You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
717 lines
22 KiB
717 lines
22 KiB
"""
|
|
This module contains query handlers responsible for Matrices queries:
|
|
Square, Symmetric, Invertible etc.
|
|
"""
|
|
|
|
from sympy.logic.boolalg import conjuncts
|
|
from sympy.assumptions import Q, ask
|
|
from sympy.assumptions.handlers import test_closed_group
|
|
from sympy.matrices import MatrixBase
|
|
from sympy.matrices.expressions import (BlockMatrix, BlockDiagMatrix, Determinant,
|
|
DiagMatrix, DiagonalMatrix, HadamardProduct, Identity, Inverse, MatAdd, MatMul,
|
|
MatPow, MatrixExpr, MatrixSlice, MatrixSymbol, OneMatrix, Trace, Transpose,
|
|
ZeroMatrix)
|
|
from sympy.matrices.expressions.blockmatrix import reblock_2x2
|
|
from sympy.matrices.expressions.factorizations import Factorization
|
|
from sympy.matrices.expressions.fourier import DFT
|
|
from sympy.core.logic import fuzzy_and
|
|
from sympy.utilities.iterables import sift
|
|
from sympy.core import Basic
|
|
|
|
from ..predicates.matrices import (SquarePredicate, SymmetricPredicate,
|
|
InvertiblePredicate, OrthogonalPredicate, UnitaryPredicate,
|
|
FullRankPredicate, PositiveDefinitePredicate, UpperTriangularPredicate,
|
|
LowerTriangularPredicate, DiagonalPredicate, IntegerElementsPredicate,
|
|
RealElementsPredicate, ComplexElementsPredicate)
|
|
|
|
|
|
def _Factorization(predicate, expr, assumptions):
|
|
if predicate in expr.predicates:
|
|
return True
|
|
|
|
|
|
# SquarePredicate
|
|
|
|
@SquarePredicate.register(MatrixExpr)
|
|
def _(expr, assumptions):
|
|
return expr.shape[0] == expr.shape[1]
|
|
|
|
|
|
# SymmetricPredicate
|
|
|
|
@SymmetricPredicate.register(MatMul)
|
|
def _(expr, assumptions):
|
|
factor, mmul = expr.as_coeff_mmul()
|
|
if all(ask(Q.symmetric(arg), assumptions) for arg in mmul.args):
|
|
return True
|
|
# TODO: implement sathandlers system for the matrices.
|
|
# Now it duplicates the general fact: Implies(Q.diagonal, Q.symmetric).
|
|
if ask(Q.diagonal(expr), assumptions):
|
|
return True
|
|
if len(mmul.args) >= 2 and mmul.args[0] == mmul.args[-1].T:
|
|
if len(mmul.args) == 2:
|
|
return True
|
|
return ask(Q.symmetric(MatMul(*mmul.args[1:-1])), assumptions)
|
|
|
|
@SymmetricPredicate.register(MatPow)
|
|
def _(expr, assumptions):
|
|
# only for integer powers
|
|
base, exp = expr.args
|
|
int_exp = ask(Q.integer(exp), assumptions)
|
|
if not int_exp:
|
|
return None
|
|
non_negative = ask(~Q.negative(exp), assumptions)
|
|
if (non_negative or non_negative == False
|
|
and ask(Q.invertible(base), assumptions)):
|
|
return ask(Q.symmetric(base), assumptions)
|
|
return None
|
|
|
|
@SymmetricPredicate.register(MatAdd)
|
|
def _(expr, assumptions):
|
|
return all(ask(Q.symmetric(arg), assumptions) for arg in expr.args)
|
|
|
|
@SymmetricPredicate.register(MatrixSymbol)
|
|
def _(expr, assumptions):
|
|
if not expr.is_square:
|
|
return False
|
|
# TODO: implement sathandlers system for the matrices.
|
|
# Now it duplicates the general fact: Implies(Q.diagonal, Q.symmetric).
|
|
if ask(Q.diagonal(expr), assumptions):
|
|
return True
|
|
if Q.symmetric(expr) in conjuncts(assumptions):
|
|
return True
|
|
|
|
@SymmetricPredicate.register_many(OneMatrix, ZeroMatrix)
|
|
def _(expr, assumptions):
|
|
return ask(Q.square(expr), assumptions)
|
|
|
|
@SymmetricPredicate.register_many(Inverse, Transpose)
|
|
def _(expr, assumptions):
|
|
return ask(Q.symmetric(expr.arg), assumptions)
|
|
|
|
@SymmetricPredicate.register(MatrixSlice)
|
|
def _(expr, assumptions):
|
|
# TODO: implement sathandlers system for the matrices.
|
|
# Now it duplicates the general fact: Implies(Q.diagonal, Q.symmetric).
|
|
if ask(Q.diagonal(expr), assumptions):
|
|
return True
|
|
if not expr.on_diag:
|
|
return None
|
|
else:
|
|
return ask(Q.symmetric(expr.parent), assumptions)
|
|
|
|
@SymmetricPredicate.register(Identity)
|
|
def _(expr, assumptions):
|
|
return True
|
|
|
|
|
|
# InvertiblePredicate
|
|
|
|
@InvertiblePredicate.register(MatMul)
|
|
def _(expr, assumptions):
|
|
factor, mmul = expr.as_coeff_mmul()
|
|
if all(ask(Q.invertible(arg), assumptions) for arg in mmul.args):
|
|
return True
|
|
if any(ask(Q.invertible(arg), assumptions) is False
|
|
for arg in mmul.args):
|
|
return False
|
|
|
|
@InvertiblePredicate.register(MatPow)
|
|
def _(expr, assumptions):
|
|
# only for integer powers
|
|
base, exp = expr.args
|
|
int_exp = ask(Q.integer(exp), assumptions)
|
|
if not int_exp:
|
|
return None
|
|
if exp.is_negative == False:
|
|
return ask(Q.invertible(base), assumptions)
|
|
return None
|
|
|
|
@InvertiblePredicate.register(MatAdd)
|
|
def _(expr, assumptions):
|
|
return None
|
|
|
|
@InvertiblePredicate.register(MatrixSymbol)
|
|
def _(expr, assumptions):
|
|
if not expr.is_square:
|
|
return False
|
|
if Q.invertible(expr) in conjuncts(assumptions):
|
|
return True
|
|
|
|
@InvertiblePredicate.register_many(Identity, Inverse)
|
|
def _(expr, assumptions):
|
|
return True
|
|
|
|
@InvertiblePredicate.register(ZeroMatrix)
|
|
def _(expr, assumptions):
|
|
return False
|
|
|
|
@InvertiblePredicate.register(OneMatrix)
|
|
def _(expr, assumptions):
|
|
return expr.shape[0] == 1 and expr.shape[1] == 1
|
|
|
|
@InvertiblePredicate.register(Transpose)
|
|
def _(expr, assumptions):
|
|
return ask(Q.invertible(expr.arg), assumptions)
|
|
|
|
@InvertiblePredicate.register(MatrixSlice)
|
|
def _(expr, assumptions):
|
|
if not expr.on_diag:
|
|
return None
|
|
else:
|
|
return ask(Q.invertible(expr.parent), assumptions)
|
|
|
|
@InvertiblePredicate.register(MatrixBase)
|
|
def _(expr, assumptions):
|
|
if not expr.is_square:
|
|
return False
|
|
return expr.rank() == expr.rows
|
|
|
|
@InvertiblePredicate.register(MatrixExpr)
|
|
def _(expr, assumptions):
|
|
if not expr.is_square:
|
|
return False
|
|
return None
|
|
|
|
@InvertiblePredicate.register(BlockMatrix)
|
|
def _(expr, assumptions):
|
|
if not expr.is_square:
|
|
return False
|
|
if expr.blockshape == (1, 1):
|
|
return ask(Q.invertible(expr.blocks[0, 0]), assumptions)
|
|
expr = reblock_2x2(expr)
|
|
if expr.blockshape == (2, 2):
|
|
[[A, B], [C, D]] = expr.blocks.tolist()
|
|
if ask(Q.invertible(A), assumptions) == True:
|
|
invertible = ask(Q.invertible(D - C * A.I * B), assumptions)
|
|
if invertible is not None:
|
|
return invertible
|
|
if ask(Q.invertible(B), assumptions) == True:
|
|
invertible = ask(Q.invertible(C - D * B.I * A), assumptions)
|
|
if invertible is not None:
|
|
return invertible
|
|
if ask(Q.invertible(C), assumptions) == True:
|
|
invertible = ask(Q.invertible(B - A * C.I * D), assumptions)
|
|
if invertible is not None:
|
|
return invertible
|
|
if ask(Q.invertible(D), assumptions) == True:
|
|
invertible = ask(Q.invertible(A - B * D.I * C), assumptions)
|
|
if invertible is not None:
|
|
return invertible
|
|
return None
|
|
|
|
@InvertiblePredicate.register(BlockDiagMatrix)
|
|
def _(expr, assumptions):
|
|
if expr.rowblocksizes != expr.colblocksizes:
|
|
return None
|
|
return fuzzy_and([ask(Q.invertible(a), assumptions) for a in expr.diag])
|
|
|
|
|
|
# OrthogonalPredicate
|
|
|
|
@OrthogonalPredicate.register(MatMul)
|
|
def _(expr, assumptions):
|
|
factor, mmul = expr.as_coeff_mmul()
|
|
if (all(ask(Q.orthogonal(arg), assumptions) for arg in mmul.args) and
|
|
factor == 1):
|
|
return True
|
|
if any(ask(Q.invertible(arg), assumptions) is False
|
|
for arg in mmul.args):
|
|
return False
|
|
|
|
@OrthogonalPredicate.register(MatPow)
|
|
def _(expr, assumptions):
|
|
# only for integer powers
|
|
base, exp = expr.args
|
|
int_exp = ask(Q.integer(exp), assumptions)
|
|
if int_exp:
|
|
return ask(Q.orthogonal(base), assumptions)
|
|
return None
|
|
|
|
@OrthogonalPredicate.register(MatAdd)
|
|
def _(expr, assumptions):
|
|
if (len(expr.args) == 1 and
|
|
ask(Q.orthogonal(expr.args[0]), assumptions)):
|
|
return True
|
|
|
|
@OrthogonalPredicate.register(MatrixSymbol)
|
|
def _(expr, assumptions):
|
|
if (not expr.is_square or
|
|
ask(Q.invertible(expr), assumptions) is False):
|
|
return False
|
|
if Q.orthogonal(expr) in conjuncts(assumptions):
|
|
return True
|
|
|
|
@OrthogonalPredicate.register(Identity)
|
|
def _(expr, assumptions):
|
|
return True
|
|
|
|
@OrthogonalPredicate.register(ZeroMatrix)
|
|
def _(expr, assumptions):
|
|
return False
|
|
|
|
@OrthogonalPredicate.register_many(Inverse, Transpose)
|
|
def _(expr, assumptions):
|
|
return ask(Q.orthogonal(expr.arg), assumptions)
|
|
|
|
@OrthogonalPredicate.register(MatrixSlice)
|
|
def _(expr, assumptions):
|
|
if not expr.on_diag:
|
|
return None
|
|
else:
|
|
return ask(Q.orthogonal(expr.parent), assumptions)
|
|
|
|
@OrthogonalPredicate.register(Factorization)
|
|
def _(expr, assumptions):
|
|
return _Factorization(Q.orthogonal, expr, assumptions)
|
|
|
|
|
|
# UnitaryPredicate
|
|
|
|
@UnitaryPredicate.register(MatMul)
|
|
def _(expr, assumptions):
|
|
factor, mmul = expr.as_coeff_mmul()
|
|
if (all(ask(Q.unitary(arg), assumptions) for arg in mmul.args) and
|
|
abs(factor) == 1):
|
|
return True
|
|
if any(ask(Q.invertible(arg), assumptions) is False
|
|
for arg in mmul.args):
|
|
return False
|
|
|
|
@UnitaryPredicate.register(MatPow)
|
|
def _(expr, assumptions):
|
|
# only for integer powers
|
|
base, exp = expr.args
|
|
int_exp = ask(Q.integer(exp), assumptions)
|
|
if int_exp:
|
|
return ask(Q.unitary(base), assumptions)
|
|
return None
|
|
|
|
@UnitaryPredicate.register(MatrixSymbol)
|
|
def _(expr, assumptions):
|
|
if (not expr.is_square or
|
|
ask(Q.invertible(expr), assumptions) is False):
|
|
return False
|
|
if Q.unitary(expr) in conjuncts(assumptions):
|
|
return True
|
|
|
|
@UnitaryPredicate.register_many(Inverse, Transpose)
|
|
def _(expr, assumptions):
|
|
return ask(Q.unitary(expr.arg), assumptions)
|
|
|
|
@UnitaryPredicate.register(MatrixSlice)
|
|
def _(expr, assumptions):
|
|
if not expr.on_diag:
|
|
return None
|
|
else:
|
|
return ask(Q.unitary(expr.parent), assumptions)
|
|
|
|
@UnitaryPredicate.register_many(DFT, Identity)
|
|
def _(expr, assumptions):
|
|
return True
|
|
|
|
@UnitaryPredicate.register(ZeroMatrix)
|
|
def _(expr, assumptions):
|
|
return False
|
|
|
|
@UnitaryPredicate.register(Factorization)
|
|
def _(expr, assumptions):
|
|
return _Factorization(Q.unitary, expr, assumptions)
|
|
|
|
|
|
# FullRankPredicate
|
|
|
|
@FullRankPredicate.register(MatMul)
|
|
def _(expr, assumptions):
|
|
if all(ask(Q.fullrank(arg), assumptions) for arg in expr.args):
|
|
return True
|
|
|
|
@FullRankPredicate.register(MatPow)
|
|
def _(expr, assumptions):
|
|
# only for integer powers
|
|
base, exp = expr.args
|
|
int_exp = ask(Q.integer(exp), assumptions)
|
|
if int_exp and ask(~Q.negative(exp), assumptions):
|
|
return ask(Q.fullrank(base), assumptions)
|
|
return None
|
|
|
|
@FullRankPredicate.register(Identity)
|
|
def _(expr, assumptions):
|
|
return True
|
|
|
|
@FullRankPredicate.register(ZeroMatrix)
|
|
def _(expr, assumptions):
|
|
return False
|
|
|
|
@FullRankPredicate.register(OneMatrix)
|
|
def _(expr, assumptions):
|
|
return expr.shape[0] == 1 and expr.shape[1] == 1
|
|
|
|
@FullRankPredicate.register_many(Inverse, Transpose)
|
|
def _(expr, assumptions):
|
|
return ask(Q.fullrank(expr.arg), assumptions)
|
|
|
|
@FullRankPredicate.register(MatrixSlice)
|
|
def _(expr, assumptions):
|
|
if ask(Q.orthogonal(expr.parent), assumptions):
|
|
return True
|
|
|
|
|
|
# PositiveDefinitePredicate
|
|
|
|
@PositiveDefinitePredicate.register(MatMul)
|
|
def _(expr, assumptions):
|
|
factor, mmul = expr.as_coeff_mmul()
|
|
if (all(ask(Q.positive_definite(arg), assumptions)
|
|
for arg in mmul.args) and factor > 0):
|
|
return True
|
|
if (len(mmul.args) >= 2
|
|
and mmul.args[0] == mmul.args[-1].T
|
|
and ask(Q.fullrank(mmul.args[0]), assumptions)):
|
|
return ask(Q.positive_definite(
|
|
MatMul(*mmul.args[1:-1])), assumptions)
|
|
|
|
@PositiveDefinitePredicate.register(MatPow)
|
|
def _(expr, assumptions):
|
|
# a power of a positive definite matrix is positive definite
|
|
if ask(Q.positive_definite(expr.args[0]), assumptions):
|
|
return True
|
|
|
|
@PositiveDefinitePredicate.register(MatAdd)
|
|
def _(expr, assumptions):
|
|
if all(ask(Q.positive_definite(arg), assumptions)
|
|
for arg in expr.args):
|
|
return True
|
|
|
|
@PositiveDefinitePredicate.register(MatrixSymbol)
|
|
def _(expr, assumptions):
|
|
if not expr.is_square:
|
|
return False
|
|
if Q.positive_definite(expr) in conjuncts(assumptions):
|
|
return True
|
|
|
|
@PositiveDefinitePredicate.register(Identity)
|
|
def _(expr, assumptions):
|
|
return True
|
|
|
|
@PositiveDefinitePredicate.register(ZeroMatrix)
|
|
def _(expr, assumptions):
|
|
return False
|
|
|
|
@PositiveDefinitePredicate.register(OneMatrix)
|
|
def _(expr, assumptions):
|
|
return expr.shape[0] == 1 and expr.shape[1] == 1
|
|
|
|
@PositiveDefinitePredicate.register_many(Inverse, Transpose)
|
|
def _(expr, assumptions):
|
|
return ask(Q.positive_definite(expr.arg), assumptions)
|
|
|
|
@PositiveDefinitePredicate.register(MatrixSlice)
|
|
def _(expr, assumptions):
|
|
if not expr.on_diag:
|
|
return None
|
|
else:
|
|
return ask(Q.positive_definite(expr.parent), assumptions)
|
|
|
|
|
|
# UpperTriangularPredicate
|
|
|
|
@UpperTriangularPredicate.register(MatMul)
|
|
def _(expr, assumptions):
|
|
factor, matrices = expr.as_coeff_matrices()
|
|
if all(ask(Q.upper_triangular(m), assumptions) for m in matrices):
|
|
return True
|
|
|
|
@UpperTriangularPredicate.register(MatAdd)
|
|
def _(expr, assumptions):
|
|
if all(ask(Q.upper_triangular(arg), assumptions) for arg in expr.args):
|
|
return True
|
|
|
|
@UpperTriangularPredicate.register(MatPow)
|
|
def _(expr, assumptions):
|
|
# only for integer powers
|
|
base, exp = expr.args
|
|
int_exp = ask(Q.integer(exp), assumptions)
|
|
if not int_exp:
|
|
return None
|
|
non_negative = ask(~Q.negative(exp), assumptions)
|
|
if (non_negative or non_negative == False
|
|
and ask(Q.invertible(base), assumptions)):
|
|
return ask(Q.upper_triangular(base), assumptions)
|
|
return None
|
|
|
|
@UpperTriangularPredicate.register(MatrixSymbol)
|
|
def _(expr, assumptions):
|
|
if Q.upper_triangular(expr) in conjuncts(assumptions):
|
|
return True
|
|
|
|
@UpperTriangularPredicate.register_many(Identity, ZeroMatrix)
|
|
def _(expr, assumptions):
|
|
return True
|
|
|
|
@UpperTriangularPredicate.register(OneMatrix)
|
|
def _(expr, assumptions):
|
|
return expr.shape[0] == 1 and expr.shape[1] == 1
|
|
|
|
@UpperTriangularPredicate.register(Transpose)
|
|
def _(expr, assumptions):
|
|
return ask(Q.lower_triangular(expr.arg), assumptions)
|
|
|
|
@UpperTriangularPredicate.register(Inverse)
|
|
def _(expr, assumptions):
|
|
return ask(Q.upper_triangular(expr.arg), assumptions)
|
|
|
|
@UpperTriangularPredicate.register(MatrixSlice)
|
|
def _(expr, assumptions):
|
|
if not expr.on_diag:
|
|
return None
|
|
else:
|
|
return ask(Q.upper_triangular(expr.parent), assumptions)
|
|
|
|
@UpperTriangularPredicate.register(Factorization)
|
|
def _(expr, assumptions):
|
|
return _Factorization(Q.upper_triangular, expr, assumptions)
|
|
|
|
# LowerTriangularPredicate
|
|
|
|
@LowerTriangularPredicate.register(MatMul)
|
|
def _(expr, assumptions):
|
|
factor, matrices = expr.as_coeff_matrices()
|
|
if all(ask(Q.lower_triangular(m), assumptions) for m in matrices):
|
|
return True
|
|
|
|
@LowerTriangularPredicate.register(MatAdd)
|
|
def _(expr, assumptions):
|
|
if all(ask(Q.lower_triangular(arg), assumptions) for arg in expr.args):
|
|
return True
|
|
|
|
@LowerTriangularPredicate.register(MatPow)
|
|
def _(expr, assumptions):
|
|
# only for integer powers
|
|
base, exp = expr.args
|
|
int_exp = ask(Q.integer(exp), assumptions)
|
|
if not int_exp:
|
|
return None
|
|
non_negative = ask(~Q.negative(exp), assumptions)
|
|
if (non_negative or non_negative == False
|
|
and ask(Q.invertible(base), assumptions)):
|
|
return ask(Q.lower_triangular(base), assumptions)
|
|
return None
|
|
|
|
@LowerTriangularPredicate.register(MatrixSymbol)
|
|
def _(expr, assumptions):
|
|
if Q.lower_triangular(expr) in conjuncts(assumptions):
|
|
return True
|
|
|
|
@LowerTriangularPredicate.register_many(Identity, ZeroMatrix)
|
|
def _(expr, assumptions):
|
|
return True
|
|
|
|
@LowerTriangularPredicate.register(OneMatrix)
|
|
def _(expr, assumptions):
|
|
return expr.shape[0] == 1 and expr.shape[1] == 1
|
|
|
|
@LowerTriangularPredicate.register(Transpose)
|
|
def _(expr, assumptions):
|
|
return ask(Q.upper_triangular(expr.arg), assumptions)
|
|
|
|
@LowerTriangularPredicate.register(Inverse)
|
|
def _(expr, assumptions):
|
|
return ask(Q.lower_triangular(expr.arg), assumptions)
|
|
|
|
@LowerTriangularPredicate.register(MatrixSlice)
|
|
def _(expr, assumptions):
|
|
if not expr.on_diag:
|
|
return None
|
|
else:
|
|
return ask(Q.lower_triangular(expr.parent), assumptions)
|
|
|
|
@LowerTriangularPredicate.register(Factorization)
|
|
def _(expr, assumptions):
|
|
return _Factorization(Q.lower_triangular, expr, assumptions)
|
|
|
|
|
|
# DiagonalPredicate
|
|
|
|
def _is_empty_or_1x1(expr):
|
|
return expr.shape in ((0, 0), (1, 1))
|
|
|
|
@DiagonalPredicate.register(MatMul)
|
|
def _(expr, assumptions):
|
|
if _is_empty_or_1x1(expr):
|
|
return True
|
|
factor, matrices = expr.as_coeff_matrices()
|
|
if all(ask(Q.diagonal(m), assumptions) for m in matrices):
|
|
return True
|
|
|
|
@DiagonalPredicate.register(MatPow)
|
|
def _(expr, assumptions):
|
|
# only for integer powers
|
|
base, exp = expr.args
|
|
int_exp = ask(Q.integer(exp), assumptions)
|
|
if not int_exp:
|
|
return None
|
|
non_negative = ask(~Q.negative(exp), assumptions)
|
|
if (non_negative or non_negative == False
|
|
and ask(Q.invertible(base), assumptions)):
|
|
return ask(Q.diagonal(base), assumptions)
|
|
return None
|
|
|
|
@DiagonalPredicate.register(MatAdd)
|
|
def _(expr, assumptions):
|
|
if all(ask(Q.diagonal(arg), assumptions) for arg in expr.args):
|
|
return True
|
|
|
|
@DiagonalPredicate.register(MatrixSymbol)
|
|
def _(expr, assumptions):
|
|
if _is_empty_or_1x1(expr):
|
|
return True
|
|
if Q.diagonal(expr) in conjuncts(assumptions):
|
|
return True
|
|
|
|
@DiagonalPredicate.register(OneMatrix)
|
|
def _(expr, assumptions):
|
|
return expr.shape[0] == 1 and expr.shape[1] == 1
|
|
|
|
@DiagonalPredicate.register_many(Inverse, Transpose)
|
|
def _(expr, assumptions):
|
|
return ask(Q.diagonal(expr.arg), assumptions)
|
|
|
|
@DiagonalPredicate.register(MatrixSlice)
|
|
def _(expr, assumptions):
|
|
if _is_empty_or_1x1(expr):
|
|
return True
|
|
if not expr.on_diag:
|
|
return None
|
|
else:
|
|
return ask(Q.diagonal(expr.parent), assumptions)
|
|
|
|
@DiagonalPredicate.register_many(DiagonalMatrix, DiagMatrix, Identity, ZeroMatrix)
|
|
def _(expr, assumptions):
|
|
return True
|
|
|
|
@DiagonalPredicate.register(Factorization)
|
|
def _(expr, assumptions):
|
|
return _Factorization(Q.diagonal, expr, assumptions)
|
|
|
|
|
|
# IntegerElementsPredicate
|
|
|
|
def BM_elements(predicate, expr, assumptions):
|
|
""" Block Matrix elements. """
|
|
return all(ask(predicate(b), assumptions) for b in expr.blocks)
|
|
|
|
def MS_elements(predicate, expr, assumptions):
|
|
""" Matrix Slice elements. """
|
|
return ask(predicate(expr.parent), assumptions)
|
|
|
|
def MatMul_elements(matrix_predicate, scalar_predicate, expr, assumptions):
|
|
d = sift(expr.args, lambda x: isinstance(x, MatrixExpr))
|
|
factors, matrices = d[False], d[True]
|
|
return fuzzy_and([
|
|
test_closed_group(Basic(*factors), assumptions, scalar_predicate),
|
|
test_closed_group(Basic(*matrices), assumptions, matrix_predicate)])
|
|
|
|
|
|
@IntegerElementsPredicate.register_many(Determinant, HadamardProduct, MatAdd,
|
|
Trace, Transpose)
|
|
def _(expr, assumptions):
|
|
return test_closed_group(expr, assumptions, Q.integer_elements)
|
|
|
|
@IntegerElementsPredicate.register(MatPow)
|
|
def _(expr, assumptions):
|
|
# only for integer powers
|
|
base, exp = expr.args
|
|
int_exp = ask(Q.integer(exp), assumptions)
|
|
if not int_exp:
|
|
return None
|
|
if exp.is_negative == False:
|
|
return ask(Q.integer_elements(base), assumptions)
|
|
return None
|
|
|
|
@IntegerElementsPredicate.register_many(Identity, OneMatrix, ZeroMatrix)
|
|
def _(expr, assumptions):
|
|
return True
|
|
|
|
@IntegerElementsPredicate.register(MatMul)
|
|
def _(expr, assumptions):
|
|
return MatMul_elements(Q.integer_elements, Q.integer, expr, assumptions)
|
|
|
|
@IntegerElementsPredicate.register(MatrixSlice)
|
|
def _(expr, assumptions):
|
|
return MS_elements(Q.integer_elements, expr, assumptions)
|
|
|
|
@IntegerElementsPredicate.register(BlockMatrix)
|
|
def _(expr, assumptions):
|
|
return BM_elements(Q.integer_elements, expr, assumptions)
|
|
|
|
|
|
# RealElementsPredicate
|
|
|
|
@RealElementsPredicate.register_many(Determinant, Factorization, HadamardProduct,
|
|
MatAdd, Trace, Transpose)
|
|
def _(expr, assumptions):
|
|
return test_closed_group(expr, assumptions, Q.real_elements)
|
|
|
|
@RealElementsPredicate.register(MatPow)
|
|
def _(expr, assumptions):
|
|
# only for integer powers
|
|
base, exp = expr.args
|
|
int_exp = ask(Q.integer(exp), assumptions)
|
|
if not int_exp:
|
|
return None
|
|
non_negative = ask(~Q.negative(exp), assumptions)
|
|
if (non_negative or non_negative == False
|
|
and ask(Q.invertible(base), assumptions)):
|
|
return ask(Q.real_elements(base), assumptions)
|
|
return None
|
|
|
|
@RealElementsPredicate.register(MatMul)
|
|
def _(expr, assumptions):
|
|
return MatMul_elements(Q.real_elements, Q.real, expr, assumptions)
|
|
|
|
@RealElementsPredicate.register(MatrixSlice)
|
|
def _(expr, assumptions):
|
|
return MS_elements(Q.real_elements, expr, assumptions)
|
|
|
|
@RealElementsPredicate.register(BlockMatrix)
|
|
def _(expr, assumptions):
|
|
return BM_elements(Q.real_elements, expr, assumptions)
|
|
|
|
|
|
# ComplexElementsPredicate
|
|
|
|
@ComplexElementsPredicate.register_many(Determinant, Factorization, HadamardProduct,
|
|
Inverse, MatAdd, Trace, Transpose)
|
|
def _(expr, assumptions):
|
|
return test_closed_group(expr, assumptions, Q.complex_elements)
|
|
|
|
@ComplexElementsPredicate.register(MatPow)
|
|
def _(expr, assumptions):
|
|
# only for integer powers
|
|
base, exp = expr.args
|
|
int_exp = ask(Q.integer(exp), assumptions)
|
|
if not int_exp:
|
|
return None
|
|
non_negative = ask(~Q.negative(exp), assumptions)
|
|
if (non_negative or non_negative == False
|
|
and ask(Q.invertible(base), assumptions)):
|
|
return ask(Q.complex_elements(base), assumptions)
|
|
return None
|
|
|
|
@ComplexElementsPredicate.register(MatMul)
|
|
def _(expr, assumptions):
|
|
return MatMul_elements(Q.complex_elements, Q.complex, expr, assumptions)
|
|
|
|
@ComplexElementsPredicate.register(MatrixSlice)
|
|
def _(expr, assumptions):
|
|
return MS_elements(Q.complex_elements, expr, assumptions)
|
|
|
|
@ComplexElementsPredicate.register(BlockMatrix)
|
|
def _(expr, assumptions):
|
|
return BM_elements(Q.complex_elements, expr, assumptions)
|
|
|
|
@ComplexElementsPredicate.register(DFT)
|
|
def _(expr, assumptions):
|
|
return True
|