You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

173 lines
5.2 KiB

from sympy.core.numbers import (I, Rational)
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, symbols)
from sympy.functions.elementary.exponential import log
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import atan
from sympy.integrals.integrals import integrate
from sympy.polys.polytools import Poly
from sympy.simplify.simplify import simplify
from sympy.integrals.rationaltools import ratint, ratint_logpart, log_to_atan
from sympy.abc import a, b, x, t
half = S.Half
def test_ratint():
assert ratint(S.Zero, x) == 0
assert ratint(S(7), x) == 7*x
assert ratint(x, x) == x**2/2
assert ratint(2*x, x) == x**2
assert ratint(-2*x, x) == -x**2
assert ratint(8*x**7 + 2*x + 1, x) == x**8 + x**2 + x
f = S.One
g = x + 1
assert ratint(f / g, x) == log(x + 1)
assert ratint((f, g), x) == log(x + 1)
f = x**3 - x
g = x - 1
assert ratint(f/g, x) == x**3/3 + x**2/2
f = x
g = (x - a)*(x + a)
assert ratint(f/g, x) == log(x**2 - a**2)/2
f = S.One
g = x**2 + 1
assert ratint(f/g, x, real=None) == atan(x)
assert ratint(f/g, x, real=True) == atan(x)
assert ratint(f/g, x, real=False) == I*log(x + I)/2 - I*log(x - I)/2
f = S(36)
g = x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2
assert ratint(f/g, x) == \
-4*log(x + 1) + 4*log(x - 2) + (12*x + 6)/(x**2 - 1)
f = x**4 - 3*x**2 + 6
g = x**6 - 5*x**4 + 5*x**2 + 4
assert ratint(f/g, x) == \
atan(x) + atan(x**3) + atan(x/2 - Rational(3, 2)*x**3 + S.Half*x**5)
f = x**7 - 24*x**4 - 4*x**2 + 8*x - 8
g = x**8 + 6*x**6 + 12*x**4 + 8*x**2
assert ratint(f/g, x) == \
(4 + 6*x + 8*x**2 + 3*x**3)/(4*x + 4*x**3 + x**5) + log(x)
assert ratint((x**3*f)/(x*g), x) == \
-(12 - 16*x + 6*x**2 - 14*x**3)/(4 + 4*x**2 + x**4) - \
5*sqrt(2)*atan(x*sqrt(2)/2) + S.Half*x**2 - 3*log(2 + x**2)
f = x**5 - x**4 + 4*x**3 + x**2 - x + 5
g = x**4 - 2*x**3 + 5*x**2 - 4*x + 4
assert ratint(f/g, x) == \
x + S.Half*x**2 + S.Half*log(2 - x + x**2) + (9 - 4*x)/(7*x**2 - 7*x + 14) + \
13*sqrt(7)*atan(Rational(-1, 7)*sqrt(7) + 2*x*sqrt(7)/7)/49
assert ratint(1/(x**2 + x + 1), x) == \
2*sqrt(3)*atan(sqrt(3)/3 + 2*x*sqrt(3)/3)/3
assert ratint(1/(x**3 + 1), x) == \
-log(1 - x + x**2)/6 + log(1 + x)/3 + sqrt(3)*atan(-sqrt(3)
/3 + 2*x*sqrt(3)/3)/3
assert ratint(1/(x**2 + x + 1), x, real=False) == \
-I*3**half*log(half + x - half*I*3**half)/3 + \
I*3**half*log(half + x + half*I*3**half)/3
assert ratint(1/(x**3 + 1), x, real=False) == log(1 + x)/3 + \
(Rational(-1, 6) + I*3**half/6)*log(-half + x + I*3**half/2) + \
(Rational(-1, 6) - I*3**half/6)*log(-half + x - I*3**half/2)
# issue 4991
assert ratint(1/(x*(a + b*x)**3), x) == \
(3*a + 2*b*x)/(2*a**4 + 4*a**3*b*x + 2*a**2*b**2*x**2) + (
log(x) - log(a/b + x))/a**3
assert ratint(x/(1 - x**2), x) == -log(x**2 - 1)/2
assert ratint(-x/(1 - x**2), x) == log(x**2 - 1)/2
assert ratint((x/4 - 4/(1 - x)).diff(x), x) == x/4 + 4/(x - 1)
ans = atan(x)
assert ratint(1/(x**2 + 1), x, symbol=x) == ans
assert ratint(1/(x**2 + 1), x, symbol='x') == ans
assert ratint(1/(x**2 + 1), x, symbol=a) == ans
# this asserts that as_dummy must return a unique symbol
# even if the symbol is already a Dummy
d = Dummy()
assert ratint(1/(d**2 + 1), d, symbol=d) == atan(d)
def test_ratint_logpart():
assert ratint_logpart(x, x**2 - 9, x, t) == \
[(Poly(x**2 - 9, x), Poly(-2*t + 1, t))]
assert ratint_logpart(x**2, x**3 - 5, x, t) == \
[(Poly(x**3 - 5, x), Poly(-3*t + 1, t))]
def test_issue_5414():
assert ratint(1/(x**2 + 16), x) == atan(x/4)/4
def test_issue_5249():
assert ratint(
1/(x**2 + a**2), x) == (-I*log(-I*a + x)/2 + I*log(I*a + x)/2)/a
def test_issue_5817():
a, b, c = symbols('a,b,c', positive=True)
assert simplify(ratint(a/(b*c*x**2 + a**2 + b*a), x)) == \
sqrt(a)*atan(sqrt(
b)*sqrt(c)*x/(sqrt(a)*sqrt(a + b)))/(sqrt(b)*sqrt(c)*sqrt(a + b))
def test_issue_5981():
u = symbols('u')
assert integrate(1/(u**2 + 1)) == atan(u)
def test_issue_10488():
a,b,c,x = symbols('a b c x', positive=True)
assert integrate(x/(a*x+b),x) == x/a - b*log(a*x + b)/a**2
def test_issues_8246_12050_13501_14080():
a = symbols('a', nonzero=True)
assert integrate(a/(x**2 + a**2), x) == atan(x/a)
assert integrate(1/(x**2 + a**2), x) == atan(x/a)/a
assert integrate(1/(1 + a**2*x**2), x) == atan(a*x)/a
def test_issue_6308():
k, a0 = symbols('k a0', real=True)
assert integrate((x**2 + 1 - k**2)/(x**2 + 1 + a0**2), x) == \
x - (a0**2 + k**2)*atan(x/sqrt(a0**2 + 1))/sqrt(a0**2 + 1)
def test_issue_5907():
a = symbols('a', nonzero=True)
assert integrate(1/(x**2 + a**2)**2, x) == \
x/(2*a**4 + 2*a**2*x**2) + atan(x/a)/(2*a**3)
def test_log_to_atan():
f, g = (Poly(x + S.Half, x, domain='QQ'), Poly(sqrt(3)/2, x, domain='EX'))
fg_ans = 2*atan(2*sqrt(3)*x/3 + sqrt(3)/3)
assert log_to_atan(f, g) == fg_ans
assert log_to_atan(g, f) == -fg_ans