You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1050 lines
36 KiB
1050 lines
36 KiB
from .functions import defun, defun_wrapped
|
|
|
|
@defun
|
|
def _jacobi_theta2(ctx, z, q):
|
|
extra1 = 10
|
|
extra2 = 20
|
|
# the loops below break when the fixed precision quantities
|
|
# a and b go to zero;
|
|
# right shifting small negative numbers by wp one obtains -1, not zero,
|
|
# so the condition a**2 + b**2 > MIN is used to break the loops.
|
|
MIN = 2
|
|
if z == ctx.zero:
|
|
if (not ctx._im(q)):
|
|
wp = ctx.prec + extra1
|
|
x = ctx.to_fixed(ctx._re(q), wp)
|
|
x2 = (x*x) >> wp
|
|
a = b = x2
|
|
s = x2
|
|
while abs(a) > MIN:
|
|
b = (b*x2) >> wp
|
|
a = (a*b) >> wp
|
|
s += a
|
|
s = (1 << (wp+1)) + (s << 1)
|
|
s = ctx.ldexp(s, -wp)
|
|
else:
|
|
wp = ctx.prec + extra1
|
|
xre = ctx.to_fixed(ctx._re(q), wp)
|
|
xim = ctx.to_fixed(ctx._im(q), wp)
|
|
x2re = (xre*xre - xim*xim) >> wp
|
|
x2im = (xre*xim) >> (wp-1)
|
|
are = bre = x2re
|
|
aim = bim = x2im
|
|
sre = (1<<wp) + are
|
|
sim = aim
|
|
while are**2 + aim**2 > MIN:
|
|
bre, bim = (bre * x2re - bim * x2im) >> wp, \
|
|
(bre * x2im + bim * x2re) >> wp
|
|
are, aim = (are * bre - aim * bim) >> wp, \
|
|
(are * bim + aim * bre) >> wp
|
|
sre += are
|
|
sim += aim
|
|
sre = (sre << 1)
|
|
sim = (sim << 1)
|
|
sre = ctx.ldexp(sre, -wp)
|
|
sim = ctx.ldexp(sim, -wp)
|
|
s = ctx.mpc(sre, sim)
|
|
else:
|
|
if (not ctx._im(q)) and (not ctx._im(z)):
|
|
wp = ctx.prec + extra1
|
|
x = ctx.to_fixed(ctx._re(q), wp)
|
|
x2 = (x*x) >> wp
|
|
a = b = x2
|
|
c1, s1 = ctx.cos_sin(ctx._re(z), prec=wp)
|
|
cn = c1 = ctx.to_fixed(c1, wp)
|
|
sn = s1 = ctx.to_fixed(s1, wp)
|
|
c2 = (c1*c1 - s1*s1) >> wp
|
|
s2 = (c1 * s1) >> (wp - 1)
|
|
cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
|
|
s = c1 + ((a * cn) >> wp)
|
|
while abs(a) > MIN:
|
|
b = (b*x2) >> wp
|
|
a = (a*b) >> wp
|
|
cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
|
|
s += (a * cn) >> wp
|
|
s = (s << 1)
|
|
s = ctx.ldexp(s, -wp)
|
|
s *= ctx.nthroot(q, 4)
|
|
return s
|
|
# case z real, q complex
|
|
elif not ctx._im(z):
|
|
wp = ctx.prec + extra2
|
|
xre = ctx.to_fixed(ctx._re(q), wp)
|
|
xim = ctx.to_fixed(ctx._im(q), wp)
|
|
x2re = (xre*xre - xim*xim) >> wp
|
|
x2im = (xre*xim) >> (wp - 1)
|
|
are = bre = x2re
|
|
aim = bim = x2im
|
|
c1, s1 = ctx.cos_sin(ctx._re(z), prec=wp)
|
|
cn = c1 = ctx.to_fixed(c1, wp)
|
|
sn = s1 = ctx.to_fixed(s1, wp)
|
|
c2 = (c1*c1 - s1*s1) >> wp
|
|
s2 = (c1 * s1) >> (wp - 1)
|
|
cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
|
|
sre = c1 + ((are * cn) >> wp)
|
|
sim = ((aim * cn) >> wp)
|
|
while are**2 + aim**2 > MIN:
|
|
bre, bim = (bre * x2re - bim * x2im) >> wp, \
|
|
(bre * x2im + bim * x2re) >> wp
|
|
are, aim = (are * bre - aim * bim) >> wp, \
|
|
(are * bim + aim * bre) >> wp
|
|
cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
|
|
sre += ((are * cn) >> wp)
|
|
sim += ((aim * cn) >> wp)
|
|
sre = (sre << 1)
|
|
sim = (sim << 1)
|
|
sre = ctx.ldexp(sre, -wp)
|
|
sim = ctx.ldexp(sim, -wp)
|
|
s = ctx.mpc(sre, sim)
|
|
#case z complex, q real
|
|
elif not ctx._im(q):
|
|
wp = ctx.prec + extra2
|
|
x = ctx.to_fixed(ctx._re(q), wp)
|
|
x2 = (x*x) >> wp
|
|
a = b = x2
|
|
prec0 = ctx.prec
|
|
ctx.prec = wp
|
|
c1, s1 = ctx.cos_sin(z)
|
|
ctx.prec = prec0
|
|
cnre = c1re = ctx.to_fixed(ctx._re(c1), wp)
|
|
cnim = c1im = ctx.to_fixed(ctx._im(c1), wp)
|
|
snre = s1re = ctx.to_fixed(ctx._re(s1), wp)
|
|
snim = s1im = ctx.to_fixed(ctx._im(s1), wp)
|
|
#c2 = (c1*c1 - s1*s1) >> wp
|
|
c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp
|
|
c2im = (c1re*c1im - s1re*s1im) >> (wp - 1)
|
|
#s2 = (c1 * s1) >> (wp - 1)
|
|
s2re = (c1re*s1re - c1im*s1im) >> (wp - 1)
|
|
s2im = (c1re*s1im + c1im*s1re) >> (wp - 1)
|
|
#cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
|
|
t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp
|
|
t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp
|
|
t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp
|
|
t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp
|
|
cnre = t1
|
|
cnim = t2
|
|
snre = t3
|
|
snim = t4
|
|
sre = c1re + ((a * cnre) >> wp)
|
|
sim = c1im + ((a * cnim) >> wp)
|
|
while abs(a) > MIN:
|
|
b = (b*x2) >> wp
|
|
a = (a*b) >> wp
|
|
t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp
|
|
t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp
|
|
t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp
|
|
t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp
|
|
cnre = t1
|
|
cnim = t2
|
|
snre = t3
|
|
snim = t4
|
|
sre += ((a * cnre) >> wp)
|
|
sim += ((a * cnim) >> wp)
|
|
sre = (sre << 1)
|
|
sim = (sim << 1)
|
|
sre = ctx.ldexp(sre, -wp)
|
|
sim = ctx.ldexp(sim, -wp)
|
|
s = ctx.mpc(sre, sim)
|
|
# case z and q complex
|
|
else:
|
|
wp = ctx.prec + extra2
|
|
xre = ctx.to_fixed(ctx._re(q), wp)
|
|
xim = ctx.to_fixed(ctx._im(q), wp)
|
|
x2re = (xre*xre - xim*xim) >> wp
|
|
x2im = (xre*xim) >> (wp - 1)
|
|
are = bre = x2re
|
|
aim = bim = x2im
|
|
prec0 = ctx.prec
|
|
ctx.prec = wp
|
|
# cos(z), sin(z) with z complex
|
|
c1, s1 = ctx.cos_sin(z)
|
|
ctx.prec = prec0
|
|
cnre = c1re = ctx.to_fixed(ctx._re(c1), wp)
|
|
cnim = c1im = ctx.to_fixed(ctx._im(c1), wp)
|
|
snre = s1re = ctx.to_fixed(ctx._re(s1), wp)
|
|
snim = s1im = ctx.to_fixed(ctx._im(s1), wp)
|
|
c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp
|
|
c2im = (c1re*c1im - s1re*s1im) >> (wp - 1)
|
|
s2re = (c1re*s1re - c1im*s1im) >> (wp - 1)
|
|
s2im = (c1re*s1im + c1im*s1re) >> (wp - 1)
|
|
t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp
|
|
t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp
|
|
t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp
|
|
t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp
|
|
cnre = t1
|
|
cnim = t2
|
|
snre = t3
|
|
snim = t4
|
|
n = 1
|
|
termre = c1re
|
|
termim = c1im
|
|
sre = c1re + ((are * cnre - aim * cnim) >> wp)
|
|
sim = c1im + ((are * cnim + aim * cnre) >> wp)
|
|
n = 3
|
|
termre = ((are * cnre - aim * cnim) >> wp)
|
|
termim = ((are * cnim + aim * cnre) >> wp)
|
|
sre = c1re + ((are * cnre - aim * cnim) >> wp)
|
|
sim = c1im + ((are * cnim + aim * cnre) >> wp)
|
|
n = 5
|
|
while are**2 + aim**2 > MIN:
|
|
bre, bim = (bre * x2re - bim * x2im) >> wp, \
|
|
(bre * x2im + bim * x2re) >> wp
|
|
are, aim = (are * bre - aim * bim) >> wp, \
|
|
(are * bim + aim * bre) >> wp
|
|
#cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp
|
|
t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp
|
|
t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp
|
|
t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp
|
|
t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp
|
|
cnre = t1
|
|
cnim = t2
|
|
snre = t3
|
|
snim = t4
|
|
termre = ((are * cnre - aim * cnim) >> wp)
|
|
termim = ((aim * cnre + are * cnim) >> wp)
|
|
sre += ((are * cnre - aim * cnim) >> wp)
|
|
sim += ((aim * cnre + are * cnim) >> wp)
|
|
n += 2
|
|
sre = (sre << 1)
|
|
sim = (sim << 1)
|
|
sre = ctx.ldexp(sre, -wp)
|
|
sim = ctx.ldexp(sim, -wp)
|
|
s = ctx.mpc(sre, sim)
|
|
s *= ctx.nthroot(q, 4)
|
|
return s
|
|
|
|
@defun
|
|
def _djacobi_theta2(ctx, z, q, nd):
|
|
MIN = 2
|
|
extra1 = 10
|
|
extra2 = 20
|
|
if (not ctx._im(q)) and (not ctx._im(z)):
|
|
wp = ctx.prec + extra1
|
|
x = ctx.to_fixed(ctx._re(q), wp)
|
|
x2 = (x*x) >> wp
|
|
a = b = x2
|
|
c1, s1 = ctx.cos_sin(ctx._re(z), prec=wp)
|
|
cn = c1 = ctx.to_fixed(c1, wp)
|
|
sn = s1 = ctx.to_fixed(s1, wp)
|
|
c2 = (c1*c1 - s1*s1) >> wp
|
|
s2 = (c1 * s1) >> (wp - 1)
|
|
cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
|
|
if (nd&1):
|
|
s = s1 + ((a * sn * 3**nd) >> wp)
|
|
else:
|
|
s = c1 + ((a * cn * 3**nd) >> wp)
|
|
n = 2
|
|
while abs(a) > MIN:
|
|
b = (b*x2) >> wp
|
|
a = (a*b) >> wp
|
|
cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
|
|
if nd&1:
|
|
s += (a * sn * (2*n+1)**nd) >> wp
|
|
else:
|
|
s += (a * cn * (2*n+1)**nd) >> wp
|
|
n += 1
|
|
s = -(s << 1)
|
|
s = ctx.ldexp(s, -wp)
|
|
# case z real, q complex
|
|
elif not ctx._im(z):
|
|
wp = ctx.prec + extra2
|
|
xre = ctx.to_fixed(ctx._re(q), wp)
|
|
xim = ctx.to_fixed(ctx._im(q), wp)
|
|
x2re = (xre*xre - xim*xim) >> wp
|
|
x2im = (xre*xim) >> (wp - 1)
|
|
are = bre = x2re
|
|
aim = bim = x2im
|
|
c1, s1 = ctx.cos_sin(ctx._re(z), prec=wp)
|
|
cn = c1 = ctx.to_fixed(c1, wp)
|
|
sn = s1 = ctx.to_fixed(s1, wp)
|
|
c2 = (c1*c1 - s1*s1) >> wp
|
|
s2 = (c1 * s1) >> (wp - 1)
|
|
cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
|
|
if (nd&1):
|
|
sre = s1 + ((are * sn * 3**nd) >> wp)
|
|
sim = ((aim * sn * 3**nd) >> wp)
|
|
else:
|
|
sre = c1 + ((are * cn * 3**nd) >> wp)
|
|
sim = ((aim * cn * 3**nd) >> wp)
|
|
n = 5
|
|
while are**2 + aim**2 > MIN:
|
|
bre, bim = (bre * x2re - bim * x2im) >> wp, \
|
|
(bre * x2im + bim * x2re) >> wp
|
|
are, aim = (are * bre - aim * bim) >> wp, \
|
|
(are * bim + aim * bre) >> wp
|
|
cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
|
|
|
|
if (nd&1):
|
|
sre += ((are * sn * n**nd) >> wp)
|
|
sim += ((aim * sn * n**nd) >> wp)
|
|
else:
|
|
sre += ((are * cn * n**nd) >> wp)
|
|
sim += ((aim * cn * n**nd) >> wp)
|
|
n += 2
|
|
sre = -(sre << 1)
|
|
sim = -(sim << 1)
|
|
sre = ctx.ldexp(sre, -wp)
|
|
sim = ctx.ldexp(sim, -wp)
|
|
s = ctx.mpc(sre, sim)
|
|
#case z complex, q real
|
|
elif not ctx._im(q):
|
|
wp = ctx.prec + extra2
|
|
x = ctx.to_fixed(ctx._re(q), wp)
|
|
x2 = (x*x) >> wp
|
|
a = b = x2
|
|
prec0 = ctx.prec
|
|
ctx.prec = wp
|
|
c1, s1 = ctx.cos_sin(z)
|
|
ctx.prec = prec0
|
|
cnre = c1re = ctx.to_fixed(ctx._re(c1), wp)
|
|
cnim = c1im = ctx.to_fixed(ctx._im(c1), wp)
|
|
snre = s1re = ctx.to_fixed(ctx._re(s1), wp)
|
|
snim = s1im = ctx.to_fixed(ctx._im(s1), wp)
|
|
#c2 = (c1*c1 - s1*s1) >> wp
|
|
c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp
|
|
c2im = (c1re*c1im - s1re*s1im) >> (wp - 1)
|
|
#s2 = (c1 * s1) >> (wp - 1)
|
|
s2re = (c1re*s1re - c1im*s1im) >> (wp - 1)
|
|
s2im = (c1re*s1im + c1im*s1re) >> (wp - 1)
|
|
#cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
|
|
t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp
|
|
t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp
|
|
t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp
|
|
t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp
|
|
cnre = t1
|
|
cnim = t2
|
|
snre = t3
|
|
snim = t4
|
|
if (nd&1):
|
|
sre = s1re + ((a * snre * 3**nd) >> wp)
|
|
sim = s1im + ((a * snim * 3**nd) >> wp)
|
|
else:
|
|
sre = c1re + ((a * cnre * 3**nd) >> wp)
|
|
sim = c1im + ((a * cnim * 3**nd) >> wp)
|
|
n = 5
|
|
while abs(a) > MIN:
|
|
b = (b*x2) >> wp
|
|
a = (a*b) >> wp
|
|
t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp
|
|
t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp
|
|
t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp
|
|
t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp
|
|
cnre = t1
|
|
cnim = t2
|
|
snre = t3
|
|
snim = t4
|
|
if (nd&1):
|
|
sre += ((a * snre * n**nd) >> wp)
|
|
sim += ((a * snim * n**nd) >> wp)
|
|
else:
|
|
sre += ((a * cnre * n**nd) >> wp)
|
|
sim += ((a * cnim * n**nd) >> wp)
|
|
n += 2
|
|
sre = -(sre << 1)
|
|
sim = -(sim << 1)
|
|
sre = ctx.ldexp(sre, -wp)
|
|
sim = ctx.ldexp(sim, -wp)
|
|
s = ctx.mpc(sre, sim)
|
|
# case z and q complex
|
|
else:
|
|
wp = ctx.prec + extra2
|
|
xre = ctx.to_fixed(ctx._re(q), wp)
|
|
xim = ctx.to_fixed(ctx._im(q), wp)
|
|
x2re = (xre*xre - xim*xim) >> wp
|
|
x2im = (xre*xim) >> (wp - 1)
|
|
are = bre = x2re
|
|
aim = bim = x2im
|
|
prec0 = ctx.prec
|
|
ctx.prec = wp
|
|
# cos(2*z), sin(2*z) with z complex
|
|
c1, s1 = ctx.cos_sin(z)
|
|
ctx.prec = prec0
|
|
cnre = c1re = ctx.to_fixed(ctx._re(c1), wp)
|
|
cnim = c1im = ctx.to_fixed(ctx._im(c1), wp)
|
|
snre = s1re = ctx.to_fixed(ctx._re(s1), wp)
|
|
snim = s1im = ctx.to_fixed(ctx._im(s1), wp)
|
|
c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp
|
|
c2im = (c1re*c1im - s1re*s1im) >> (wp - 1)
|
|
s2re = (c1re*s1re - c1im*s1im) >> (wp - 1)
|
|
s2im = (c1re*s1im + c1im*s1re) >> (wp - 1)
|
|
t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp
|
|
t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp
|
|
t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp
|
|
t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp
|
|
cnre = t1
|
|
cnim = t2
|
|
snre = t3
|
|
snim = t4
|
|
if (nd&1):
|
|
sre = s1re + (((are * snre - aim * snim) * 3**nd) >> wp)
|
|
sim = s1im + (((are * snim + aim * snre)* 3**nd) >> wp)
|
|
else:
|
|
sre = c1re + (((are * cnre - aim * cnim) * 3**nd) >> wp)
|
|
sim = c1im + (((are * cnim + aim * cnre)* 3**nd) >> wp)
|
|
n = 5
|
|
while are**2 + aim**2 > MIN:
|
|
bre, bim = (bre * x2re - bim * x2im) >> wp, \
|
|
(bre * x2im + bim * x2re) >> wp
|
|
are, aim = (are * bre - aim * bim) >> wp, \
|
|
(are * bim + aim * bre) >> wp
|
|
#cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp
|
|
t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp
|
|
t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp
|
|
t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp
|
|
t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp
|
|
cnre = t1
|
|
cnim = t2
|
|
snre = t3
|
|
snim = t4
|
|
if (nd&1):
|
|
sre += (((are * snre - aim * snim) * n**nd) >> wp)
|
|
sim += (((aim * snre + are * snim) * n**nd) >> wp)
|
|
else:
|
|
sre += (((are * cnre - aim * cnim) * n**nd) >> wp)
|
|
sim += (((aim * cnre + are * cnim) * n**nd) >> wp)
|
|
n += 2
|
|
sre = -(sre << 1)
|
|
sim = -(sim << 1)
|
|
sre = ctx.ldexp(sre, -wp)
|
|
sim = ctx.ldexp(sim, -wp)
|
|
s = ctx.mpc(sre, sim)
|
|
s *= ctx.nthroot(q, 4)
|
|
if (nd&1):
|
|
return (-1)**(nd//2) * s
|
|
else:
|
|
return (-1)**(1 + nd//2) * s
|
|
|
|
@defun
|
|
def _jacobi_theta3(ctx, z, q):
|
|
extra1 = 10
|
|
extra2 = 20
|
|
MIN = 2
|
|
if z == ctx.zero:
|
|
if not ctx._im(q):
|
|
wp = ctx.prec + extra1
|
|
x = ctx.to_fixed(ctx._re(q), wp)
|
|
s = x
|
|
a = b = x
|
|
x2 = (x*x) >> wp
|
|
while abs(a) > MIN:
|
|
b = (b*x2) >> wp
|
|
a = (a*b) >> wp
|
|
s += a
|
|
s = (1 << wp) + (s << 1)
|
|
s = ctx.ldexp(s, -wp)
|
|
return s
|
|
else:
|
|
wp = ctx.prec + extra1
|
|
xre = ctx.to_fixed(ctx._re(q), wp)
|
|
xim = ctx.to_fixed(ctx._im(q), wp)
|
|
x2re = (xre*xre - xim*xim) >> wp
|
|
x2im = (xre*xim) >> (wp - 1)
|
|
sre = are = bre = xre
|
|
sim = aim = bim = xim
|
|
while are**2 + aim**2 > MIN:
|
|
bre, bim = (bre * x2re - bim * x2im) >> wp, \
|
|
(bre * x2im + bim * x2re) >> wp
|
|
are, aim = (are * bre - aim * bim) >> wp, \
|
|
(are * bim + aim * bre) >> wp
|
|
sre += are
|
|
sim += aim
|
|
sre = (1 << wp) + (sre << 1)
|
|
sim = (sim << 1)
|
|
sre = ctx.ldexp(sre, -wp)
|
|
sim = ctx.ldexp(sim, -wp)
|
|
s = ctx.mpc(sre, sim)
|
|
return s
|
|
else:
|
|
if (not ctx._im(q)) and (not ctx._im(z)):
|
|
s = 0
|
|
wp = ctx.prec + extra1
|
|
x = ctx.to_fixed(ctx._re(q), wp)
|
|
a = b = x
|
|
x2 = (x*x) >> wp
|
|
c1, s1 = ctx.cos_sin(ctx._re(z)*2, prec=wp)
|
|
c1 = ctx.to_fixed(c1, wp)
|
|
s1 = ctx.to_fixed(s1, wp)
|
|
cn = c1
|
|
sn = s1
|
|
s += (a * cn) >> wp
|
|
while abs(a) > MIN:
|
|
b = (b*x2) >> wp
|
|
a = (a*b) >> wp
|
|
cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp
|
|
s += (a * cn) >> wp
|
|
s = (1 << wp) + (s << 1)
|
|
s = ctx.ldexp(s, -wp)
|
|
return s
|
|
# case z real, q complex
|
|
elif not ctx._im(z):
|
|
wp = ctx.prec + extra2
|
|
xre = ctx.to_fixed(ctx._re(q), wp)
|
|
xim = ctx.to_fixed(ctx._im(q), wp)
|
|
x2re = (xre*xre - xim*xim) >> wp
|
|
x2im = (xre*xim) >> (wp - 1)
|
|
are = bre = xre
|
|
aim = bim = xim
|
|
c1, s1 = ctx.cos_sin(ctx._re(z)*2, prec=wp)
|
|
c1 = ctx.to_fixed(c1, wp)
|
|
s1 = ctx.to_fixed(s1, wp)
|
|
cn = c1
|
|
sn = s1
|
|
sre = (are * cn) >> wp
|
|
sim = (aim * cn) >> wp
|
|
while are**2 + aim**2 > MIN:
|
|
bre, bim = (bre * x2re - bim * x2im) >> wp, \
|
|
(bre * x2im + bim * x2re) >> wp
|
|
are, aim = (are * bre - aim * bim) >> wp, \
|
|
(are * bim + aim * bre) >> wp
|
|
cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp
|
|
sre += (are * cn) >> wp
|
|
sim += (aim * cn) >> wp
|
|
sre = (1 << wp) + (sre << 1)
|
|
sim = (sim << 1)
|
|
sre = ctx.ldexp(sre, -wp)
|
|
sim = ctx.ldexp(sim, -wp)
|
|
s = ctx.mpc(sre, sim)
|
|
return s
|
|
#case z complex, q real
|
|
elif not ctx._im(q):
|
|
wp = ctx.prec + extra2
|
|
x = ctx.to_fixed(ctx._re(q), wp)
|
|
a = b = x
|
|
x2 = (x*x) >> wp
|
|
prec0 = ctx.prec
|
|
ctx.prec = wp
|
|
c1, s1 = ctx.cos_sin(2*z)
|
|
ctx.prec = prec0
|
|
cnre = c1re = ctx.to_fixed(ctx._re(c1), wp)
|
|
cnim = c1im = ctx.to_fixed(ctx._im(c1), wp)
|
|
snre = s1re = ctx.to_fixed(ctx._re(s1), wp)
|
|
snim = s1im = ctx.to_fixed(ctx._im(s1), wp)
|
|
sre = (a * cnre) >> wp
|
|
sim = (a * cnim) >> wp
|
|
while abs(a) > MIN:
|
|
b = (b*x2) >> wp
|
|
a = (a*b) >> wp
|
|
t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp
|
|
t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp
|
|
t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp
|
|
t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp
|
|
cnre = t1
|
|
cnim = t2
|
|
snre = t3
|
|
snim = t4
|
|
sre += (a * cnre) >> wp
|
|
sim += (a * cnim) >> wp
|
|
sre = (1 << wp) + (sre << 1)
|
|
sim = (sim << 1)
|
|
sre = ctx.ldexp(sre, -wp)
|
|
sim = ctx.ldexp(sim, -wp)
|
|
s = ctx.mpc(sre, sim)
|
|
return s
|
|
# case z and q complex
|
|
else:
|
|
wp = ctx.prec + extra2
|
|
xre = ctx.to_fixed(ctx._re(q), wp)
|
|
xim = ctx.to_fixed(ctx._im(q), wp)
|
|
x2re = (xre*xre - xim*xim) >> wp
|
|
x2im = (xre*xim) >> (wp - 1)
|
|
are = bre = xre
|
|
aim = bim = xim
|
|
prec0 = ctx.prec
|
|
ctx.prec = wp
|
|
# cos(2*z), sin(2*z) with z complex
|
|
c1, s1 = ctx.cos_sin(2*z)
|
|
ctx.prec = prec0
|
|
cnre = c1re = ctx.to_fixed(ctx._re(c1), wp)
|
|
cnim = c1im = ctx.to_fixed(ctx._im(c1), wp)
|
|
snre = s1re = ctx.to_fixed(ctx._re(s1), wp)
|
|
snim = s1im = ctx.to_fixed(ctx._im(s1), wp)
|
|
sre = (are * cnre - aim * cnim) >> wp
|
|
sim = (aim * cnre + are * cnim) >> wp
|
|
while are**2 + aim**2 > MIN:
|
|
bre, bim = (bre * x2re - bim * x2im) >> wp, \
|
|
(bre * x2im + bim * x2re) >> wp
|
|
are, aim = (are * bre - aim * bim) >> wp, \
|
|
(are * bim + aim * bre) >> wp
|
|
t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp
|
|
t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp
|
|
t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp
|
|
t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp
|
|
cnre = t1
|
|
cnim = t2
|
|
snre = t3
|
|
snim = t4
|
|
sre += (are * cnre - aim * cnim) >> wp
|
|
sim += (aim * cnre + are * cnim) >> wp
|
|
sre = (1 << wp) + (sre << 1)
|
|
sim = (sim << 1)
|
|
sre = ctx.ldexp(sre, -wp)
|
|
sim = ctx.ldexp(sim, -wp)
|
|
s = ctx.mpc(sre, sim)
|
|
return s
|
|
|
|
@defun
|
|
def _djacobi_theta3(ctx, z, q, nd):
|
|
"""nd=1,2,3 order of the derivative with respect to z"""
|
|
MIN = 2
|
|
extra1 = 10
|
|
extra2 = 20
|
|
if (not ctx._im(q)) and (not ctx._im(z)):
|
|
s = 0
|
|
wp = ctx.prec + extra1
|
|
x = ctx.to_fixed(ctx._re(q), wp)
|
|
a = b = x
|
|
x2 = (x*x) >> wp
|
|
c1, s1 = ctx.cos_sin(ctx._re(z)*2, prec=wp)
|
|
c1 = ctx.to_fixed(c1, wp)
|
|
s1 = ctx.to_fixed(s1, wp)
|
|
cn = c1
|
|
sn = s1
|
|
if (nd&1):
|
|
s += (a * sn) >> wp
|
|
else:
|
|
s += (a * cn) >> wp
|
|
n = 2
|
|
while abs(a) > MIN:
|
|
b = (b*x2) >> wp
|
|
a = (a*b) >> wp
|
|
cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp
|
|
if nd&1:
|
|
s += (a * sn * n**nd) >> wp
|
|
else:
|
|
s += (a * cn * n**nd) >> wp
|
|
n += 1
|
|
s = -(s << (nd+1))
|
|
s = ctx.ldexp(s, -wp)
|
|
# case z real, q complex
|
|
elif not ctx._im(z):
|
|
wp = ctx.prec + extra2
|
|
xre = ctx.to_fixed(ctx._re(q), wp)
|
|
xim = ctx.to_fixed(ctx._im(q), wp)
|
|
x2re = (xre*xre - xim*xim) >> wp
|
|
x2im = (xre*xim) >> (wp - 1)
|
|
are = bre = xre
|
|
aim = bim = xim
|
|
c1, s1 = ctx.cos_sin(ctx._re(z)*2, prec=wp)
|
|
c1 = ctx.to_fixed(c1, wp)
|
|
s1 = ctx.to_fixed(s1, wp)
|
|
cn = c1
|
|
sn = s1
|
|
if (nd&1):
|
|
sre = (are * sn) >> wp
|
|
sim = (aim * sn) >> wp
|
|
else:
|
|
sre = (are * cn) >> wp
|
|
sim = (aim * cn) >> wp
|
|
n = 2
|
|
while are**2 + aim**2 > MIN:
|
|
bre, bim = (bre * x2re - bim * x2im) >> wp, \
|
|
(bre * x2im + bim * x2re) >> wp
|
|
are, aim = (are * bre - aim * bim) >> wp, \
|
|
(are * bim + aim * bre) >> wp
|
|
cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp
|
|
if nd&1:
|
|
sre += (are * sn * n**nd) >> wp
|
|
sim += (aim * sn * n**nd) >> wp
|
|
else:
|
|
sre += (are * cn * n**nd) >> wp
|
|
sim += (aim * cn * n**nd) >> wp
|
|
n += 1
|
|
sre = -(sre << (nd+1))
|
|
sim = -(sim << (nd+1))
|
|
sre = ctx.ldexp(sre, -wp)
|
|
sim = ctx.ldexp(sim, -wp)
|
|
s = ctx.mpc(sre, sim)
|
|
#case z complex, q real
|
|
elif not ctx._im(q):
|
|
wp = ctx.prec + extra2
|
|
x = ctx.to_fixed(ctx._re(q), wp)
|
|
a = b = x
|
|
x2 = (x*x) >> wp
|
|
prec0 = ctx.prec
|
|
ctx.prec = wp
|
|
c1, s1 = ctx.cos_sin(2*z)
|
|
ctx.prec = prec0
|
|
cnre = c1re = ctx.to_fixed(ctx._re(c1), wp)
|
|
cnim = c1im = ctx.to_fixed(ctx._im(c1), wp)
|
|
snre = s1re = ctx.to_fixed(ctx._re(s1), wp)
|
|
snim = s1im = ctx.to_fixed(ctx._im(s1), wp)
|
|
if (nd&1):
|
|
sre = (a * snre) >> wp
|
|
sim = (a * snim) >> wp
|
|
else:
|
|
sre = (a * cnre) >> wp
|
|
sim = (a * cnim) >> wp
|
|
n = 2
|
|
while abs(a) > MIN:
|
|
b = (b*x2) >> wp
|
|
a = (a*b) >> wp
|
|
t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp
|
|
t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp
|
|
t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp
|
|
t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp
|
|
cnre = t1
|
|
cnim = t2
|
|
snre = t3
|
|
snim = t4
|
|
if (nd&1):
|
|
sre += (a * snre * n**nd) >> wp
|
|
sim += (a * snim * n**nd) >> wp
|
|
else:
|
|
sre += (a * cnre * n**nd) >> wp
|
|
sim += (a * cnim * n**nd) >> wp
|
|
n += 1
|
|
sre = -(sre << (nd+1))
|
|
sim = -(sim << (nd+1))
|
|
sre = ctx.ldexp(sre, -wp)
|
|
sim = ctx.ldexp(sim, -wp)
|
|
s = ctx.mpc(sre, sim)
|
|
# case z and q complex
|
|
else:
|
|
wp = ctx.prec + extra2
|
|
xre = ctx.to_fixed(ctx._re(q), wp)
|
|
xim = ctx.to_fixed(ctx._im(q), wp)
|
|
x2re = (xre*xre - xim*xim) >> wp
|
|
x2im = (xre*xim) >> (wp - 1)
|
|
are = bre = xre
|
|
aim = bim = xim
|
|
prec0 = ctx.prec
|
|
ctx.prec = wp
|
|
# cos(2*z), sin(2*z) with z complex
|
|
c1, s1 = ctx.cos_sin(2*z)
|
|
ctx.prec = prec0
|
|
cnre = c1re = ctx.to_fixed(ctx._re(c1), wp)
|
|
cnim = c1im = ctx.to_fixed(ctx._im(c1), wp)
|
|
snre = s1re = ctx.to_fixed(ctx._re(s1), wp)
|
|
snim = s1im = ctx.to_fixed(ctx._im(s1), wp)
|
|
if (nd&1):
|
|
sre = (are * snre - aim * snim) >> wp
|
|
sim = (aim * snre + are * snim) >> wp
|
|
else:
|
|
sre = (are * cnre - aim * cnim) >> wp
|
|
sim = (aim * cnre + are * cnim) >> wp
|
|
n = 2
|
|
while are**2 + aim**2 > MIN:
|
|
bre, bim = (bre * x2re - bim * x2im) >> wp, \
|
|
(bre * x2im + bim * x2re) >> wp
|
|
are, aim = (are * bre - aim * bim) >> wp, \
|
|
(are * bim + aim * bre) >> wp
|
|
t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp
|
|
t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp
|
|
t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp
|
|
t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp
|
|
cnre = t1
|
|
cnim = t2
|
|
snre = t3
|
|
snim = t4
|
|
if(nd&1):
|
|
sre += ((are * snre - aim * snim) * n**nd) >> wp
|
|
sim += ((aim * snre + are * snim) * n**nd) >> wp
|
|
else:
|
|
sre += ((are * cnre - aim * cnim) * n**nd) >> wp
|
|
sim += ((aim * cnre + are * cnim) * n**nd) >> wp
|
|
n += 1
|
|
sre = -(sre << (nd+1))
|
|
sim = -(sim << (nd+1))
|
|
sre = ctx.ldexp(sre, -wp)
|
|
sim = ctx.ldexp(sim, -wp)
|
|
s = ctx.mpc(sre, sim)
|
|
if (nd&1):
|
|
return (-1)**(nd//2) * s
|
|
else:
|
|
return (-1)**(1 + nd//2) * s
|
|
|
|
@defun
|
|
def _jacobi_theta2a(ctx, z, q):
|
|
"""
|
|
case ctx._im(z) != 0
|
|
theta(2, z, q) =
|
|
q**1/4 * Sum(q**(n*n + n) * exp(j*(2*n + 1)*z), n=-inf, inf)
|
|
max term for minimum (2*n+1)*log(q).real - 2* ctx._im(z)
|
|
n0 = int(ctx._im(z)/log(q).real - 1/2)
|
|
theta(2, z, q) =
|
|
q**1/4 * Sum(q**(n*n + n) * exp(j*(2*n + 1)*z), n=n0, inf) +
|
|
q**1/4 * Sum(q**(n*n + n) * exp(j*(2*n + 1)*z), n, n0-1, -inf)
|
|
"""
|
|
n = n0 = int(ctx._im(z)/ctx._re(ctx.log(q)) - 1/2)
|
|
e2 = ctx.expj(2*z)
|
|
e = e0 = ctx.expj((2*n+1)*z)
|
|
a = q**(n*n + n)
|
|
# leading term
|
|
term = a * e
|
|
s = term
|
|
eps1 = ctx.eps*abs(term)
|
|
while 1:
|
|
n += 1
|
|
e = e * e2
|
|
term = q**(n*n + n) * e
|
|
if abs(term) < eps1:
|
|
break
|
|
s += term
|
|
e = e0
|
|
e2 = ctx.expj(-2*z)
|
|
n = n0
|
|
while 1:
|
|
n -= 1
|
|
e = e * e2
|
|
term = q**(n*n + n) * e
|
|
if abs(term) < eps1:
|
|
break
|
|
s += term
|
|
s = s * ctx.nthroot(q, 4)
|
|
return s
|
|
|
|
@defun
|
|
def _jacobi_theta3a(ctx, z, q):
|
|
"""
|
|
case ctx._im(z) != 0
|
|
theta3(z, q) = Sum(q**(n*n) * exp(j*2*n*z), n, -inf, inf)
|
|
max term for n*abs(log(q).real) + ctx._im(z) ~= 0
|
|
n0 = int(- ctx._im(z)/abs(log(q).real))
|
|
"""
|
|
n = n0 = int(-ctx._im(z)/abs(ctx._re(ctx.log(q))))
|
|
e2 = ctx.expj(2*z)
|
|
e = e0 = ctx.expj(2*n*z)
|
|
s = term = q**(n*n) * e
|
|
eps1 = ctx.eps*abs(term)
|
|
while 1:
|
|
n += 1
|
|
e = e * e2
|
|
term = q**(n*n) * e
|
|
if abs(term) < eps1:
|
|
break
|
|
s += term
|
|
e = e0
|
|
e2 = ctx.expj(-2*z)
|
|
n = n0
|
|
while 1:
|
|
n -= 1
|
|
e = e * e2
|
|
term = q**(n*n) * e
|
|
if abs(term) < eps1:
|
|
break
|
|
s += term
|
|
return s
|
|
|
|
@defun
|
|
def _djacobi_theta2a(ctx, z, q, nd):
|
|
"""
|
|
case ctx._im(z) != 0
|
|
dtheta(2, z, q, nd) =
|
|
j* q**1/4 * Sum(q**(n*n + n) * (2*n+1)*exp(j*(2*n + 1)*z), n=-inf, inf)
|
|
max term for (2*n0+1)*log(q).real - 2* ctx._im(z) ~= 0
|
|
n0 = int(ctx._im(z)/log(q).real - 1/2)
|
|
"""
|
|
n = n0 = int(ctx._im(z)/ctx._re(ctx.log(q)) - 1/2)
|
|
e2 = ctx.expj(2*z)
|
|
e = e0 = ctx.expj((2*n + 1)*z)
|
|
a = q**(n*n + n)
|
|
# leading term
|
|
term = (2*n+1)**nd * a * e
|
|
s = term
|
|
eps1 = ctx.eps*abs(term)
|
|
while 1:
|
|
n += 1
|
|
e = e * e2
|
|
term = (2*n+1)**nd * q**(n*n + n) * e
|
|
if abs(term) < eps1:
|
|
break
|
|
s += term
|
|
e = e0
|
|
e2 = ctx.expj(-2*z)
|
|
n = n0
|
|
while 1:
|
|
n -= 1
|
|
e = e * e2
|
|
term = (2*n+1)**nd * q**(n*n + n) * e
|
|
if abs(term) < eps1:
|
|
break
|
|
s += term
|
|
return ctx.j**nd * s * ctx.nthroot(q, 4)
|
|
|
|
@defun
|
|
def _djacobi_theta3a(ctx, z, q, nd):
|
|
"""
|
|
case ctx._im(z) != 0
|
|
djtheta3(z, q, nd) = (2*j)**nd *
|
|
Sum(q**(n*n) * n**nd * exp(j*2*n*z), n, -inf, inf)
|
|
max term for minimum n*abs(log(q).real) + ctx._im(z)
|
|
"""
|
|
n = n0 = int(-ctx._im(z)/abs(ctx._re(ctx.log(q))))
|
|
e2 = ctx.expj(2*z)
|
|
e = e0 = ctx.expj(2*n*z)
|
|
a = q**(n*n) * e
|
|
s = term = n**nd * a
|
|
if n != 0:
|
|
eps1 = ctx.eps*abs(term)
|
|
else:
|
|
eps1 = ctx.eps*abs(a)
|
|
while 1:
|
|
n += 1
|
|
e = e * e2
|
|
a = q**(n*n) * e
|
|
term = n**nd * a
|
|
if n != 0:
|
|
aterm = abs(term)
|
|
else:
|
|
aterm = abs(a)
|
|
if aterm < eps1:
|
|
break
|
|
s += term
|
|
e = e0
|
|
e2 = ctx.expj(-2*z)
|
|
n = n0
|
|
while 1:
|
|
n -= 1
|
|
e = e * e2
|
|
a = q**(n*n) * e
|
|
term = n**nd * a
|
|
if n != 0:
|
|
aterm = abs(term)
|
|
else:
|
|
aterm = abs(a)
|
|
if aterm < eps1:
|
|
break
|
|
s += term
|
|
return (2*ctx.j)**nd * s
|
|
|
|
@defun
|
|
def jtheta(ctx, n, z, q, derivative=0):
|
|
if derivative:
|
|
return ctx._djtheta(n, z, q, derivative)
|
|
|
|
z = ctx.convert(z)
|
|
q = ctx.convert(q)
|
|
|
|
# Implementation note
|
|
# If ctx._im(z) is close to zero, _jacobi_theta2 and _jacobi_theta3
|
|
# are used,
|
|
# which compute the series starting from n=0 using fixed precision
|
|
# numbers;
|
|
# otherwise _jacobi_theta2a and _jacobi_theta3a are used, which compute
|
|
# the series starting from n=n0, which is the largest term.
|
|
|
|
# TODO: write _jacobi_theta2a and _jacobi_theta3a using fixed-point
|
|
|
|
if abs(q) > ctx.THETA_Q_LIM:
|
|
raise ValueError('abs(q) > THETA_Q_LIM = %f' % ctx.THETA_Q_LIM)
|
|
|
|
extra = 10
|
|
if z:
|
|
M = ctx.mag(z)
|
|
if M > 5 or (n == 1 and M < -5):
|
|
extra += 2*abs(M)
|
|
cz = 0.5
|
|
extra2 = 50
|
|
prec0 = ctx.prec
|
|
try:
|
|
ctx.prec += extra
|
|
if n == 1:
|
|
if ctx._im(z):
|
|
if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))):
|
|
ctx.dps += extra2
|
|
res = ctx._jacobi_theta2(z - ctx.pi/2, q)
|
|
else:
|
|
ctx.dps += 10
|
|
res = ctx._jacobi_theta2a(z - ctx.pi/2, q)
|
|
else:
|
|
res = ctx._jacobi_theta2(z - ctx.pi/2, q)
|
|
elif n == 2:
|
|
if ctx._im(z):
|
|
if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))):
|
|
ctx.dps += extra2
|
|
res = ctx._jacobi_theta2(z, q)
|
|
else:
|
|
ctx.dps += 10
|
|
res = ctx._jacobi_theta2a(z, q)
|
|
else:
|
|
res = ctx._jacobi_theta2(z, q)
|
|
elif n == 3:
|
|
if ctx._im(z):
|
|
if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))):
|
|
ctx.dps += extra2
|
|
res = ctx._jacobi_theta3(z, q)
|
|
else:
|
|
ctx.dps += 10
|
|
res = ctx._jacobi_theta3a(z, q)
|
|
else:
|
|
res = ctx._jacobi_theta3(z, q)
|
|
elif n == 4:
|
|
if ctx._im(z):
|
|
if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))):
|
|
ctx.dps += extra2
|
|
res = ctx._jacobi_theta3(z, -q)
|
|
else:
|
|
ctx.dps += 10
|
|
res = ctx._jacobi_theta3a(z, -q)
|
|
else:
|
|
res = ctx._jacobi_theta3(z, -q)
|
|
else:
|
|
raise ValueError
|
|
finally:
|
|
ctx.prec = prec0
|
|
return res
|
|
|
|
@defun
|
|
def _djtheta(ctx, n, z, q, derivative=1):
|
|
z = ctx.convert(z)
|
|
q = ctx.convert(q)
|
|
nd = int(derivative)
|
|
|
|
if abs(q) > ctx.THETA_Q_LIM:
|
|
raise ValueError('abs(q) > THETA_Q_LIM = %f' % ctx.THETA_Q_LIM)
|
|
extra = 10 + ctx.prec * nd // 10
|
|
if z:
|
|
M = ctx.mag(z)
|
|
if M > 5 or (n != 1 and M < -5):
|
|
extra += 2*abs(M)
|
|
cz = 0.5
|
|
extra2 = 50
|
|
prec0 = ctx.prec
|
|
try:
|
|
ctx.prec += extra
|
|
if n == 1:
|
|
if ctx._im(z):
|
|
if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))):
|
|
ctx.dps += extra2
|
|
res = ctx._djacobi_theta2(z - ctx.pi/2, q, nd)
|
|
else:
|
|
ctx.dps += 10
|
|
res = ctx._djacobi_theta2a(z - ctx.pi/2, q, nd)
|
|
else:
|
|
res = ctx._djacobi_theta2(z - ctx.pi/2, q, nd)
|
|
elif n == 2:
|
|
if ctx._im(z):
|
|
if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))):
|
|
ctx.dps += extra2
|
|
res = ctx._djacobi_theta2(z, q, nd)
|
|
else:
|
|
ctx.dps += 10
|
|
res = ctx._djacobi_theta2a(z, q, nd)
|
|
else:
|
|
res = ctx._djacobi_theta2(z, q, nd)
|
|
elif n == 3:
|
|
if ctx._im(z):
|
|
if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))):
|
|
ctx.dps += extra2
|
|
res = ctx._djacobi_theta3(z, q, nd)
|
|
else:
|
|
ctx.dps += 10
|
|
res = ctx._djacobi_theta3a(z, q, nd)
|
|
else:
|
|
res = ctx._djacobi_theta3(z, q, nd)
|
|
elif n == 4:
|
|
if ctx._im(z):
|
|
if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))):
|
|
ctx.dps += extra2
|
|
res = ctx._djacobi_theta3(z, -q, nd)
|
|
else:
|
|
ctx.dps += 10
|
|
res = ctx._djacobi_theta3a(z, -q, nd)
|
|
else:
|
|
res = ctx._djacobi_theta3(z, -q, nd)
|
|
else:
|
|
raise ValueError
|
|
finally:
|
|
ctx.prec = prec0
|
|
return +res
|