You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
228 lines
8.6 KiB
228 lines
8.6 KiB
from sympy.assumptions.ask import Q
|
|
from sympy.assumptions.refine import refine
|
|
from sympy.core.expr import Expr
|
|
from sympy.core.numbers import (I, Rational, nan, pi)
|
|
from sympy.core.singleton import S
|
|
from sympy.core.symbol import Symbol
|
|
from sympy.functions.elementary.complexes import (Abs, arg, im, re, sign)
|
|
from sympy.functions.elementary.exponential import exp
|
|
from sympy.functions.elementary.miscellaneous import sqrt
|
|
from sympy.functions.elementary.trigonometric import (atan, atan2)
|
|
from sympy.abc import w, x, y, z
|
|
from sympy.core.relational import Eq, Ne
|
|
from sympy.functions.elementary.piecewise import Piecewise
|
|
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
|
|
|
|
|
def test_Abs():
|
|
assert refine(Abs(x), Q.positive(x)) == x
|
|
assert refine(1 + Abs(x), Q.positive(x)) == 1 + x
|
|
assert refine(Abs(x), Q.negative(x)) == -x
|
|
assert refine(1 + Abs(x), Q.negative(x)) == 1 - x
|
|
|
|
assert refine(Abs(x**2)) != x**2
|
|
assert refine(Abs(x**2), Q.real(x)) == x**2
|
|
|
|
|
|
def test_pow1():
|
|
assert refine((-1)**x, Q.even(x)) == 1
|
|
assert refine((-1)**x, Q.odd(x)) == -1
|
|
assert refine((-2)**x, Q.even(x)) == 2**x
|
|
|
|
# nested powers
|
|
assert refine(sqrt(x**2)) != Abs(x)
|
|
assert refine(sqrt(x**2), Q.complex(x)) != Abs(x)
|
|
assert refine(sqrt(x**2), Q.real(x)) == Abs(x)
|
|
assert refine(sqrt(x**2), Q.positive(x)) == x
|
|
assert refine((x**3)**Rational(1, 3)) != x
|
|
|
|
assert refine((x**3)**Rational(1, 3), Q.real(x)) != x
|
|
assert refine((x**3)**Rational(1, 3), Q.positive(x)) == x
|
|
|
|
assert refine(sqrt(1/x), Q.real(x)) != 1/sqrt(x)
|
|
assert refine(sqrt(1/x), Q.positive(x)) == 1/sqrt(x)
|
|
|
|
# powers of (-1)
|
|
assert refine((-1)**(x + y), Q.even(x)) == (-1)**y
|
|
assert refine((-1)**(x + y + z), Q.odd(x) & Q.odd(z)) == (-1)**y
|
|
assert refine((-1)**(x + y + 1), Q.odd(x)) == (-1)**y
|
|
assert refine((-1)**(x + y + 2), Q.odd(x)) == (-1)**(y + 1)
|
|
assert refine((-1)**(x + 3)) == (-1)**(x + 1)
|
|
|
|
# continuation
|
|
assert refine((-1)**((-1)**x/2 - S.Half), Q.integer(x)) == (-1)**x
|
|
assert refine((-1)**((-1)**x/2 + S.Half), Q.integer(x)) == (-1)**(x + 1)
|
|
assert refine((-1)**((-1)**x/2 + 5*S.Half), Q.integer(x)) == (-1)**(x + 1)
|
|
|
|
|
|
def test_pow2():
|
|
assert refine((-1)**((-1)**x/2 - 7*S.Half), Q.integer(x)) == (-1)**(x + 1)
|
|
assert refine((-1)**((-1)**x/2 - 9*S.Half), Q.integer(x)) == (-1)**x
|
|
|
|
# powers of Abs
|
|
assert refine(Abs(x)**2, Q.real(x)) == x**2
|
|
assert refine(Abs(x)**3, Q.real(x)) == Abs(x)**3
|
|
assert refine(Abs(x)**2) == Abs(x)**2
|
|
|
|
|
|
def test_exp():
|
|
x = Symbol('x', integer=True)
|
|
assert refine(exp(pi*I*2*x)) == 1
|
|
assert refine(exp(pi*I*2*(x + S.Half))) == -1
|
|
assert refine(exp(pi*I*2*(x + Rational(1, 4)))) == I
|
|
assert refine(exp(pi*I*2*(x + Rational(3, 4)))) == -I
|
|
|
|
|
|
def test_Piecewise():
|
|
assert refine(Piecewise((1, x < 0), (3, True)), (x < 0)) == 1
|
|
assert refine(Piecewise((1, x < 0), (3, True)), ~(x < 0)) == 3
|
|
assert refine(Piecewise((1, x < 0), (3, True)), (y < 0)) == \
|
|
Piecewise((1, x < 0), (3, True))
|
|
assert refine(Piecewise((1, x > 0), (3, True)), (x > 0)) == 1
|
|
assert refine(Piecewise((1, x > 0), (3, True)), ~(x > 0)) == 3
|
|
assert refine(Piecewise((1, x > 0), (3, True)), (y > 0)) == \
|
|
Piecewise((1, x > 0), (3, True))
|
|
assert refine(Piecewise((1, x <= 0), (3, True)), (x <= 0)) == 1
|
|
assert refine(Piecewise((1, x <= 0), (3, True)), ~(x <= 0)) == 3
|
|
assert refine(Piecewise((1, x <= 0), (3, True)), (y <= 0)) == \
|
|
Piecewise((1, x <= 0), (3, True))
|
|
assert refine(Piecewise((1, x >= 0), (3, True)), (x >= 0)) == 1
|
|
assert refine(Piecewise((1, x >= 0), (3, True)), ~(x >= 0)) == 3
|
|
assert refine(Piecewise((1, x >= 0), (3, True)), (y >= 0)) == \
|
|
Piecewise((1, x >= 0), (3, True))
|
|
assert refine(Piecewise((1, Eq(x, 0)), (3, True)), (Eq(x, 0)))\
|
|
== 1
|
|
assert refine(Piecewise((1, Eq(x, 0)), (3, True)), (Eq(0, x)))\
|
|
== 1
|
|
assert refine(Piecewise((1, Eq(x, 0)), (3, True)), ~(Eq(x, 0)))\
|
|
== 3
|
|
assert refine(Piecewise((1, Eq(x, 0)), (3, True)), ~(Eq(0, x)))\
|
|
== 3
|
|
assert refine(Piecewise((1, Eq(x, 0)), (3, True)), (Eq(y, 0)))\
|
|
== Piecewise((1, Eq(x, 0)), (3, True))
|
|
assert refine(Piecewise((1, Ne(x, 0)), (3, True)), (Ne(x, 0)))\
|
|
== 1
|
|
assert refine(Piecewise((1, Ne(x, 0)), (3, True)), ~(Ne(x, 0)))\
|
|
== 3
|
|
assert refine(Piecewise((1, Ne(x, 0)), (3, True)), (Ne(y, 0)))\
|
|
== Piecewise((1, Ne(x, 0)), (3, True))
|
|
|
|
|
|
def test_atan2():
|
|
assert refine(atan2(y, x), Q.real(y) & Q.positive(x)) == atan(y/x)
|
|
assert refine(atan2(y, x), Q.negative(y) & Q.positive(x)) == atan(y/x)
|
|
assert refine(atan2(y, x), Q.negative(y) & Q.negative(x)) == atan(y/x) - pi
|
|
assert refine(atan2(y, x), Q.positive(y) & Q.negative(x)) == atan(y/x) + pi
|
|
assert refine(atan2(y, x), Q.zero(y) & Q.negative(x)) == pi
|
|
assert refine(atan2(y, x), Q.positive(y) & Q.zero(x)) == pi/2
|
|
assert refine(atan2(y, x), Q.negative(y) & Q.zero(x)) == -pi/2
|
|
assert refine(atan2(y, x), Q.zero(y) & Q.zero(x)) is nan
|
|
|
|
|
|
def test_re():
|
|
assert refine(re(x), Q.real(x)) == x
|
|
assert refine(re(x), Q.imaginary(x)) is S.Zero
|
|
assert refine(re(x+y), Q.real(x) & Q.real(y)) == x + y
|
|
assert refine(re(x+y), Q.real(x) & Q.imaginary(y)) == x
|
|
assert refine(re(x*y), Q.real(x) & Q.real(y)) == x * y
|
|
assert refine(re(x*y), Q.real(x) & Q.imaginary(y)) == 0
|
|
assert refine(re(x*y*z), Q.real(x) & Q.real(y) & Q.real(z)) == x * y * z
|
|
|
|
|
|
def test_im():
|
|
assert refine(im(x), Q.imaginary(x)) == -I*x
|
|
assert refine(im(x), Q.real(x)) is S.Zero
|
|
assert refine(im(x+y), Q.imaginary(x) & Q.imaginary(y)) == -I*x - I*y
|
|
assert refine(im(x+y), Q.real(x) & Q.imaginary(y)) == -I*y
|
|
assert refine(im(x*y), Q.imaginary(x) & Q.real(y)) == -I*x*y
|
|
assert refine(im(x*y), Q.imaginary(x) & Q.imaginary(y)) == 0
|
|
assert refine(im(1/x), Q.imaginary(x)) == -I/x
|
|
assert refine(im(x*y*z), Q.imaginary(x) & Q.imaginary(y)
|
|
& Q.imaginary(z)) == -I*x*y*z
|
|
|
|
|
|
def test_complex():
|
|
assert refine(re(1/(x + I*y)), Q.real(x) & Q.real(y)) == \
|
|
x/(x**2 + y**2)
|
|
assert refine(im(1/(x + I*y)), Q.real(x) & Q.real(y)) == \
|
|
-y/(x**2 + y**2)
|
|
assert refine(re((w + I*x) * (y + I*z)), Q.real(w) & Q.real(x) & Q.real(y)
|
|
& Q.real(z)) == w*y - x*z
|
|
assert refine(im((w + I*x) * (y + I*z)), Q.real(w) & Q.real(x) & Q.real(y)
|
|
& Q.real(z)) == w*z + x*y
|
|
|
|
|
|
def test_sign():
|
|
x = Symbol('x', real = True)
|
|
assert refine(sign(x), Q.positive(x)) == 1
|
|
assert refine(sign(x), Q.negative(x)) == -1
|
|
assert refine(sign(x), Q.zero(x)) == 0
|
|
assert refine(sign(x), True) == sign(x)
|
|
assert refine(sign(Abs(x)), Q.nonzero(x)) == 1
|
|
|
|
x = Symbol('x', imaginary=True)
|
|
assert refine(sign(x), Q.positive(im(x))) == S.ImaginaryUnit
|
|
assert refine(sign(x), Q.negative(im(x))) == -S.ImaginaryUnit
|
|
assert refine(sign(x), True) == sign(x)
|
|
|
|
x = Symbol('x', complex=True)
|
|
assert refine(sign(x), Q.zero(x)) == 0
|
|
|
|
def test_arg():
|
|
x = Symbol('x', complex = True)
|
|
assert refine(arg(x), Q.positive(x)) == 0
|
|
assert refine(arg(x), Q.negative(x)) == pi
|
|
|
|
def test_func_args():
|
|
class MyClass(Expr):
|
|
# A class with nontrivial .func
|
|
|
|
def __init__(self, *args):
|
|
self.my_member = ""
|
|
|
|
@property
|
|
def func(self):
|
|
def my_func(*args):
|
|
obj = MyClass(*args)
|
|
obj.my_member = self.my_member
|
|
return obj
|
|
return my_func
|
|
|
|
x = MyClass()
|
|
x.my_member = "A very important value"
|
|
assert x.my_member == refine(x).my_member
|
|
|
|
def test_issue_refine_9384():
|
|
assert refine(Piecewise((1, x < 0), (0, True)), Q.positive(x)) == 0
|
|
assert refine(Piecewise((1, x < 0), (0, True)), Q.negative(x)) == 1
|
|
assert refine(Piecewise((1, x > 0), (0, True)), Q.positive(x)) == 1
|
|
assert refine(Piecewise((1, x > 0), (0, True)), Q.negative(x)) == 0
|
|
|
|
|
|
def test_eval_refine():
|
|
class MockExpr(Expr):
|
|
def _eval_refine(self, assumptions):
|
|
return True
|
|
|
|
mock_obj = MockExpr()
|
|
assert refine(mock_obj)
|
|
|
|
def test_refine_issue_12724():
|
|
expr1 = refine(Abs(x * y), Q.positive(x))
|
|
expr2 = refine(Abs(x * y * z), Q.positive(x))
|
|
assert expr1 == x * Abs(y)
|
|
assert expr2 == x * Abs(y * z)
|
|
y1 = Symbol('y1', real = True)
|
|
expr3 = refine(Abs(x * y1**2 * z), Q.positive(x))
|
|
assert expr3 == x * y1**2 * Abs(z)
|
|
|
|
|
|
def test_matrixelement():
|
|
x = MatrixSymbol('x', 3, 3)
|
|
i = Symbol('i', positive = True)
|
|
j = Symbol('j', positive = True)
|
|
assert refine(x[0, 1], Q.symmetric(x)) == x[0, 1]
|
|
assert refine(x[1, 0], Q.symmetric(x)) == x[0, 1]
|
|
assert refine(x[i, j], Q.symmetric(x)) == x[j, i]
|
|
assert refine(x[j, i], Q.symmetric(x)) == x[j, i]
|