
|
norm_layer=partial(nn.BatchNorm2d, eps=1e-03),
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
@register_model()
|
|
@handle_legacy_interface(weights=("pretrained", EfficientNet_V2_M_Weights.IMAGENET1K_V1))
|
|
def efficientnet_v2_m(
|
|
*, weights: Optional[EfficientNet_V2_M_Weights] = None, progress: bool = True, **kwargs: Any
|
|
) -> EfficientNet:
|
|
"""
|
|
Constructs an EfficientNetV2-M architecture from
|
|
`EfficientNetV2: Smaller Models and Faster Training <https://arxiv.org/abs/2104.00298>`_.
|
|
|
|
Args:
|
|
weights (:class:`~torchvision.models.EfficientNet_V2_M_Weights`, optional): The
|
|
pretrained weights to use. See
|
|
:class:`~torchvision.models.EfficientNet_V2_M_Weights` below for
|
|
more details, and possible values. By default, no pre-trained
|
|
weights are used.
|
|
progress (bool, optional): If True, displays a progress bar of the
|
|
download to stderr. Default is True.
|
|
**kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet``
|
|
base class. Please refer to the `source code
|
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_
|
|
for more details about this class.
|
|
.. autoclass:: torchvision.models.EfficientNet_V2_M_Weights
|
|
:members:
|
|
"""
|
|
weights = EfficientNet_V2_M_Weights.verify(weights)
|
|
|
|
inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_v2_m")
|
|
return _efficientnet(
|
|
inverted_residual_setting,
|
|
kwargs.pop("dropout", 0.3),
|
|
last_channel,
|
|
weights,
|
|
progress,
|
|
norm_layer=partial(nn.BatchNorm2d, eps=1e-03),
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
@register_model()
|
|
@handle_legacy_interface(weights=("pretrained", EfficientNet_V2_L_Weights.IMAGENET1K_V1))
|
|
def efficientnet_v2_l(
|
|
*, weights: Optional[EfficientNet_V2_L_Weights] = None, progress: bool = True, **kwargs: Any
|
|
) -> EfficientNet:
|
|
"""
|
|
Constructs an EfficientNetV2-L architecture from
|
|
`EfficientNetV2: Smaller Models and Faster Training <https://arxiv.org/abs/2104.00298>`_.
|
|
|
|
Args:
|
|
weights (:class:`~torchvision.models.EfficientNet_V2_L_Weights`, optional): The
|
|
pretrained weights to use. See
|
|
:class:`~torchvision.models.EfficientNet_V2_L_Weights` below for
|
|
more details, and possible values. By default, no pre-trained
|
|
weights are used.
|
|
progress (bool, optional): If True, displays a progress bar of the
|
|
download to stderr. Default is True.
|
|
**kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet``
|
|
base class. Please refer to the `source code
|
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_
|
|
for more details about this class.
|
|
.. autoclass:: torchvision.models.EfficientNet_V2_L_Weights
|
|
:members:
|
|
"""
|
|
weights = EfficientNet_V2_L_Weights.verify(weights)
|
|
|
|
inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_v2_l")
|
|
return _efficientnet(
|
|
inverted_residual_setting,
|
|
kwargs.pop("dropout", 0.4),
|
|
last_channel,
|
|
weights,
|
|
progress,
|
|
norm_layer=partial(nn.BatchNorm2d, eps=1e-03),
|
|
**kwargs,
|
|
)
|