You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
399 lines
12 KiB
399 lines
12 KiB
"""
|
|
Singularities
|
|
=============
|
|
|
|
This module implements algorithms for finding singularities for a function
|
|
and identifying types of functions.
|
|
|
|
The differential calculus methods in this module include methods to identify
|
|
the following function types in the given ``Interval``:
|
|
- Increasing
|
|
- Strictly Increasing
|
|
- Decreasing
|
|
- Strictly Decreasing
|
|
- Monotonic
|
|
|
|
"""
|
|
|
|
from sympy.core.power import Pow
|
|
from sympy.core.singleton import S
|
|
from sympy.core.symbol import Symbol
|
|
from sympy.core.sympify import sympify
|
|
from sympy.functions.elementary.exponential import log
|
|
from sympy.functions.elementary.trigonometric import sec, csc, cot, tan, cos
|
|
from sympy.utilities.misc import filldedent
|
|
|
|
|
|
def singularities(expression, symbol, domain=None):
|
|
"""
|
|
Find singularities of a given function.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
expression : Expr
|
|
The target function in which singularities need to be found.
|
|
symbol : Symbol
|
|
The symbol over the values of which the singularity in
|
|
expression in being searched for.
|
|
|
|
Returns
|
|
=======
|
|
|
|
Set
|
|
A set of values for ``symbol`` for which ``expression`` has a
|
|
singularity. An ``EmptySet`` is returned if ``expression`` has no
|
|
singularities for any given value of ``Symbol``.
|
|
|
|
Raises
|
|
======
|
|
|
|
NotImplementedError
|
|
Methods for determining the singularities of this function have
|
|
not been developed.
|
|
|
|
Notes
|
|
=====
|
|
|
|
This function does not find non-isolated singularities
|
|
nor does it find branch points of the expression.
|
|
|
|
Currently supported functions are:
|
|
- univariate continuous (real or complex) functions
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://en.wikipedia.org/wiki/Mathematical_singularity
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import singularities, Symbol, log
|
|
>>> x = Symbol('x', real=True)
|
|
>>> y = Symbol('y', real=False)
|
|
>>> singularities(x**2 + x + 1, x)
|
|
EmptySet
|
|
>>> singularities(1/(x + 1), x)
|
|
{-1}
|
|
>>> singularities(1/(y**2 + 1), y)
|
|
{-I, I}
|
|
>>> singularities(1/(y**3 + 1), y)
|
|
{-1, 1/2 - sqrt(3)*I/2, 1/2 + sqrt(3)*I/2}
|
|
>>> singularities(log(x), x)
|
|
{0}
|
|
|
|
"""
|
|
from sympy.solvers.solveset import solveset
|
|
|
|
if domain is None:
|
|
domain = S.Reals if symbol.is_real else S.Complexes
|
|
try:
|
|
sings = S.EmptySet
|
|
for i in expression.rewrite([sec, csc, cot, tan], cos).atoms(Pow):
|
|
if i.exp.is_infinite:
|
|
raise NotImplementedError
|
|
if i.exp.is_negative:
|
|
sings += solveset(i.base, symbol, domain)
|
|
for i in expression.atoms(log):
|
|
sings += solveset(i.args[0], symbol, domain)
|
|
return sings
|
|
except NotImplementedError:
|
|
raise NotImplementedError(filldedent('''
|
|
Methods for determining the singularities
|
|
of this function have not been developed.'''))
|
|
|
|
|
|
###########################################################################
|
|
# DIFFERENTIAL CALCULUS METHODS #
|
|
###########################################################################
|
|
|
|
|
|
def monotonicity_helper(expression, predicate, interval=S.Reals, symbol=None):
|
|
"""
|
|
Helper function for functions checking function monotonicity.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
expression : Expr
|
|
The target function which is being checked
|
|
predicate : function
|
|
The property being tested for. The function takes in an integer
|
|
and returns a boolean. The integer input is the derivative and
|
|
the boolean result should be true if the property is being held,
|
|
and false otherwise.
|
|
interval : Set, optional
|
|
The range of values in which we are testing, defaults to all reals.
|
|
symbol : Symbol, optional
|
|
The symbol present in expression which gets varied over the given range.
|
|
|
|
It returns a boolean indicating whether the interval in which
|
|
the function's derivative satisfies given predicate is a superset
|
|
of the given interval.
|
|
|
|
Returns
|
|
=======
|
|
|
|
Boolean
|
|
True if ``predicate`` is true for all the derivatives when ``symbol``
|
|
is varied in ``range``, False otherwise.
|
|
|
|
"""
|
|
from sympy.solvers.solveset import solveset
|
|
|
|
expression = sympify(expression)
|
|
free = expression.free_symbols
|
|
|
|
if symbol is None:
|
|
if len(free) > 1:
|
|
raise NotImplementedError(
|
|
'The function has not yet been implemented'
|
|
' for all multivariate expressions.'
|
|
)
|
|
|
|
variable = symbol or (free.pop() if free else Symbol('x'))
|
|
derivative = expression.diff(variable)
|
|
predicate_interval = solveset(predicate(derivative), variable, S.Reals)
|
|
return interval.is_subset(predicate_interval)
|
|
|
|
|
|
def is_increasing(expression, interval=S.Reals, symbol=None):
|
|
"""
|
|
Return whether the function is increasing in the given interval.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
expression : Expr
|
|
The target function which is being checked.
|
|
interval : Set, optional
|
|
The range of values in which we are testing (defaults to set of
|
|
all real numbers).
|
|
symbol : Symbol, optional
|
|
The symbol present in expression which gets varied over the given range.
|
|
|
|
Returns
|
|
=======
|
|
|
|
Boolean
|
|
True if ``expression`` is increasing (either strictly increasing or
|
|
constant) in the given ``interval``, False otherwise.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import is_increasing
|
|
>>> from sympy.abc import x, y
|
|
>>> from sympy import S, Interval, oo
|
|
>>> is_increasing(x**3 - 3*x**2 + 4*x, S.Reals)
|
|
True
|
|
>>> is_increasing(-x**2, Interval(-oo, 0))
|
|
True
|
|
>>> is_increasing(-x**2, Interval(0, oo))
|
|
False
|
|
>>> is_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval(-2, 3))
|
|
False
|
|
>>> is_increasing(x**2 + y, Interval(1, 2), x)
|
|
True
|
|
|
|
"""
|
|
return monotonicity_helper(expression, lambda x: x >= 0, interval, symbol)
|
|
|
|
|
|
def is_strictly_increasing(expression, interval=S.Reals, symbol=None):
|
|
"""
|
|
Return whether the function is strictly increasing in the given interval.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
expression : Expr
|
|
The target function which is being checked.
|
|
interval : Set, optional
|
|
The range of values in which we are testing (defaults to set of
|
|
all real numbers).
|
|
symbol : Symbol, optional
|
|
The symbol present in expression which gets varied over the given range.
|
|
|
|
Returns
|
|
=======
|
|
|
|
Boolean
|
|
True if ``expression`` is strictly increasing in the given ``interval``,
|
|
False otherwise.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import is_strictly_increasing
|
|
>>> from sympy.abc import x, y
|
|
>>> from sympy import Interval, oo
|
|
>>> is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.Ropen(-oo, -2))
|
|
True
|
|
>>> is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.Lopen(3, oo))
|
|
True
|
|
>>> is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.open(-2, 3))
|
|
False
|
|
>>> is_strictly_increasing(-x**2, Interval(0, oo))
|
|
False
|
|
>>> is_strictly_increasing(-x**2 + y, Interval(-oo, 0), x)
|
|
False
|
|
|
|
"""
|
|
return monotonicity_helper(expression, lambda x: x > 0, interval, symbol)
|
|
|
|
|
|
def is_decreasing(expression, interval=S.Reals, symbol=None):
|
|
"""
|
|
Return whether the function is decreasing in the given interval.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
expression : Expr
|
|
The target function which is being checked.
|
|
interval : Set, optional
|
|
The range of values in which we are testing (defaults to set of
|
|
all real numbers).
|
|
symbol : Symbol, optional
|
|
The symbol present in expression which gets varied over the given range.
|
|
|
|
Returns
|
|
=======
|
|
|
|
Boolean
|
|
True if ``expression`` is decreasing (either strictly decreasing or
|
|
constant) in the given ``interval``, False otherwise.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import is_decreasing
|
|
>>> from sympy.abc import x, y
|
|
>>> from sympy import S, Interval, oo
|
|
>>> is_decreasing(1/(x**2 - 3*x), Interval.open(S(3)/2, 3))
|
|
True
|
|
>>> is_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3))
|
|
True
|
|
>>> is_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo))
|
|
True
|
|
>>> is_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, S(3)/2))
|
|
False
|
|
>>> is_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, 1.5))
|
|
False
|
|
>>> is_decreasing(-x**2, Interval(-oo, 0))
|
|
False
|
|
>>> is_decreasing(-x**2 + y, Interval(-oo, 0), x)
|
|
False
|
|
|
|
"""
|
|
return monotonicity_helper(expression, lambda x: x <= 0, interval, symbol)
|
|
|
|
|
|
def is_strictly_decreasing(expression, interval=S.Reals, symbol=None):
|
|
"""
|
|
Return whether the function is strictly decreasing in the given interval.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
expression : Expr
|
|
The target function which is being checked.
|
|
interval : Set, optional
|
|
The range of values in which we are testing (defaults to set of
|
|
all real numbers).
|
|
symbol : Symbol, optional
|
|
The symbol present in expression which gets varied over the given range.
|
|
|
|
Returns
|
|
=======
|
|
|
|
Boolean
|
|
True if ``expression`` is strictly decreasing in the given ``interval``,
|
|
False otherwise.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import is_strictly_decreasing
|
|
>>> from sympy.abc import x, y
|
|
>>> from sympy import S, Interval, oo
|
|
>>> is_strictly_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo))
|
|
True
|
|
>>> is_strictly_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, S(3)/2))
|
|
False
|
|
>>> is_strictly_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, 1.5))
|
|
False
|
|
>>> is_strictly_decreasing(-x**2, Interval(-oo, 0))
|
|
False
|
|
>>> is_strictly_decreasing(-x**2 + y, Interval(-oo, 0), x)
|
|
False
|
|
|
|
"""
|
|
return monotonicity_helper(expression, lambda x: x < 0, interval, symbol)
|
|
|
|
|
|
def is_monotonic(expression, interval=S.Reals, symbol=None):
|
|
"""
|
|
Return whether the function is monotonic in the given interval.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
expression : Expr
|
|
The target function which is being checked.
|
|
interval : Set, optional
|
|
The range of values in which we are testing (defaults to set of
|
|
all real numbers).
|
|
symbol : Symbol, optional
|
|
The symbol present in expression which gets varied over the given range.
|
|
|
|
Returns
|
|
=======
|
|
|
|
Boolean
|
|
True if ``expression`` is monotonic in the given ``interval``,
|
|
False otherwise.
|
|
|
|
Raises
|
|
======
|
|
|
|
NotImplementedError
|
|
Monotonicity check has not been implemented for the queried function.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import is_monotonic
|
|
>>> from sympy.abc import x, y
|
|
>>> from sympy import S, Interval, oo
|
|
>>> is_monotonic(1/(x**2 - 3*x), Interval.open(S(3)/2, 3))
|
|
True
|
|
>>> is_monotonic(1/(x**2 - 3*x), Interval.open(1.5, 3))
|
|
True
|
|
>>> is_monotonic(1/(x**2 - 3*x), Interval.Lopen(3, oo))
|
|
True
|
|
>>> is_monotonic(x**3 - 3*x**2 + 4*x, S.Reals)
|
|
True
|
|
>>> is_monotonic(-x**2, S.Reals)
|
|
False
|
|
>>> is_monotonic(x**2 + y + 1, Interval(1, 2), x)
|
|
True
|
|
|
|
"""
|
|
from sympy.solvers.solveset import solveset
|
|
|
|
expression = sympify(expression)
|
|
|
|
free = expression.free_symbols
|
|
if symbol is None and len(free) > 1:
|
|
raise NotImplementedError(
|
|
'is_monotonic has not yet been implemented'
|
|
' for all multivariate expressions.'
|
|
)
|
|
|
|
variable = symbol or (free.pop() if free else Symbol('x'))
|
|
turning_points = solveset(expression.diff(variable), variable, interval)
|
|
return interval.intersection(turning_points) is S.EmptySet
|