You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
665 lines
26 KiB
665 lines
26 KiB
from sympy.core.numbers import (Float, Rational, oo, pi)
|
|
from sympy.core.singleton import S
|
|
from sympy.core.symbol import (Symbol, symbols)
|
|
from sympy.functions.elementary.complexes import Abs
|
|
from sympy.functions.elementary.miscellaneous import sqrt
|
|
from sympy.functions.elementary.trigonometric import (acos, cos, sin)
|
|
from sympy.functions.elementary.trigonometric import tan
|
|
from sympy.geometry import (Circle, Ellipse, GeometryError, Point, Point2D,
|
|
Polygon, Ray, RegularPolygon, Segment, Triangle,
|
|
are_similar, convex_hull, intersection, Line, Ray2D)
|
|
from sympy.testing.pytest import raises, slow, warns
|
|
from sympy.core.random import verify_numerically
|
|
from sympy.geometry.polygon import rad, deg
|
|
from sympy.integrals.integrals import integrate
|
|
|
|
|
|
def feq(a, b):
|
|
"""Test if two floating point values are 'equal'."""
|
|
t_float = Float("1.0E-10")
|
|
return -t_float < a - b < t_float
|
|
|
|
@slow
|
|
def test_polygon():
|
|
x = Symbol('x', real=True)
|
|
y = Symbol('y', real=True)
|
|
q = Symbol('q', real=True)
|
|
u = Symbol('u', real=True)
|
|
v = Symbol('v', real=True)
|
|
w = Symbol('w', real=True)
|
|
x1 = Symbol('x1', real=True)
|
|
half = S.Half
|
|
a, b, c = Point(0, 0), Point(2, 0), Point(3, 3)
|
|
t = Triangle(a, b, c)
|
|
assert Polygon(Point(0, 0)) == Point(0, 0)
|
|
assert Polygon(a, Point(1, 0), b, c) == t
|
|
assert Polygon(Point(1, 0), b, c, a) == t
|
|
assert Polygon(b, c, a, Point(1, 0)) == t
|
|
# 2 "remove folded" tests
|
|
assert Polygon(a, Point(3, 0), b, c) == t
|
|
assert Polygon(a, b, Point(3, -1), b, c) == t
|
|
# remove multiple collinear points
|
|
assert Polygon(Point(-4, 15), Point(-11, 15), Point(-15, 15),
|
|
Point(-15, 33/5), Point(-15, -87/10), Point(-15, -15),
|
|
Point(-42/5, -15), Point(-2, -15), Point(7, -15), Point(15, -15),
|
|
Point(15, -3), Point(15, 10), Point(15, 15)) == \
|
|
Polygon(Point(-15, -15), Point(15, -15), Point(15, 15), Point(-15, 15))
|
|
|
|
p1 = Polygon(
|
|
Point(0, 0), Point(3, -1),
|
|
Point(6, 0), Point(4, 5),
|
|
Point(2, 3), Point(0, 3))
|
|
p2 = Polygon(
|
|
Point(6, 0), Point(3, -1),
|
|
Point(0, 0), Point(0, 3),
|
|
Point(2, 3), Point(4, 5))
|
|
p3 = Polygon(
|
|
Point(0, 0), Point(3, 0),
|
|
Point(5, 2), Point(4, 4))
|
|
p4 = Polygon(
|
|
Point(0, 0), Point(4, 4),
|
|
Point(5, 2), Point(3, 0))
|
|
p5 = Polygon(
|
|
Point(0, 0), Point(4, 4),
|
|
Point(0, 4))
|
|
p6 = Polygon(
|
|
Point(-11, 1), Point(-9, 6.6),
|
|
Point(-4, -3), Point(-8.4, -8.7))
|
|
p7 = Polygon(
|
|
Point(x, y), Point(q, u),
|
|
Point(v, w))
|
|
p8 = Polygon(
|
|
Point(x, y), Point(v, w),
|
|
Point(q, u))
|
|
p9 = Polygon(
|
|
Point(0, 0), Point(4, 4),
|
|
Point(3, 0), Point(5, 2))
|
|
p10 = Polygon(
|
|
Point(0, 2), Point(2, 2),
|
|
Point(0, 0), Point(2, 0))
|
|
p11 = Polygon(Point(0, 0), 1, n=3)
|
|
p12 = Polygon(Point(0, 0), 1, 0, n=3)
|
|
|
|
r = Ray(Point(-9, 6.6), Point(-9, 5.5))
|
|
#
|
|
# General polygon
|
|
#
|
|
assert p1 == p2
|
|
assert len(p1.args) == 6
|
|
assert len(p1.sides) == 6
|
|
assert p1.perimeter == 5 + 2*sqrt(10) + sqrt(29) + sqrt(8)
|
|
assert p1.area == 22
|
|
assert not p1.is_convex()
|
|
assert Polygon((-1, 1), (2, -1), (2, 1), (-1, -1), (3, 0)
|
|
).is_convex() is False
|
|
# ensure convex for both CW and CCW point specification
|
|
assert p3.is_convex()
|
|
assert p4.is_convex()
|
|
dict5 = p5.angles
|
|
assert dict5[Point(0, 0)] == pi / 4
|
|
assert dict5[Point(0, 4)] == pi / 2
|
|
assert p5.encloses_point(Point(x, y)) is None
|
|
assert p5.encloses_point(Point(1, 3))
|
|
assert p5.encloses_point(Point(0, 0)) is False
|
|
assert p5.encloses_point(Point(4, 0)) is False
|
|
assert p1.encloses(Circle(Point(2.5, 2.5), 5)) is False
|
|
assert p1.encloses(Ellipse(Point(2.5, 2), 5, 6)) is False
|
|
assert p5.plot_interval('x') == [x, 0, 1]
|
|
assert p5.distance(
|
|
Polygon(Point(10, 10), Point(14, 14), Point(10, 14))) == 6 * sqrt(2)
|
|
assert p5.distance(
|
|
Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4
|
|
with warns(UserWarning, \
|
|
match="Polygons may intersect producing erroneous output"):
|
|
Polygon(Point(0, 0), Point(1, 0), Point(1, 1)).distance(
|
|
Polygon(Point(0, 0), Point(0, 1), Point(1, 1)))
|
|
assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4)))
|
|
assert hash(p1) == hash(p2)
|
|
assert hash(p7) == hash(p8)
|
|
assert hash(p3) != hash(p9)
|
|
assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0))
|
|
assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5
|
|
assert p5 != Point(0, 4)
|
|
assert Point(0, 1) in p5
|
|
assert p5.arbitrary_point('t').subs(Symbol('t', real=True), 0) == \
|
|
Point(0, 0)
|
|
raises(ValueError, lambda: Polygon(
|
|
Point(x, 0), Point(0, y), Point(x, y)).arbitrary_point('x'))
|
|
assert p6.intersection(r) == [Point(-9, Rational(-84, 13)), Point(-9, Rational(33, 5))]
|
|
assert p10.area == 0
|
|
assert p11 == RegularPolygon(Point(0, 0), 1, 3, 0)
|
|
assert p11 == p12
|
|
assert p11.vertices[0] == Point(1, 0)
|
|
assert p11.args[0] == Point(0, 0)
|
|
p11.spin(pi/2)
|
|
assert p11.vertices[0] == Point(0, 1)
|
|
#
|
|
# Regular polygon
|
|
#
|
|
p1 = RegularPolygon(Point(0, 0), 10, 5)
|
|
p2 = RegularPolygon(Point(0, 0), 5, 5)
|
|
raises(GeometryError, lambda: RegularPolygon(Point(0, 0), Point(0,
|
|
1), Point(1, 1)))
|
|
raises(GeometryError, lambda: RegularPolygon(Point(0, 0), 1, 2))
|
|
raises(ValueError, lambda: RegularPolygon(Point(0, 0), 1, 2.5))
|
|
|
|
assert p1 != p2
|
|
assert p1.interior_angle == pi*Rational(3, 5)
|
|
assert p1.exterior_angle == pi*Rational(2, 5)
|
|
assert p2.apothem == 5*cos(pi/5)
|
|
assert p2.circumcenter == p1.circumcenter == Point(0, 0)
|
|
assert p1.circumradius == p1.radius == 10
|
|
assert p2.circumcircle == Circle(Point(0, 0), 5)
|
|
assert p2.incircle == Circle(Point(0, 0), p2.apothem)
|
|
assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4)
|
|
p2.spin(pi / 10)
|
|
dict1 = p2.angles
|
|
assert dict1[Point(0, 5)] == 3 * pi / 5
|
|
assert p1.is_convex()
|
|
assert p1.rotation == 0
|
|
assert p1.encloses_point(Point(0, 0))
|
|
assert p1.encloses_point(Point(11, 0)) is False
|
|
assert p2.encloses_point(Point(0, 4.9))
|
|
p1.spin(pi/3)
|
|
assert p1.rotation == pi/3
|
|
assert p1.vertices[0] == Point(5, 5*sqrt(3))
|
|
for var in p1.args:
|
|
if isinstance(var, Point):
|
|
assert var == Point(0, 0)
|
|
else:
|
|
assert var in (5, 10, pi / 3)
|
|
assert p1 != Point(0, 0)
|
|
assert p1 != p5
|
|
|
|
# while spin works in place (notice that rotation is 2pi/3 below)
|
|
# rotate returns a new object
|
|
p1_old = p1
|
|
assert p1.rotate(pi/3) == RegularPolygon(Point(0, 0), 10, 5, pi*Rational(2, 3))
|
|
assert p1 == p1_old
|
|
|
|
assert p1.area == (-250*sqrt(5) + 1250)/(4*tan(pi/5))
|
|
assert p1.length == 20*sqrt(-sqrt(5)/8 + Rational(5, 8))
|
|
assert p1.scale(2, 2) == \
|
|
RegularPolygon(p1.center, p1.radius*2, p1._n, p1.rotation)
|
|
assert RegularPolygon((0, 0), 1, 4).scale(2, 3) == \
|
|
Polygon(Point(2, 0), Point(0, 3), Point(-2, 0), Point(0, -3))
|
|
|
|
assert repr(p1) == str(p1)
|
|
|
|
#
|
|
# Angles
|
|
#
|
|
angles = p4.angles
|
|
assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
|
|
assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
|
|
assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
|
|
assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))
|
|
|
|
angles = p3.angles
|
|
assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
|
|
assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
|
|
assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
|
|
assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))
|
|
|
|
#
|
|
# Triangle
|
|
#
|
|
p1 = Point(0, 0)
|
|
p2 = Point(5, 0)
|
|
p3 = Point(0, 5)
|
|
t1 = Triangle(p1, p2, p3)
|
|
t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4))))
|
|
t3 = Triangle(p1, Point(x1, 0), Point(0, x1))
|
|
s1 = t1.sides
|
|
assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2)
|
|
raises(GeometryError, lambda: Triangle(Point(0, 0)))
|
|
|
|
# Basic stuff
|
|
assert Triangle(p1, p1, p1) == p1
|
|
assert Triangle(p2, p2*2, p2*3) == Segment(p2, p2*3)
|
|
assert t1.area == Rational(25, 2)
|
|
assert t1.is_right()
|
|
assert t2.is_right() is False
|
|
assert t3.is_right()
|
|
assert p1 in t1
|
|
assert t1.sides[0] in t1
|
|
assert Segment((0, 0), (1, 0)) in t1
|
|
assert Point(5, 5) not in t2
|
|
assert t1.is_convex()
|
|
assert feq(t1.angles[p1].evalf(), pi.evalf()/2)
|
|
|
|
assert t1.is_equilateral() is False
|
|
assert t2.is_equilateral()
|
|
assert t3.is_equilateral() is False
|
|
assert are_similar(t1, t2) is False
|
|
assert are_similar(t1, t3)
|
|
assert are_similar(t2, t3) is False
|
|
assert t1.is_similar(Point(0, 0)) is False
|
|
assert t1.is_similar(t2) is False
|
|
|
|
# Bisectors
|
|
bisectors = t1.bisectors()
|
|
assert bisectors[p1] == Segment(
|
|
p1, Point(Rational(5, 2), Rational(5, 2)))
|
|
assert t2.bisectors()[p2] == Segment(
|
|
Point(5, 0), Point(Rational(5, 4), 5*sqrt(3)/4))
|
|
p4 = Point(0, x1)
|
|
assert t3.bisectors()[p4] == Segment(p4, Point(x1*(sqrt(2) - 1), 0))
|
|
ic = (250 - 125*sqrt(2))/50
|
|
assert t1.incenter == Point(ic, ic)
|
|
|
|
# Inradius
|
|
assert t1.inradius == t1.incircle.radius == 5 - 5*sqrt(2)/2
|
|
assert t2.inradius == t2.incircle.radius == 5*sqrt(3)/6
|
|
assert t3.inradius == t3.incircle.radius == x1**2/((2 + sqrt(2))*Abs(x1))
|
|
|
|
# Exradius
|
|
assert t1.exradii[t1.sides[2]] == 5*sqrt(2)/2
|
|
|
|
# Excenters
|
|
assert t1.excenters[t1.sides[2]] == Point2D(25*sqrt(2), -5*sqrt(2)/2)
|
|
|
|
# Circumcircle
|
|
assert t1.circumcircle.center == Point(2.5, 2.5)
|
|
|
|
# Medians + Centroid
|
|
m = t1.medians
|
|
assert t1.centroid == Point(Rational(5, 3), Rational(5, 3))
|
|
assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
|
|
assert t3.medians[p1] == Segment(p1, Point(x1/2, x1/2))
|
|
assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid]
|
|
assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5))
|
|
|
|
# Nine-point circle
|
|
assert t1.nine_point_circle == Circle(Point(2.5, 0),
|
|
Point(0, 2.5), Point(2.5, 2.5))
|
|
assert t1.nine_point_circle == Circle(Point(0, 0),
|
|
Point(0, 2.5), Point(2.5, 2.5))
|
|
|
|
# Perpendicular
|
|
altitudes = t1.altitudes
|
|
assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
|
|
assert altitudes[p2].equals(s1[0])
|
|
assert altitudes[p3] == s1[2]
|
|
assert t1.orthocenter == p1
|
|
t = S('''Triangle(
|
|
Point(100080156402737/5000000000000, 79782624633431/500000000000),
|
|
Point(39223884078253/2000000000000, 156345163124289/1000000000000),
|
|
Point(31241359188437/1250000000000, 338338270939941/1000000000000000))''')
|
|
assert t.orthocenter == S('''Point(-780660869050599840216997'''
|
|
'''79471538701955848721853/80368430960602242240789074233100000000000000,'''
|
|
'''20151573611150265741278060334545897615974257/16073686192120448448157'''
|
|
'''8148466200000000000)''')
|
|
|
|
# Ensure
|
|
assert len(intersection(*bisectors.values())) == 1
|
|
assert len(intersection(*altitudes.values())) == 1
|
|
assert len(intersection(*m.values())) == 1
|
|
|
|
# Distance
|
|
p1 = Polygon(
|
|
Point(0, 0), Point(1, 0),
|
|
Point(1, 1), Point(0, 1))
|
|
p2 = Polygon(
|
|
Point(0, Rational(5)/4), Point(1, Rational(5)/4),
|
|
Point(1, Rational(9)/4), Point(0, Rational(9)/4))
|
|
p3 = Polygon(
|
|
Point(1, 2), Point(2, 2),
|
|
Point(2, 1))
|
|
p4 = Polygon(
|
|
Point(1, 1), Point(Rational(6)/5, 1),
|
|
Point(1, Rational(6)/5))
|
|
pt1 = Point(half, half)
|
|
pt2 = Point(1, 1)
|
|
|
|
'''Polygon to Point'''
|
|
assert p1.distance(pt1) == half
|
|
assert p1.distance(pt2) == 0
|
|
assert p2.distance(pt1) == Rational(3)/4
|
|
assert p3.distance(pt2) == sqrt(2)/2
|
|
|
|
'''Polygon to Polygon'''
|
|
# p1.distance(p2) emits a warning
|
|
with warns(UserWarning, \
|
|
match="Polygons may intersect producing erroneous output"):
|
|
assert p1.distance(p2) == half/2
|
|
|
|
assert p1.distance(p3) == sqrt(2)/2
|
|
|
|
# p3.distance(p4) emits a warning
|
|
with warns(UserWarning, \
|
|
match="Polygons may intersect producing erroneous output"):
|
|
assert p3.distance(p4) == (sqrt(2)/2 - sqrt(Rational(2)/25)/2)
|
|
|
|
|
|
def test_convex_hull():
|
|
p = [Point(-5, -1), Point(-2, 1), Point(-2, -1), Point(-1, -3), \
|
|
Point(0, 0), Point(1, 1), Point(2, 2), Point(2, -1), Point(3, 1), \
|
|
Point(4, -1), Point(6, 2)]
|
|
ch = Polygon(p[0], p[3], p[9], p[10], p[6], p[1])
|
|
#test handling of duplicate points
|
|
p.append(p[3])
|
|
|
|
#more than 3 collinear points
|
|
another_p = [Point(-45, -85), Point(-45, 85), Point(-45, 26), \
|
|
Point(-45, -24)]
|
|
ch2 = Segment(another_p[0], another_p[1])
|
|
|
|
assert convex_hull(*another_p) == ch2
|
|
assert convex_hull(*p) == ch
|
|
assert convex_hull(p[0]) == p[0]
|
|
assert convex_hull(p[0], p[1]) == Segment(p[0], p[1])
|
|
|
|
# no unique points
|
|
assert convex_hull(*[p[-1]]*3) == p[-1]
|
|
|
|
# collection of items
|
|
assert convex_hull(*[Point(0, 0), \
|
|
Segment(Point(1, 0), Point(1, 1)), \
|
|
RegularPolygon(Point(2, 0), 2, 4)]) == \
|
|
Polygon(Point(0, 0), Point(2, -2), Point(4, 0), Point(2, 2))
|
|
|
|
|
|
def test_encloses():
|
|
# square with a dimpled left side
|
|
s = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1), \
|
|
Point(S.Half, S.Half))
|
|
# the following is True if the polygon isn't treated as closing on itself
|
|
assert s.encloses(Point(0, S.Half)) is False
|
|
assert s.encloses(Point(S.Half, S.Half)) is False # it's a vertex
|
|
assert s.encloses(Point(Rational(3, 4), S.Half)) is True
|
|
|
|
|
|
def test_triangle_kwargs():
|
|
assert Triangle(sss=(3, 4, 5)) == \
|
|
Triangle(Point(0, 0), Point(3, 0), Point(3, 4))
|
|
assert Triangle(asa=(30, 2, 30)) == \
|
|
Triangle(Point(0, 0), Point(2, 0), Point(1, sqrt(3)/3))
|
|
assert Triangle(sas=(1, 45, 2)) == \
|
|
Triangle(Point(0, 0), Point(2, 0), Point(sqrt(2)/2, sqrt(2)/2))
|
|
assert Triangle(sss=(1, 2, 5)) is None
|
|
assert deg(rad(180)) == 180
|
|
|
|
|
|
def test_transform():
|
|
pts = [Point(0, 0), Point(S.Half, Rational(1, 4)), Point(1, 1)]
|
|
pts_out = [Point(-4, -10), Point(-3, Rational(-37, 4)), Point(-2, -7)]
|
|
assert Triangle(*pts).scale(2, 3, (4, 5)) == Triangle(*pts_out)
|
|
assert RegularPolygon((0, 0), 1, 4).scale(2, 3, (4, 5)) == \
|
|
Polygon(Point(-2, -10), Point(-4, -7), Point(-6, -10), Point(-4, -13))
|
|
# Checks for symmetric scaling
|
|
assert RegularPolygon((0, 0), 1, 4).scale(2, 2) == \
|
|
RegularPolygon(Point2D(0, 0), 2, 4, 0)
|
|
|
|
def test_reflect():
|
|
x = Symbol('x', real=True)
|
|
y = Symbol('y', real=True)
|
|
b = Symbol('b')
|
|
m = Symbol('m')
|
|
l = Line((0, b), slope=m)
|
|
p = Point(x, y)
|
|
r = p.reflect(l)
|
|
dp = l.perpendicular_segment(p).length
|
|
dr = l.perpendicular_segment(r).length
|
|
|
|
assert verify_numerically(dp, dr)
|
|
|
|
assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=oo)) \
|
|
== Triangle(Point(5, 0), Point(4, 0), Point(4, 2))
|
|
assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=oo)) \
|
|
== Triangle(Point(-1, 0), Point(-2, 0), Point(-2, 2))
|
|
assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=0)) \
|
|
== Triangle(Point(1, 6), Point(2, 6), Point(2, 4))
|
|
assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=0)) \
|
|
== Triangle(Point(1, 0), Point(2, 0), Point(2, -2))
|
|
|
|
def test_bisectors():
|
|
p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
|
|
p = Polygon(Point(0, 0), Point(2, 0), Point(1, 1), Point(0, 3))
|
|
q = Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(-1, 5))
|
|
poly = Polygon(Point(3, 4), Point(0, 0), Point(8, 7), Point(-1, 1), Point(19, -19))
|
|
t = Triangle(p1, p2, p3)
|
|
assert t.bisectors()[p2] == Segment(Point(1, 0), Point(0, sqrt(2) - 1))
|
|
assert p.bisectors()[Point2D(0, 3)] == Ray2D(Point2D(0, 3), \
|
|
Point2D(sin(acos(2*sqrt(5)/5)/2), 3 - cos(acos(2*sqrt(5)/5)/2)))
|
|
assert q.bisectors()[Point2D(-1, 5)] == \
|
|
Ray2D(Point2D(-1, 5), Point2D(-1 + sqrt(29)*(5*sin(acos(9*sqrt(145)/145)/2) + \
|
|
2*cos(acos(9*sqrt(145)/145)/2))/29, sqrt(29)*(-5*cos(acos(9*sqrt(145)/145)/2) + \
|
|
2*sin(acos(9*sqrt(145)/145)/2))/29 + 5))
|
|
assert poly.bisectors()[Point2D(-1, 1)] == Ray2D(Point2D(-1, 1), \
|
|
Point2D(-1 + sin(acos(sqrt(26)/26)/2 + pi/4), 1 - sin(-acos(sqrt(26)/26)/2 + pi/4)))
|
|
|
|
def test_incenter():
|
|
assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).incenter \
|
|
== Point(1 - sqrt(2)/2, 1 - sqrt(2)/2)
|
|
|
|
def test_inradius():
|
|
assert Triangle(Point(0, 0), Point(4, 0), Point(0, 3)).inradius == 1
|
|
|
|
def test_incircle():
|
|
assert Triangle(Point(0, 0), Point(2, 0), Point(0, 2)).incircle \
|
|
== Circle(Point(2 - sqrt(2), 2 - sqrt(2)), 2 - sqrt(2))
|
|
|
|
def test_exradii():
|
|
t = Triangle(Point(0, 0), Point(6, 0), Point(0, 2))
|
|
assert t.exradii[t.sides[2]] == (-2 + sqrt(10))
|
|
|
|
def test_medians():
|
|
t = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
|
|
assert t.medians[Point(0, 0)] == Segment(Point(0, 0), Point(S.Half, S.Half))
|
|
|
|
def test_medial():
|
|
assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).medial \
|
|
== Triangle(Point(S.Half, 0), Point(S.Half, S.Half), Point(0, S.Half))
|
|
|
|
def test_nine_point_circle():
|
|
assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).nine_point_circle \
|
|
== Circle(Point2D(Rational(1, 4), Rational(1, 4)), sqrt(2)/4)
|
|
|
|
def test_eulerline():
|
|
assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).eulerline \
|
|
== Line(Point2D(0, 0), Point2D(S.Half, S.Half))
|
|
assert Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3))).eulerline \
|
|
== Point2D(5, 5*sqrt(3)/3)
|
|
assert Triangle(Point(4, -6), Point(4, -1), Point(-3, 3)).eulerline \
|
|
== Line(Point2D(Rational(64, 7), 3), Point2D(Rational(-29, 14), Rational(-7, 2)))
|
|
|
|
def test_intersection():
|
|
poly1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
|
|
poly2 = Polygon(Point(0, 1), Point(-5, 0),
|
|
Point(0, -4), Point(0, Rational(1, 5)),
|
|
Point(S.Half, -0.1), Point(1, 0), Point(0, 1))
|
|
|
|
assert poly1.intersection(poly2) == [Point2D(Rational(1, 3), 0),
|
|
Segment(Point(0, Rational(1, 5)), Point(0, 0)),
|
|
Segment(Point(1, 0), Point(0, 1))]
|
|
assert poly2.intersection(poly1) == [Point(Rational(1, 3), 0),
|
|
Segment(Point(0, 0), Point(0, Rational(1, 5))),
|
|
Segment(Point(1, 0), Point(0, 1))]
|
|
assert poly1.intersection(Point(0, 0)) == [Point(0, 0)]
|
|
assert poly1.intersection(Point(-12, -43)) == []
|
|
assert poly2.intersection(Line((-12, 0), (12, 0))) == [Point(-5, 0),
|
|
Point(0, 0), Point(Rational(1, 3), 0), Point(1, 0)]
|
|
assert poly2.intersection(Line((-12, 12), (12, 12))) == []
|
|
assert poly2.intersection(Ray((-3, 4), (1, 0))) == [Segment(Point(1, 0),
|
|
Point(0, 1))]
|
|
assert poly2.intersection(Circle((0, -1), 1)) == [Point(0, -2),
|
|
Point(0, 0)]
|
|
assert poly1.intersection(poly1) == [Segment(Point(0, 0), Point(1, 0)),
|
|
Segment(Point(0, 1), Point(0, 0)), Segment(Point(1, 0), Point(0, 1))]
|
|
assert poly2.intersection(poly2) == [Segment(Point(-5, 0), Point(0, -4)),
|
|
Segment(Point(0, -4), Point(0, Rational(1, 5))),
|
|
Segment(Point(0, Rational(1, 5)), Point(S.Half, Rational(-1, 10))),
|
|
Segment(Point(0, 1), Point(-5, 0)),
|
|
Segment(Point(S.Half, Rational(-1, 10)), Point(1, 0)),
|
|
Segment(Point(1, 0), Point(0, 1))]
|
|
assert poly2.intersection(Triangle(Point(0, 1), Point(1, 0), Point(-1, 1))) \
|
|
== [Point(Rational(-5, 7), Rational(6, 7)), Segment(Point2D(0, 1), Point(1, 0))]
|
|
assert poly1.intersection(RegularPolygon((-12, -15), 3, 3)) == []
|
|
|
|
|
|
def test_parameter_value():
|
|
t = Symbol('t')
|
|
sq = Polygon((0, 0), (0, 1), (1, 1), (1, 0))
|
|
assert sq.parameter_value((0.5, 1), t) == {t: Rational(3, 8)}
|
|
q = Polygon((0, 0), (2, 1), (2, 4), (4, 0))
|
|
assert q.parameter_value((4, 0), t) == {t: -6 + 3*sqrt(5)} # ~= 0.708
|
|
|
|
raises(ValueError, lambda: sq.parameter_value((5, 6), t))
|
|
raises(ValueError, lambda: sq.parameter_value(Circle(Point(0, 0), 1), t))
|
|
|
|
|
|
def test_issue_12966():
|
|
poly = Polygon(Point(0, 0), Point(0, 10), Point(5, 10), Point(5, 5),
|
|
Point(10, 5), Point(10, 0))
|
|
t = Symbol('t')
|
|
pt = poly.arbitrary_point(t)
|
|
DELTA = 5/poly.perimeter
|
|
assert [pt.subs(t, DELTA*i) for i in range(int(1/DELTA))] == [
|
|
Point(0, 0), Point(0, 5), Point(0, 10), Point(5, 10),
|
|
Point(5, 5), Point(10, 5), Point(10, 0), Point(5, 0)]
|
|
|
|
|
|
def test_second_moment_of_area():
|
|
x, y = symbols('x, y')
|
|
# triangle
|
|
p1, p2, p3 = [(0, 0), (4, 0), (0, 2)]
|
|
p = (0, 0)
|
|
# equation of hypotenuse
|
|
eq_y = (1-x/4)*2
|
|
I_yy = integrate((x**2) * (integrate(1, (y, 0, eq_y))), (x, 0, 4))
|
|
I_xx = integrate(1 * (integrate(y**2, (y, 0, eq_y))), (x, 0, 4))
|
|
I_xy = integrate(x * (integrate(y, (y, 0, eq_y))), (x, 0, 4))
|
|
|
|
triangle = Polygon(p1, p2, p3)
|
|
|
|
assert (I_xx - triangle.second_moment_of_area(p)[0]) == 0
|
|
assert (I_yy - triangle.second_moment_of_area(p)[1]) == 0
|
|
assert (I_xy - triangle.second_moment_of_area(p)[2]) == 0
|
|
|
|
# rectangle
|
|
p1, p2, p3, p4=[(0, 0), (4, 0), (4, 2), (0, 2)]
|
|
I_yy = integrate((x**2) * integrate(1, (y, 0, 2)), (x, 0, 4))
|
|
I_xx = integrate(1 * integrate(y**2, (y, 0, 2)), (x, 0, 4))
|
|
I_xy = integrate(x * integrate(y, (y, 0, 2)), (x, 0, 4))
|
|
|
|
rectangle = Polygon(p1, p2, p3, p4)
|
|
|
|
assert (I_xx - rectangle.second_moment_of_area(p)[0]) == 0
|
|
assert (I_yy - rectangle.second_moment_of_area(p)[1]) == 0
|
|
assert (I_xy - rectangle.second_moment_of_area(p)[2]) == 0
|
|
|
|
|
|
r = RegularPolygon(Point(0, 0), 5, 3)
|
|
assert r.second_moment_of_area() == (1875*sqrt(3)/S(32), 1875*sqrt(3)/S(32), 0)
|
|
|
|
|
|
def test_first_moment():
|
|
a, b = symbols('a, b', positive=True)
|
|
# rectangle
|
|
p1 = Polygon((0, 0), (a, 0), (a, b), (0, b))
|
|
assert p1.first_moment_of_area() == (a*b**2/8, a**2*b/8)
|
|
assert p1.first_moment_of_area((a/3, b/4)) == (-3*a*b**2/32, -a**2*b/9)
|
|
|
|
p1 = Polygon((0, 0), (40, 0), (40, 30), (0, 30))
|
|
assert p1.first_moment_of_area() == (4500, 6000)
|
|
|
|
# triangle
|
|
p2 = Polygon((0, 0), (a, 0), (a/2, b))
|
|
assert p2.first_moment_of_area() == (4*a*b**2/81, a**2*b/24)
|
|
assert p2.first_moment_of_area((a/8, b/6)) == (-25*a*b**2/648, -5*a**2*b/768)
|
|
|
|
p2 = Polygon((0, 0), (12, 0), (12, 30))
|
|
assert p2.first_moment_of_area() == (S(1600)/3, -S(640)/3)
|
|
|
|
|
|
def test_section_modulus_and_polar_second_moment_of_area():
|
|
a, b = symbols('a, b', positive=True)
|
|
x, y = symbols('x, y')
|
|
rectangle = Polygon((0, b), (0, 0), (a, 0), (a, b))
|
|
assert rectangle.section_modulus(Point(x, y)) == (a*b**3/12/(-b/2 + y), a**3*b/12/(-a/2 + x))
|
|
assert rectangle.polar_second_moment_of_area() == a**3*b/12 + a*b**3/12
|
|
|
|
convex = RegularPolygon((0, 0), 1, 6)
|
|
assert convex.section_modulus() == (Rational(5, 8), sqrt(3)*Rational(5, 16))
|
|
assert convex.polar_second_moment_of_area() == 5*sqrt(3)/S(8)
|
|
|
|
concave = Polygon((0, 0), (1, 8), (3, 4), (4, 6), (7, 1))
|
|
assert concave.section_modulus() == (Rational(-6371, 429), Rational(-9778, 519))
|
|
assert concave.polar_second_moment_of_area() == Rational(-38669, 252)
|
|
|
|
|
|
def test_cut_section():
|
|
# concave polygon
|
|
p = Polygon((-1, -1), (1, Rational(5, 2)), (2, 1), (3, Rational(5, 2)), (4, 2), (5, 3), (-1, 3))
|
|
l = Line((0, 0), (Rational(9, 2), 3))
|
|
p1 = p.cut_section(l)[0]
|
|
p2 = p.cut_section(l)[1]
|
|
assert p1 == Polygon(
|
|
Point2D(Rational(-9, 13), Rational(-6, 13)), Point2D(1, Rational(5, 2)), Point2D(Rational(24, 13), Rational(16, 13)),
|
|
Point2D(Rational(12, 5), Rational(8, 5)), Point2D(3, Rational(5, 2)), Point2D(Rational(24, 7), Rational(16, 7)),
|
|
Point2D(Rational(9, 2), 3), Point2D(-1, 3), Point2D(-1, Rational(-2, 3)))
|
|
assert p2 == Polygon(Point2D(-1, -1), Point2D(Rational(-9, 13), Rational(-6, 13)), Point2D(Rational(24, 13), Rational(16, 13)),
|
|
Point2D(2, 1), Point2D(Rational(12, 5), Rational(8, 5)), Point2D(Rational(24, 7), Rational(16, 7)), Point2D(4, 2), Point2D(5, 3),
|
|
Point2D(Rational(9, 2), 3), Point2D(-1, Rational(-2, 3)))
|
|
|
|
# convex polygon
|
|
p = RegularPolygon(Point2D(0, 0), 6, 6)
|
|
s = p.cut_section(Line((0, 0), slope=1))
|
|
assert s[0] == Polygon(Point2D(-3*sqrt(3) + 9, -3*sqrt(3) + 9), Point2D(3, 3*sqrt(3)),
|
|
Point2D(-3, 3*sqrt(3)), Point2D(-6, 0), Point2D(-9 + 3*sqrt(3), -9 + 3*sqrt(3)))
|
|
assert s[1] == Polygon(Point2D(6, 0), Point2D(-3*sqrt(3) + 9, -3*sqrt(3) + 9),
|
|
Point2D(-9 + 3*sqrt(3), -9 + 3*sqrt(3)), Point2D(-3, -3*sqrt(3)), Point2D(3, -3*sqrt(3)))
|
|
|
|
# case where line does not intersects but coincides with the edge of polygon
|
|
a, b = 20, 10
|
|
t1, t2, t3, t4 = [(0, b), (0, 0), (a, 0), (a, b)]
|
|
p = Polygon(t1, t2, t3, t4)
|
|
p1, p2 = p.cut_section(Line((0, b), slope=0))
|
|
assert p1 == None
|
|
assert p2 == Polygon(Point2D(0, 10), Point2D(0, 0), Point2D(20, 0), Point2D(20, 10))
|
|
|
|
p3, p4 = p.cut_section(Line((0, 0), slope=0))
|
|
assert p3 == Polygon(Point2D(0, 10), Point2D(0, 0), Point2D(20, 0), Point2D(20, 10))
|
|
assert p4 == None
|
|
|
|
# case where the line does not intersect with a polygon at all
|
|
raises(ValueError, lambda: p.cut_section(Line((0, a), slope=0)))
|
|
|
|
def test_type_of_triangle():
|
|
# Isoceles triangle
|
|
p1 = Polygon(Point(0, 0), Point(5, 0), Point(2, 4))
|
|
assert p1.is_isosceles() == True
|
|
assert p1.is_scalene() == False
|
|
assert p1.is_equilateral() == False
|
|
|
|
# Scalene triangle
|
|
p2 = Polygon (Point(0, 0), Point(0, 2), Point(4, 0))
|
|
assert p2.is_isosceles() == False
|
|
assert p2.is_scalene() == True
|
|
assert p2.is_equilateral() == False
|
|
|
|
# Equilateral triagle
|
|
p3 = Polygon(Point(0, 0), Point(6, 0), Point(3, sqrt(27)))
|
|
assert p3.is_isosceles() == True
|
|
assert p3.is_scalene() == False
|
|
assert p3.is_equilateral() == True
|
|
|
|
def test_do_poly_distance():
|
|
# Non-intersecting polygons
|
|
square1 = Polygon (Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0))
|
|
triangle1 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
|
|
assert square1._do_poly_distance(triangle1) == sqrt(2)/2
|
|
|
|
# Polygons which sides intersect
|
|
square2 = Polygon(Point(1, 0), Point(2, 0), Point(2, 1), Point(1, 1))
|
|
with warns(UserWarning, \
|
|
match="Polygons may intersect producing erroneous output", test_stacklevel=False):
|
|
assert square1._do_poly_distance(square2) == 0
|
|
|
|
# Polygons which bodies intersect
|
|
triangle2 = Polygon(Point(0, -1), Point(2, -1), Point(S.Half, S.Half))
|
|
with warns(UserWarning, \
|
|
match="Polygons may intersect producing erroneous output", test_stacklevel=False):
|
|
assert triangle2._do_poly_distance(square1) == 0
|