You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
391 lines
9.3 KiB
391 lines
9.3 KiB
from sympy.assumptions import Predicate
|
|
from sympy.multipledispatch import Dispatcher
|
|
|
|
|
|
class NegativePredicate(Predicate):
|
|
r"""
|
|
Negative number predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
``Q.negative(x)`` is true iff ``x`` is a real number and :math:`x < 0`, that is,
|
|
it is in the interval :math:`(-\infty, 0)`. Note in particular that negative
|
|
infinity is not negative.
|
|
|
|
A few important facts about negative numbers:
|
|
|
|
- Note that ``Q.nonnegative`` and ``~Q.negative`` are *not* the same
|
|
thing. ``~Q.negative(x)`` simply means that ``x`` is not negative,
|
|
whereas ``Q.nonnegative(x)`` means that ``x`` is real and not
|
|
negative, i.e., ``Q.nonnegative(x)`` is logically equivalent to
|
|
``Q.zero(x) | Q.positive(x)``. So for example, ``~Q.negative(I)`` is
|
|
true, whereas ``Q.nonnegative(I)`` is false.
|
|
|
|
- See the documentation of ``Q.real`` for more information about
|
|
related facts.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Q, ask, symbols, I
|
|
>>> x = symbols('x')
|
|
>>> ask(Q.negative(x), Q.real(x) & ~Q.positive(x) & ~Q.zero(x))
|
|
True
|
|
>>> ask(Q.negative(-1))
|
|
True
|
|
>>> ask(Q.nonnegative(I))
|
|
False
|
|
>>> ask(~Q.negative(I))
|
|
True
|
|
|
|
"""
|
|
name = 'negative'
|
|
handler = Dispatcher(
|
|
"NegativeHandler",
|
|
doc=("Handler for Q.negative. Test that an expression is strictly less"
|
|
" than zero.")
|
|
)
|
|
|
|
|
|
class NonNegativePredicate(Predicate):
|
|
"""
|
|
Nonnegative real number predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
``ask(Q.nonnegative(x))`` is true iff ``x`` belongs to the set of
|
|
positive numbers including zero.
|
|
|
|
- Note that ``Q.nonnegative`` and ``~Q.negative`` are *not* the same
|
|
thing. ``~Q.negative(x)`` simply means that ``x`` is not negative,
|
|
whereas ``Q.nonnegative(x)`` means that ``x`` is real and not
|
|
negative, i.e., ``Q.nonnegative(x)`` is logically equivalent to
|
|
``Q.zero(x) | Q.positive(x)``. So for example, ``~Q.negative(I)`` is
|
|
true, whereas ``Q.nonnegative(I)`` is false.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Q, ask, I
|
|
>>> ask(Q.nonnegative(1))
|
|
True
|
|
>>> ask(Q.nonnegative(0))
|
|
True
|
|
>>> ask(Q.nonnegative(-1))
|
|
False
|
|
>>> ask(Q.nonnegative(I))
|
|
False
|
|
>>> ask(Q.nonnegative(-I))
|
|
False
|
|
|
|
"""
|
|
name = 'nonnegative'
|
|
handler = Dispatcher(
|
|
"NonNegativeHandler",
|
|
doc=("Handler for Q.nonnegative.")
|
|
)
|
|
|
|
|
|
class NonZeroPredicate(Predicate):
|
|
"""
|
|
Nonzero real number predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
``ask(Q.nonzero(x))`` is true iff ``x`` is real and ``x`` is not zero. Note in
|
|
particular that ``Q.nonzero(x)`` is false if ``x`` is not real. Use
|
|
``~Q.zero(x)`` if you want the negation of being zero without any real
|
|
assumptions.
|
|
|
|
A few important facts about nonzero numbers:
|
|
|
|
- ``Q.nonzero`` is logically equivalent to ``Q.positive | Q.negative``.
|
|
|
|
- See the documentation of ``Q.real`` for more information about
|
|
related facts.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Q, ask, symbols, I, oo
|
|
>>> x = symbols('x')
|
|
>>> print(ask(Q.nonzero(x), ~Q.zero(x)))
|
|
None
|
|
>>> ask(Q.nonzero(x), Q.positive(x))
|
|
True
|
|
>>> ask(Q.nonzero(x), Q.zero(x))
|
|
False
|
|
>>> ask(Q.nonzero(0))
|
|
False
|
|
>>> ask(Q.nonzero(I))
|
|
False
|
|
>>> ask(~Q.zero(I))
|
|
True
|
|
>>> ask(Q.nonzero(oo))
|
|
False
|
|
|
|
"""
|
|
name = 'nonzero'
|
|
handler = Dispatcher(
|
|
"NonZeroHandler",
|
|
doc=("Handler for key 'zero'. Test that an expression is not identically"
|
|
" zero.")
|
|
)
|
|
|
|
|
|
class ZeroPredicate(Predicate):
|
|
"""
|
|
Zero number predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
``ask(Q.zero(x))`` is true iff the value of ``x`` is zero.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import ask, Q, oo, symbols
|
|
>>> x, y = symbols('x, y')
|
|
>>> ask(Q.zero(0))
|
|
True
|
|
>>> ask(Q.zero(1/oo))
|
|
True
|
|
>>> print(ask(Q.zero(0*oo)))
|
|
None
|
|
>>> ask(Q.zero(1))
|
|
False
|
|
>>> ask(Q.zero(x*y), Q.zero(x) | Q.zero(y))
|
|
True
|
|
|
|
"""
|
|
name = 'zero'
|
|
handler = Dispatcher(
|
|
"ZeroHandler",
|
|
doc="Handler for key 'zero'."
|
|
)
|
|
|
|
|
|
class NonPositivePredicate(Predicate):
|
|
"""
|
|
Nonpositive real number predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
``ask(Q.nonpositive(x))`` is true iff ``x`` belongs to the set of
|
|
negative numbers including zero.
|
|
|
|
- Note that ``Q.nonpositive`` and ``~Q.positive`` are *not* the same
|
|
thing. ``~Q.positive(x)`` simply means that ``x`` is not positive,
|
|
whereas ``Q.nonpositive(x)`` means that ``x`` is real and not
|
|
positive, i.e., ``Q.nonpositive(x)`` is logically equivalent to
|
|
`Q.negative(x) | Q.zero(x)``. So for example, ``~Q.positive(I)`` is
|
|
true, whereas ``Q.nonpositive(I)`` is false.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Q, ask, I
|
|
|
|
>>> ask(Q.nonpositive(-1))
|
|
True
|
|
>>> ask(Q.nonpositive(0))
|
|
True
|
|
>>> ask(Q.nonpositive(1))
|
|
False
|
|
>>> ask(Q.nonpositive(I))
|
|
False
|
|
>>> ask(Q.nonpositive(-I))
|
|
False
|
|
|
|
"""
|
|
name = 'nonpositive'
|
|
handler = Dispatcher(
|
|
"NonPositiveHandler",
|
|
doc="Handler for key 'nonpositive'."
|
|
)
|
|
|
|
|
|
class PositivePredicate(Predicate):
|
|
r"""
|
|
Positive real number predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
``Q.positive(x)`` is true iff ``x`` is real and `x > 0`, that is if ``x``
|
|
is in the interval `(0, \infty)`. In particular, infinity is not
|
|
positive.
|
|
|
|
A few important facts about positive numbers:
|
|
|
|
- Note that ``Q.nonpositive`` and ``~Q.positive`` are *not* the same
|
|
thing. ``~Q.positive(x)`` simply means that ``x`` is not positive,
|
|
whereas ``Q.nonpositive(x)`` means that ``x`` is real and not
|
|
positive, i.e., ``Q.nonpositive(x)`` is logically equivalent to
|
|
`Q.negative(x) | Q.zero(x)``. So for example, ``~Q.positive(I)`` is
|
|
true, whereas ``Q.nonpositive(I)`` is false.
|
|
|
|
- See the documentation of ``Q.real`` for more information about
|
|
related facts.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Q, ask, symbols, I
|
|
>>> x = symbols('x')
|
|
>>> ask(Q.positive(x), Q.real(x) & ~Q.negative(x) & ~Q.zero(x))
|
|
True
|
|
>>> ask(Q.positive(1))
|
|
True
|
|
>>> ask(Q.nonpositive(I))
|
|
False
|
|
>>> ask(~Q.positive(I))
|
|
True
|
|
|
|
"""
|
|
name = 'positive'
|
|
handler = Dispatcher(
|
|
"PositiveHandler",
|
|
doc=("Handler for key 'positive'. Test that an expression is strictly"
|
|
" greater than zero.")
|
|
)
|
|
|
|
|
|
class ExtendedPositivePredicate(Predicate):
|
|
r"""
|
|
Positive extended real number predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
``Q.extended_positive(x)`` is true iff ``x`` is extended real and
|
|
`x > 0`, that is if ``x`` is in the interval `(0, \infty]`.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import ask, I, oo, Q
|
|
>>> ask(Q.extended_positive(1))
|
|
True
|
|
>>> ask(Q.extended_positive(oo))
|
|
True
|
|
>>> ask(Q.extended_positive(I))
|
|
False
|
|
|
|
"""
|
|
name = 'extended_positive'
|
|
handler = Dispatcher("ExtendedPositiveHandler")
|
|
|
|
|
|
class ExtendedNegativePredicate(Predicate):
|
|
r"""
|
|
Negative extended real number predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
``Q.extended_negative(x)`` is true iff ``x`` is extended real and
|
|
`x < 0`, that is if ``x`` is in the interval `[-\infty, 0)`.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import ask, I, oo, Q
|
|
>>> ask(Q.extended_negative(-1))
|
|
True
|
|
>>> ask(Q.extended_negative(-oo))
|
|
True
|
|
>>> ask(Q.extended_negative(-I))
|
|
False
|
|
|
|
"""
|
|
name = 'extended_negative'
|
|
handler = Dispatcher("ExtendedNegativeHandler")
|
|
|
|
|
|
class ExtendedNonZeroPredicate(Predicate):
|
|
"""
|
|
Nonzero extended real number predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
``ask(Q.extended_nonzero(x))`` is true iff ``x`` is extended real and
|
|
``x`` is not zero.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import ask, I, oo, Q
|
|
>>> ask(Q.extended_nonzero(-1))
|
|
True
|
|
>>> ask(Q.extended_nonzero(oo))
|
|
True
|
|
>>> ask(Q.extended_nonzero(I))
|
|
False
|
|
|
|
"""
|
|
name = 'extended_nonzero'
|
|
handler = Dispatcher("ExtendedNonZeroHandler")
|
|
|
|
|
|
class ExtendedNonPositivePredicate(Predicate):
|
|
"""
|
|
Nonpositive extended real number predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
``ask(Q.extended_nonpositive(x))`` is true iff ``x`` is extended real and
|
|
``x`` is not positive.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import ask, I, oo, Q
|
|
>>> ask(Q.extended_nonpositive(-1))
|
|
True
|
|
>>> ask(Q.extended_nonpositive(oo))
|
|
False
|
|
>>> ask(Q.extended_nonpositive(0))
|
|
True
|
|
>>> ask(Q.extended_nonpositive(I))
|
|
False
|
|
|
|
"""
|
|
name = 'extended_nonpositive'
|
|
handler = Dispatcher("ExtendedNonPositiveHandler")
|
|
|
|
|
|
class ExtendedNonNegativePredicate(Predicate):
|
|
"""
|
|
Nonnegative extended real number predicate.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
``ask(Q.extended_nonnegative(x))`` is true iff ``x`` is extended real and
|
|
``x`` is not negative.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import ask, I, oo, Q
|
|
>>> ask(Q.extended_nonnegative(-1))
|
|
False
|
|
>>> ask(Q.extended_nonnegative(oo))
|
|
True
|
|
>>> ask(Q.extended_nonnegative(0))
|
|
True
|
|
>>> ask(Q.extended_nonnegative(I))
|
|
False
|
|
|
|
"""
|
|
name = 'extended_nonnegative'
|
|
handler = Dispatcher("ExtendedNonNegativeHandler")
|