You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

321 lines
13 KiB

import warnings
from typing import Callable, List, Optional, Sequence, Tuple, Union
import torch
from torch import Tensor
from ..utils import _log_api_usage_once, _make_ntuple
interpolate = torch.nn.functional.interpolate
class FrozenBatchNorm2d(torch.nn.Module):
"""
BatchNorm2d where the batch statistics and the affine parameters are fixed
Args:
num_features (int): Number of features ``C`` from an expected input of size ``(N, C, H, W)``
eps (float): a value added to the denominator for numerical stability. Default: 1e-5
"""
def __init__(
self,
num_features: int,
eps: float = 1e-5,
):
super().__init__()
_log_api_usage_once(self)
self.eps = eps
self.register_buffer("weight", torch.ones(num_features))
self.register_buffer("bias", torch.zeros(num_features))
self.register_buffer("running_mean", torch.zeros(num_features))
self.register_buffer("running_var", torch.ones(num_features))
def _load_from_state_dict(
self,
state_dict: dict,
prefix: str,
local_metadata: dict,
strict: bool,
missing_keys: List[str],
unexpected_keys: List[str],
error_msgs: List[str],
):
num_batches_tracked_key = prefix + "num_batches_tracked"
if num_batches_tracked_key in state_dict:
del state_dict[num_batches_tracked_key]
super()._load_from_state_dict(
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
)
def forward(self, x: Tensor) -> Tensor:
# move reshapes to the beginning
# to make it fuser-friendly
w = self.weight.reshape(1, -1, 1, 1)
b = self.bias.reshape(1, -1, 1, 1)
rv = self.running_var.reshape(1, -1, 1, 1)
rm = self.running_mean.reshape(1, -1, 1, 1)
scale = w * (rv + self.eps).rsqrt()
bias = b - rm * scale
return x * scale + bias
def __repr__(self) -> str:
return f"{self.__class__.__name__}({self.weight.shape[0]}, eps={self.eps})"
class ConvNormActivation(torch.nn.Sequential):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, ...]] = 3,
stride: Union[int, Tuple[int, ...]] = 1,
padding: Optional[Union[int, Tuple[int, ...], str]] = None,
groups: int = 1,
norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm2d,
activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
dilation: Union[int, Tuple[int, ...]] = 1,
inplace: Optional[bool] = True,
bias: Optional[bool] = None,
conv_layer: Callable[..., torch.nn.Module] = torch.nn.Conv2d,
) -> None:
if padding is None:
if isinstance(kernel_size, int) and isinstance(dilation, int):
padding = (kernel_size - 1) // 2 * dilation
else:
_conv_dim = len(kernel_size) if isinstance(kernel_size, Sequence) else len(dilation)
kernel_size = _make_ntuple(kernel_size, _conv_dim)
dilation = _make_ntuple(dilation, _conv_dim)
padding = tuple((kernel_size[i] - 1) // 2 * dilation[i] for i in range(_conv_dim))
if bias is None:
bias = norm_layer is None
layers = [
conv_layer(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation=dilation,
groups=groups,
bias=bias,
)
]
if norm_layer is not None:
layers.append(norm_layer(out_channels))
if activation_layer is not None:
params = {} if inplace is None else {"inplace": inplace}
layers.append(activation_layer(**params))
super().__init__(*layers)
_log_api_usage_once(self)
self.out_channels = out_channels
if self.__class__ == ConvNormActivation:
warnings.warn(
"Don't use ConvNormActivation directly, please use Conv2dNormActivation and Conv3dNormActivation instead."
)
class Conv2dNormActivation(ConvNormActivation):
"""
Configurable block used for Convolution2d-Normalization-Activation blocks.
Args:
in_channels (int): Number of channels in the input image
out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
kernel_size: (int, optional): Size of the convolving kernel. Default: 3
stride (int, optional): Stride of the convolution. Default: 1
padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will be calculated as ``padding = (kernel_size - 1) // 2 * dilation``
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer won't be used. Default: ``torch.nn.BatchNorm2d``
activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU``
dilation (int): Spacing between kernel elements. Default: 1
inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int]] = 3,
stride: Union[int, Tuple[int, int]] = 1,
padding: Optional[Union[int, Tuple[int, int], str]] = None,
groups: int = 1,
norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm2d,
activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
dilation: Union[int, Tuple[int, int]] = 1,
inplace: Optional[bool] = True,
bias: Optional[bool] = None,
) -> None:
super().__init__(
in_channels,
out_channels,
kernel_size,
stride,
padding,
groups,
norm_layer,
activation_layer,
dilation,
inplace,
bias,
torch.nn.Conv2d,
)
class Conv3dNormActivation(ConvNormActivation):
"""
Configurable block used for Convolution3d-Normalization-Activation blocks.
Args:
in_channels (int): Number of channels in the input video.
out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
kernel_size: (int, optional): Size of the convolving kernel. Default: 3
stride (int, optional): Stride of the convolution. Default: 1
padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will be calculated as ``padding = (kernel_size - 1) // 2 * dilation``
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer won't be used. Default: ``torch.nn.BatchNorm3d``
activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU``
dilation (int): Spacing between kernel elements. Default: 1
inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int, int]] = 3,
stride: Union[int, Tuple[int, int, int]] = 1,
padding: Optional[Union[int, Tuple[int, int, int], str]] = None,
groups: int = 1,
norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm3d,
activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
dilation: Union[int, Tuple[int, int, int]] = 1,
inplace: Optional[bool] = True,
bias: Optional[bool] = None,
) -> None:
super().__init__(
in_channels,
out_channels,
kernel_size,
stride,
padding,
groups,
norm_layer,
activation_layer,
dilation,
inplace,
bias,
torch.nn.Conv3d,
)
class SqueezeExcitation(torch.nn.Module):
"""
This block implements the Squeeze-and-Excitation block from https://arxiv.org/abs/1709.01507 (see Fig. 1).
Parameters ``activation``, and ``scale_activation`` correspond to ``delta`` and ``sigma`` in eq. 3.
Args:
input_channels (int): Number of channels in the input image
squeeze_channels (int): Number of squeeze channels
activation (Callable[..., torch.nn.Module], optional): ``delta`` activation. Default: ``torch.nn.ReLU``
scale_activation (Callable[..., torch.nn.Module]): ``sigma`` activation. Default: ``torch.nn.Sigmoid``
"""
def __init__(
self,
input_channels: int,
squeeze_channels: int,
activation: Callable[..., torch.nn.Module] = torch.nn.ReLU,
scale_activation: Callable[..., torch.nn.Module] = torch.nn.Sigmoid,
) -> None:
super().__init__()
_log_api_usage_once(self)
self.avgpool = torch.nn.AdaptiveAvgPool2d(1)
self.fc1 = torch.nn.Conv2d(input_channels, squeeze_channels, 1)
self.fc2 = torch.nn.Conv2d(squeeze_channels, input_channels, 1)
self.activation = activation()
self.scale_activation = scale_activation()
def _scale(self, input: Tensor) -> Tensor:
scale = self.avgpool(input)
scale = self.fc1(scale)
scale = self.activation(scale)
scale = self.fc2(scale)
return self.scale_activation(scale)
def forward(self, input: Tensor) -> Tensor:
scale = self._scale(input)
return scale * input
class MLP(torch.nn.Sequential):
"""This block implements the multi-layer perceptron (MLP) module.
Args:
in_channels (int): Number of channels of the input
hidden_channels (List[int]): List of the hidden channel dimensions
norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the linear layer. If ``None`` this layer won't be used. Default: ``None``
activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the linear layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU``
inplace (bool, optional): Parameter for the activation layer, which can optionally do the operation in-place.
Default is ``None``, which uses the respective default values of the ``activation_layer`` and Dropout layer.
bias (bool): Whether to use bias in the linear layer. Default ``True``
dropout (float): The probability for the dropout layer. Default: 0.0
"""
def __init__(
self,
in_channels: int,
hidden_channels: List[int],
norm_layer: Optional[Callable[..., torch.nn.Module]] = None,
activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
inplace: Optional[bool] = None,
bias: bool = True,
dropout: float = 0.0,
):
# The addition of `norm_layer` is inspired from the implementation of TorchMultimodal:
# https://github.com/facebookresearch/multimodal/blob/5dec8a/torchmultimodal/modules/layers/mlp.py
params = {} if inplace is None else {"inplace": inplace}
layers = []
in_dim = in_channels
for hidden_dim in hidden_channels[:-1]:
layers.append(torch.nn.Linear(in_dim, hidden_dim, bias=bias))
if norm_layer is not None:
layers.append(norm_layer(hidden_dim))
layers.append(activation_layer(**params))
layers.append(torch.nn.Dropout(dropout, **params))
in_dim = hidden_dim
layers.append(torch.nn.Linear(in_dim, hidden_channels[-1], bias=bias))
layers.append(torch.nn.Dropout(dropout, **params))
super().__init__(*layers)
_log_api_usage_once(self)
class Permute(torch.nn.Module):
"""This module returns a view of the tensor input with its dimensions permuted.
Args:
dims (List[int]): The desired ordering of dimensions
"""
def __init__(self, dims: List[int]):
super().__init__()
self.dims = dims
def forward(self, x: Tensor) -> Tensor:
return torch.permute(x, self.dims)