You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1258 lines
42 KiB

"""Transform a string with Python-like source code into SymPy expression. """
from tokenize import (generate_tokens, untokenize, TokenError,
NUMBER, STRING, NAME, OP, ENDMARKER, ERRORTOKEN, NEWLINE)
from keyword import iskeyword
import ast
import unicodedata
from io import StringIO
import builtins
import types
from typing import Tuple as tTuple, Dict as tDict, Any, Callable, \
List, Optional, Union as tUnion
from sympy.assumptions.ask import AssumptionKeys
from sympy.core.basic import Basic
from sympy.core import Symbol
from sympy.core.function import Function
from sympy.utilities.misc import func_name
from sympy.functions.elementary.miscellaneous import Max, Min
null = ''
TOKEN = tTuple[int, str]
DICT = tDict[str, Any]
TRANS = Callable[[List[TOKEN], DICT, DICT], List[TOKEN]]
def _token_splittable(token_name: str) -> bool:
"""
Predicate for whether a token name can be split into multiple tokens.
A token is splittable if it does not contain an underscore character and
it is not the name of a Greek letter. This is used to implicitly convert
expressions like 'xyz' into 'x*y*z'.
"""
if '_' in token_name:
return False
try:
return not unicodedata.lookup('GREEK SMALL LETTER ' + token_name)
except KeyError:
return len(token_name) > 1
def _token_callable(token: TOKEN, local_dict: DICT, global_dict: DICT, nextToken=None):
"""
Predicate for whether a token name represents a callable function.
Essentially wraps ``callable``, but looks up the token name in the
locals and globals.
"""
func = local_dict.get(token[1])
if not func:
func = global_dict.get(token[1])
return callable(func) and not isinstance(func, Symbol)
def _add_factorial_tokens(name: str, result: List[TOKEN]) -> List[TOKEN]:
if result == [] or result[-1][1] == '(':
raise TokenError()
beginning = [(NAME, name), (OP, '(')]
end = [(OP, ')')]
diff = 0
length = len(result)
for index, token in enumerate(result[::-1]):
toknum, tokval = token
i = length - index - 1
if tokval == ')':
diff += 1
elif tokval == '(':
diff -= 1
if diff == 0:
if i - 1 >= 0 and result[i - 1][0] == NAME:
return result[:i - 1] + beginning + result[i - 1:] + end
else:
return result[:i] + beginning + result[i:] + end
return result
class ParenthesisGroup(List[TOKEN]):
"""List of tokens representing an expression in parentheses."""
pass
class AppliedFunction:
"""
A group of tokens representing a function and its arguments.
`exponent` is for handling the shorthand sin^2, ln^2, etc.
"""
def __init__(self, function: TOKEN, args: ParenthesisGroup, exponent=None):
if exponent is None:
exponent = []
self.function = function
self.args = args
self.exponent = exponent
self.items = ['function', 'args', 'exponent']
def expand(self) -> List[TOKEN]:
"""Return a list of tokens representing the function"""
return [self.function, *self.args]
def __getitem__(self, index):
return getattr(self, self.items[index])
def __repr__(self):
return "AppliedFunction(%s, %s, %s)" % (self.function, self.args,
self.exponent)
def _flatten(result: List[tUnion[TOKEN, AppliedFunction]]):
result2: List[TOKEN] = []
for tok in result:
if isinstance(tok, AppliedFunction):
result2.extend(tok.expand())
else:
result2.append(tok)
return result2
def _group_parentheses(recursor: TRANS):
def _inner(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""Group tokens between parentheses with ParenthesisGroup.
Also processes those tokens recursively.
"""
result: List[tUnion[TOKEN, ParenthesisGroup]] = []
stacks: List[ParenthesisGroup] = []
stacklevel = 0
for token in tokens:
if token[0] == OP:
if token[1] == '(':
stacks.append(ParenthesisGroup([]))
stacklevel += 1
elif token[1] == ')':
stacks[-1].append(token)
stack = stacks.pop()
if len(stacks) > 0:
# We don't recurse here since the upper-level stack
# would reprocess these tokens
stacks[-1].extend(stack)
else:
# Recurse here to handle nested parentheses
# Strip off the outer parentheses to avoid an infinite loop
inner = stack[1:-1]
inner = recursor(inner,
local_dict,
global_dict)
parenGroup = [stack[0]] + inner + [stack[-1]]
result.append(ParenthesisGroup(parenGroup))
stacklevel -= 1
continue
if stacklevel:
stacks[-1].append(token)
else:
result.append(token)
if stacklevel:
raise TokenError("Mismatched parentheses")
return result
return _inner
def _apply_functions(tokens: List[tUnion[TOKEN, ParenthesisGroup]], local_dict: DICT, global_dict: DICT):
"""Convert a NAME token + ParenthesisGroup into an AppliedFunction.
Note that ParenthesisGroups, if not applied to any function, are
converted back into lists of tokens.
"""
result: List[tUnion[TOKEN, AppliedFunction]] = []
symbol = None
for tok in tokens:
if isinstance(tok, ParenthesisGroup):
if symbol and _token_callable(symbol, local_dict, global_dict):
result[-1] = AppliedFunction(symbol, tok)
symbol = None
else:
result.extend(tok)
elif tok[0] == NAME:
symbol = tok
result.append(tok)
else:
symbol = None
result.append(tok)
return result
def _implicit_multiplication(tokens: List[tUnion[TOKEN, AppliedFunction]], local_dict: DICT, global_dict: DICT):
"""Implicitly adds '*' tokens.
Cases:
- Two AppliedFunctions next to each other ("sin(x)cos(x)")
- AppliedFunction next to an open parenthesis ("sin x (cos x + 1)")
- A close parenthesis next to an AppliedFunction ("(x+2)sin x")\
- A close parenthesis next to an open parenthesis ("(x+2)(x+3)")
- AppliedFunction next to an implicitly applied function ("sin(x)cos x")
"""
result: List[tUnion[TOKEN, AppliedFunction]] = []
skip = False
for tok, nextTok in zip(tokens, tokens[1:]):
result.append(tok)
if skip:
skip = False
continue
if tok[0] == OP and tok[1] == '.' and nextTok[0] == NAME:
# Dotted name. Do not do implicit multiplication
skip = True
continue
if isinstance(tok, AppliedFunction):
if isinstance(nextTok, AppliedFunction):
result.append((OP, '*'))
elif nextTok == (OP, '('):
# Applied function followed by an open parenthesis
if tok.function[1] == "Function":
tok.function = (tok.function[0], 'Symbol')
result.append((OP, '*'))
elif nextTok[0] == NAME:
# Applied function followed by implicitly applied function
result.append((OP, '*'))
else:
if tok == (OP, ')'):
if isinstance(nextTok, AppliedFunction):
# Close parenthesis followed by an applied function
result.append((OP, '*'))
elif nextTok[0] == NAME:
# Close parenthesis followed by an implicitly applied function
result.append((OP, '*'))
elif nextTok == (OP, '('):
# Close parenthesis followed by an open parenthesis
result.append((OP, '*'))
elif tok[0] == NAME and not _token_callable(tok, local_dict, global_dict):
if isinstance(nextTok, AppliedFunction) or \
(nextTok[0] == NAME and _token_callable(nextTok, local_dict, global_dict)):
# Constant followed by (implicitly applied) function
result.append((OP, '*'))
elif nextTok == (OP, '('):
# Constant followed by parenthesis
result.append((OP, '*'))
elif nextTok[0] == NAME:
# Constant followed by constant
result.append((OP, '*'))
if tokens:
result.append(tokens[-1])
return result
def _implicit_application(tokens: List[tUnion[TOKEN, AppliedFunction]], local_dict: DICT, global_dict: DICT):
"""Adds parentheses as needed after functions."""
result: List[tUnion[TOKEN, AppliedFunction]] = []
appendParen = 0 # number of closing parentheses to add
skip = 0 # number of tokens to delay before adding a ')' (to
# capture **, ^, etc.)
exponentSkip = False # skipping tokens before inserting parentheses to
# work with function exponentiation
for tok, nextTok in zip(tokens, tokens[1:]):
result.append(tok)
if (tok[0] == NAME and nextTok[0] not in [OP, ENDMARKER, NEWLINE]):
if _token_callable(tok, local_dict, global_dict, nextTok): # type: ignore
result.append((OP, '('))
appendParen += 1
# name followed by exponent - function exponentiation
elif (tok[0] == NAME and nextTok[0] == OP and nextTok[1] == '**'):
if _token_callable(tok, local_dict, global_dict): # type: ignore
exponentSkip = True
elif exponentSkip:
# if the last token added was an applied function (i.e. the
# power of the function exponent) OR a multiplication (as
# implicit multiplication would have added an extraneous
# multiplication)
if (isinstance(tok, AppliedFunction)
or (tok[0] == OP and tok[1] == '*')):
# don't add anything if the next token is a multiplication
# or if there's already a parenthesis (if parenthesis, still
# stop skipping tokens)
if not (nextTok[0] == OP and nextTok[1] == '*'):
if not(nextTok[0] == OP and nextTok[1] == '('):
result.append((OP, '('))
appendParen += 1
exponentSkip = False
elif appendParen:
if nextTok[0] == OP and nextTok[1] in ('^', '**', '*'):
skip = 1
continue
if skip:
skip -= 1
continue
result.append((OP, ')'))
appendParen -= 1
if tokens:
result.append(tokens[-1])
if appendParen:
result.extend([(OP, ')')] * appendParen)
return result
def function_exponentiation(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""Allows functions to be exponentiated, e.g. ``cos**2(x)``.
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, function_exponentiation)
>>> transformations = standard_transformations + (function_exponentiation,)
>>> parse_expr('sin**4(x)', transformations=transformations)
sin(x)**4
"""
result: List[TOKEN] = []
exponent: List[TOKEN] = []
consuming_exponent = False
level = 0
for tok, nextTok in zip(tokens, tokens[1:]):
if tok[0] == NAME and nextTok[0] == OP and nextTok[1] == '**':
if _token_callable(tok, local_dict, global_dict):
consuming_exponent = True
elif consuming_exponent:
if tok[0] == NAME and tok[1] == 'Function':
tok = (NAME, 'Symbol')
exponent.append(tok)
# only want to stop after hitting )
if tok[0] == nextTok[0] == OP and tok[1] == ')' and nextTok[1] == '(':
consuming_exponent = False
# if implicit multiplication was used, we may have )*( instead
if tok[0] == nextTok[0] == OP and tok[1] == '*' and nextTok[1] == '(':
consuming_exponent = False
del exponent[-1]
continue
elif exponent and not consuming_exponent:
if tok[0] == OP:
if tok[1] == '(':
level += 1
elif tok[1] == ')':
level -= 1
if level == 0:
result.append(tok)
result.extend(exponent)
exponent = []
continue
result.append(tok)
if tokens:
result.append(tokens[-1])
if exponent:
result.extend(exponent)
return result
def split_symbols_custom(predicate: Callable[[str], bool]):
"""Creates a transformation that splits symbol names.
``predicate`` should return True if the symbol name is to be split.
For instance, to retain the default behavior but avoid splitting certain
symbol names, a predicate like this would work:
>>> from sympy.parsing.sympy_parser import (parse_expr, _token_splittable,
... standard_transformations, implicit_multiplication,
... split_symbols_custom)
>>> def can_split(symbol):
... if symbol not in ('list', 'of', 'unsplittable', 'names'):
... return _token_splittable(symbol)
... return False
...
>>> transformation = split_symbols_custom(can_split)
>>> parse_expr('unsplittable', transformations=standard_transformations +
... (transformation, implicit_multiplication))
unsplittable
"""
def _split_symbols(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
result: List[TOKEN] = []
split = False
split_previous=False
for tok in tokens:
if split_previous:
# throw out closing parenthesis of Symbol that was split
split_previous=False
continue
split_previous=False
if tok[0] == NAME and tok[1] in ['Symbol', 'Function']:
split = True
elif split and tok[0] == NAME:
symbol = tok[1][1:-1]
if predicate(symbol):
tok_type = result[-2][1] # Symbol or Function
del result[-2:] # Get rid of the call to Symbol
i = 0
while i < len(symbol):
char = symbol[i]
if char in local_dict or char in global_dict:
result.append((NAME, "%s" % char))
elif char.isdigit():
chars = [char]
for i in range(i + 1, len(symbol)):
if not symbol[i].isdigit():
i -= 1
break
chars.append(symbol[i])
char = ''.join(chars)
result.extend([(NAME, 'Number'), (OP, '('),
(NAME, "'%s'" % char), (OP, ')')])
else:
use = tok_type if i == len(symbol) else 'Symbol'
result.extend([(NAME, use), (OP, '('),
(NAME, "'%s'" % char), (OP, ')')])
i += 1
# Set split_previous=True so will skip
# the closing parenthesis of the original Symbol
split = False
split_previous = True
continue
else:
split = False
result.append(tok)
return result
return _split_symbols
#: Splits symbol names for implicit multiplication.
#:
#: Intended to let expressions like ``xyz`` be parsed as ``x*y*z``. Does not
#: split Greek character names, so ``theta`` will *not* become
#: ``t*h*e*t*a``. Generally this should be used with
#: ``implicit_multiplication``.
split_symbols = split_symbols_custom(_token_splittable)
def implicit_multiplication(tokens: List[TOKEN], local_dict: DICT,
global_dict: DICT) -> List[TOKEN]:
"""Makes the multiplication operator optional in most cases.
Use this before :func:`implicit_application`, otherwise expressions like
``sin 2x`` will be parsed as ``x * sin(2)`` rather than ``sin(2*x)``.
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, implicit_multiplication)
>>> transformations = standard_transformations + (implicit_multiplication,)
>>> parse_expr('3 x y', transformations=transformations)
3*x*y
"""
# These are interdependent steps, so we don't expose them separately
res1 = _group_parentheses(implicit_multiplication)(tokens, local_dict, global_dict)
res2 = _apply_functions(res1, local_dict, global_dict)
res3 = _implicit_multiplication(res2, local_dict, global_dict)
result = _flatten(res3)
return result
def implicit_application(tokens: List[TOKEN], local_dict: DICT,
global_dict: DICT) -> List[TOKEN]:
"""Makes parentheses optional in some cases for function calls.
Use this after :func:`implicit_multiplication`, otherwise expressions
like ``sin 2x`` will be parsed as ``x * sin(2)`` rather than
``sin(2*x)``.
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, implicit_application)
>>> transformations = standard_transformations + (implicit_application,)
>>> parse_expr('cot z + csc z', transformations=transformations)
cot(z) + csc(z)
"""
res1 = _group_parentheses(implicit_application)(tokens, local_dict, global_dict)
res2 = _apply_functions(res1, local_dict, global_dict)
res3 = _implicit_application(res2, local_dict, global_dict)
result = _flatten(res3)
return result
def implicit_multiplication_application(result: List[TOKEN], local_dict: DICT,
global_dict: DICT) -> List[TOKEN]:
"""Allows a slightly relaxed syntax.
- Parentheses for single-argument method calls are optional.
- Multiplication is implicit.
- Symbol names can be split (i.e. spaces are not needed between
symbols).
- Functions can be exponentiated.
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, implicit_multiplication_application)
>>> parse_expr("10sin**2 x**2 + 3xyz + tan theta",
... transformations=(standard_transformations +
... (implicit_multiplication_application,)))
3*x*y*z + 10*sin(x**2)**2 + tan(theta)
"""
for step in (split_symbols, implicit_multiplication,
implicit_application, function_exponentiation):
result = step(result, local_dict, global_dict)
return result
def auto_symbol(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""Inserts calls to ``Symbol``/``Function`` for undefined variables."""
result: List[TOKEN] = []
prevTok = (-1, '')
tokens.append((-1, '')) # so zip traverses all tokens
for tok, nextTok in zip(tokens, tokens[1:]):
tokNum, tokVal = tok
nextTokNum, nextTokVal = nextTok
if tokNum == NAME:
name = tokVal
if (name in ['True', 'False', 'None']
or iskeyword(name)
# Don't convert attribute access
or (prevTok[0] == OP and prevTok[1] == '.')
# Don't convert keyword arguments
or (prevTok[0] == OP and prevTok[1] in ('(', ',')
and nextTokNum == OP and nextTokVal == '=')
# the name has already been defined
or name in local_dict and local_dict[name] is not null):
result.append((NAME, name))
continue
elif name in local_dict:
local_dict.setdefault(null, set()).add(name)
if nextTokVal == '(':
local_dict[name] = Function(name)
else:
local_dict[name] = Symbol(name)
result.append((NAME, name))
continue
elif name in global_dict:
obj = global_dict[name]
if isinstance(obj, (AssumptionKeys, Basic, type)) or callable(obj):
result.append((NAME, name))
continue
result.extend([
(NAME, 'Symbol' if nextTokVal != '(' else 'Function'),
(OP, '('),
(NAME, repr(str(name))),
(OP, ')'),
])
else:
result.append((tokNum, tokVal))
prevTok = (tokNum, tokVal)
return result
def lambda_notation(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""Substitutes "lambda" with its SymPy equivalent Lambda().
However, the conversion does not take place if only "lambda"
is passed because that is a syntax error.
"""
result: List[TOKEN] = []
flag = False
toknum, tokval = tokens[0]
tokLen = len(tokens)
if toknum == NAME and tokval == 'lambda':
if tokLen == 2 or tokLen == 3 and tokens[1][0] == NEWLINE:
# In Python 3.6.7+, inputs without a newline get NEWLINE added to
# the tokens
result.extend(tokens)
elif tokLen > 2:
result.extend([
(NAME, 'Lambda'),
(OP, '('),
(OP, '('),
(OP, ')'),
(OP, ')'),
])
for tokNum, tokVal in tokens[1:]:
if tokNum == OP and tokVal == ':':
tokVal = ','
flag = True
if not flag and tokNum == OP and tokVal in ('*', '**'):
raise TokenError("Starred arguments in lambda not supported")
if flag:
result.insert(-1, (tokNum, tokVal))
else:
result.insert(-2, (tokNum, tokVal))
else:
result.extend(tokens)
return result
def factorial_notation(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""Allows standard notation for factorial."""
result: List[TOKEN] = []
nfactorial = 0
for toknum, tokval in tokens:
if toknum == OP and tokval == "!":
# In Python 3.12 "!" are OP instead of ERRORTOKEN
nfactorial += 1
elif toknum == ERRORTOKEN:
op = tokval
if op == '!':
nfactorial += 1
else:
nfactorial = 0
result.append((OP, op))
else:
if nfactorial == 1:
result = _add_factorial_tokens('factorial', result)
elif nfactorial == 2:
result = _add_factorial_tokens('factorial2', result)
elif nfactorial > 2:
raise TokenError
nfactorial = 0
result.append((toknum, tokval))
return result
def convert_xor(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""Treats XOR, ``^``, as exponentiation, ``**``."""
result: List[TOKEN] = []
for toknum, tokval in tokens:
if toknum == OP:
if tokval == '^':
result.append((OP, '**'))
else:
result.append((toknum, tokval))
else:
result.append((toknum, tokval))
return result
def repeated_decimals(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""
Allows 0.2[1] notation to represent the repeated decimal 0.2111... (19/90)
Run this before auto_number.
"""
result: List[TOKEN] = []
def is_digit(s):
return all(i in '0123456789_' for i in s)
# num will running match any DECIMAL [ INTEGER ]
num: List[TOKEN] = []
for toknum, tokval in tokens:
if toknum == NUMBER:
if (not num and '.' in tokval and 'e' not in tokval.lower() and
'j' not in tokval.lower()):
num.append((toknum, tokval))
elif is_digit(tokval)and len(num) == 2:
num.append((toknum, tokval))
elif is_digit(tokval) and len(num) == 3 and is_digit(num[-1][1]):
# Python 2 tokenizes 00123 as '00', '123'
# Python 3 tokenizes 01289 as '012', '89'
num.append((toknum, tokval))
else:
num = []
elif toknum == OP:
if tokval == '[' and len(num) == 1:
num.append((OP, tokval))
elif tokval == ']' and len(num) >= 3:
num.append((OP, tokval))
elif tokval == '.' and not num:
# handle .[1]
num.append((NUMBER, '0.'))
else:
num = []
else:
num = []
result.append((toknum, tokval))
if num and num[-1][1] == ']':
# pre.post[repetend] = a + b/c + d/e where a = pre, b/c = post,
# and d/e = repetend
result = result[:-len(num)]
pre, post = num[0][1].split('.')
repetend = num[2][1]
if len(num) == 5:
repetend += num[3][1]
pre = pre.replace('_', '')
post = post.replace('_', '')
repetend = repetend.replace('_', '')
zeros = '0'*len(post)
post, repetends = [w.lstrip('0') for w in [post, repetend]]
# or else interpreted as octal
a = pre or '0'
b, c = post or '0', '1' + zeros
d, e = repetends, ('9'*len(repetend)) + zeros
seq = [
(OP, '('),
(NAME, 'Integer'),
(OP, '('),
(NUMBER, a),
(OP, ')'),
(OP, '+'),
(NAME, 'Rational'),
(OP, '('),
(NUMBER, b),
(OP, ','),
(NUMBER, c),
(OP, ')'),
(OP, '+'),
(NAME, 'Rational'),
(OP, '('),
(NUMBER, d),
(OP, ','),
(NUMBER, e),
(OP, ')'),
(OP, ')'),
]
result.extend(seq)
num = []
return result
def auto_number(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""
Converts numeric literals to use SymPy equivalents.
Complex numbers use ``I``, integer literals use ``Integer``, and float
literals use ``Float``.
"""
result: List[TOKEN] = []
for toknum, tokval in tokens:
if toknum == NUMBER:
number = tokval
postfix = []
if number.endswith('j') or number.endswith('J'):
number = number[:-1]
postfix = [(OP, '*'), (NAME, 'I')]
if '.' in number or (('e' in number or 'E' in number) and
not (number.startswith('0x') or number.startswith('0X'))):
seq = [(NAME, 'Float'), (OP, '('),
(NUMBER, repr(str(number))), (OP, ')')]
else:
seq = [(NAME, 'Integer'), (OP, '('), (
NUMBER, number), (OP, ')')]
result.extend(seq + postfix)
else:
result.append((toknum, tokval))
return result
def rationalize(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""Converts floats into ``Rational``. Run AFTER ``auto_number``."""
result: List[TOKEN] = []
passed_float = False
for toknum, tokval in tokens:
if toknum == NAME:
if tokval == 'Float':
passed_float = True
tokval = 'Rational'
result.append((toknum, tokval))
elif passed_float == True and toknum == NUMBER:
passed_float = False
result.append((STRING, tokval))
else:
result.append((toknum, tokval))
return result
def _transform_equals_sign(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""Transforms the equals sign ``=`` to instances of Eq.
This is a helper function for ``convert_equals_signs``.
Works with expressions containing one equals sign and no
nesting. Expressions like ``(1=2)=False`` will not work with this
and should be used with ``convert_equals_signs``.
Examples: 1=2 to Eq(1,2)
1*2=x to Eq(1*2, x)
This does not deal with function arguments yet.
"""
result: List[TOKEN] = []
if (OP, "=") in tokens:
result.append((NAME, "Eq"))
result.append((OP, "("))
for token in tokens:
if token == (OP, "="):
result.append((OP, ","))
continue
result.append(token)
result.append((OP, ")"))
else:
result = tokens
return result
def convert_equals_signs(tokens: List[TOKEN], local_dict: DICT,
global_dict: DICT) -> List[TOKEN]:
""" Transforms all the equals signs ``=`` to instances of Eq.
Parses the equals signs in the expression and replaces them with
appropriate Eq instances. Also works with nested equals signs.
Does not yet play well with function arguments.
For example, the expression ``(x=y)`` is ambiguous and can be interpreted
as x being an argument to a function and ``convert_equals_signs`` will not
work for this.
See also
========
convert_equality_operators
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, convert_equals_signs)
>>> parse_expr("1*2=x", transformations=(
... standard_transformations + (convert_equals_signs,)))
Eq(2, x)
>>> parse_expr("(1*2=x)=False", transformations=(
... standard_transformations + (convert_equals_signs,)))
Eq(Eq(2, x), False)
"""
res1 = _group_parentheses(convert_equals_signs)(tokens, local_dict, global_dict)
res2 = _apply_functions(res1, local_dict, global_dict)
res3 = _transform_equals_sign(res2, local_dict, global_dict)
result = _flatten(res3)
return result
#: Standard transformations for :func:`parse_expr`.
#: Inserts calls to :class:`~.Symbol`, :class:`~.Integer`, and other SymPy
#: datatypes and allows the use of standard factorial notation (e.g. ``x!``).
standard_transformations: tTuple[TRANS, ...] \
= (lambda_notation, auto_symbol, repeated_decimals, auto_number,
factorial_notation)
def stringify_expr(s: str, local_dict: DICT, global_dict: DICT,
transformations: tTuple[TRANS, ...]) -> str:
"""
Converts the string ``s`` to Python code, in ``local_dict``
Generally, ``parse_expr`` should be used.
"""
tokens = []
input_code = StringIO(s.strip())
for toknum, tokval, _, _, _ in generate_tokens(input_code.readline):
tokens.append((toknum, tokval))
for transform in transformations:
tokens = transform(tokens, local_dict, global_dict)
return untokenize(tokens)
def eval_expr(code, local_dict: DICT, global_dict: DICT):
"""
Evaluate Python code generated by ``stringify_expr``.
Generally, ``parse_expr`` should be used.
"""
expr = eval(
code, global_dict, local_dict) # take local objects in preference
return expr
def parse_expr(s: str, local_dict: Optional[DICT] = None,
transformations: tUnion[tTuple[TRANS, ...], str] \
= standard_transformations,
global_dict: Optional[DICT] = None, evaluate=True):
"""Converts the string ``s`` to a SymPy expression, in ``local_dict``.
Parameters
==========
s : str
The string to parse.
local_dict : dict, optional
A dictionary of local variables to use when parsing.
global_dict : dict, optional
A dictionary of global variables. By default, this is initialized
with ``from sympy import *``; provide this parameter to override
this behavior (for instance, to parse ``"Q & S"``).
transformations : tuple or str
A tuple of transformation functions used to modify the tokens of the
parsed expression before evaluation. The default transformations
convert numeric literals into their SymPy equivalents, convert
undefined variables into SymPy symbols, and allow the use of standard
mathematical factorial notation (e.g. ``x!``). Selection via
string is available (see below).
evaluate : bool, optional
When False, the order of the arguments will remain as they were in the
string and automatic simplification that would normally occur is
suppressed. (see examples)
Examples
========
>>> from sympy.parsing.sympy_parser import parse_expr
>>> parse_expr("1/2")
1/2
>>> type(_)
<class 'sympy.core.numbers.Half'>
>>> from sympy.parsing.sympy_parser import standard_transformations,\\
... implicit_multiplication_application
>>> transformations = (standard_transformations +
... (implicit_multiplication_application,))
>>> parse_expr("2x", transformations=transformations)
2*x
When evaluate=False, some automatic simplifications will not occur:
>>> parse_expr("2**3"), parse_expr("2**3", evaluate=False)
(8, 2**3)
In addition the order of the arguments will not be made canonical.
This feature allows one to tell exactly how the expression was entered:
>>> a = parse_expr('1 + x', evaluate=False)
>>> b = parse_expr('x + 1', evaluate=0)
>>> a == b
False
>>> a.args
(1, x)
>>> b.args
(x, 1)
Note, however, that when these expressions are printed they will
appear the same:
>>> assert str(a) == str(b)
As a convenience, transformations can be seen by printing ``transformations``:
>>> from sympy.parsing.sympy_parser import transformations
>>> print(transformations)
0: lambda_notation
1: auto_symbol
2: repeated_decimals
3: auto_number
4: factorial_notation
5: implicit_multiplication_application
6: convert_xor
7: implicit_application
8: implicit_multiplication
9: convert_equals_signs
10: function_exponentiation
11: rationalize
The ``T`` object provides a way to select these transformations:
>>> from sympy.parsing.sympy_parser import T
If you print it, you will see the same list as shown above.
>>> str(T) == str(transformations)
True
Standard slicing will return a tuple of transformations:
>>> T[:5] == standard_transformations
True
So ``T`` can be used to specify the parsing transformations:
>>> parse_expr("2x", transformations=T[:5])
Traceback (most recent call last):
...
SyntaxError: invalid syntax
>>> parse_expr("2x", transformations=T[:6])
2*x
>>> parse_expr('.3', transformations=T[3, 11])
3/10
>>> parse_expr('.3x', transformations=T[:])
3*x/10
As a further convenience, strings 'implicit' and 'all' can be used
to select 0-5 and all the transformations, respectively.
>>> parse_expr('.3x', transformations='all')
3*x/10
See Also
========
stringify_expr, eval_expr, standard_transformations,
implicit_multiplication_application
"""
if local_dict is None:
local_dict = {}
elif not isinstance(local_dict, dict):
raise TypeError('expecting local_dict to be a dict')
elif null in local_dict:
raise ValueError('cannot use "" in local_dict')
if global_dict is None:
global_dict = {}
exec('from sympy import *', global_dict)
builtins_dict = vars(builtins)
for name, obj in builtins_dict.items():
if isinstance(obj, types.BuiltinFunctionType):
global_dict[name] = obj
global_dict['max'] = Max
global_dict['min'] = Min
elif not isinstance(global_dict, dict):
raise TypeError('expecting global_dict to be a dict')
transformations = transformations or ()
if isinstance(transformations, str):
if transformations == 'all':
_transformations = T[:]
elif transformations == 'implicit':
_transformations = T[:6]
else:
raise ValueError('unknown transformation group name')
else:
_transformations = transformations
code = stringify_expr(s, local_dict, global_dict, _transformations)
if not evaluate:
code = compile(evaluateFalse(code), '<string>', 'eval') # type: ignore
try:
rv = eval_expr(code, local_dict, global_dict)
# restore neutral definitions for names
for i in local_dict.pop(null, ()):
local_dict[i] = null
return rv
except Exception as e:
# restore neutral definitions for names
for i in local_dict.pop(null, ()):
local_dict[i] = null
raise e from ValueError(f"Error from parse_expr with transformed code: {code!r}")
def evaluateFalse(s: str):
"""
Replaces operators with the SymPy equivalent and sets evaluate=False.
"""
node = ast.parse(s)
transformed_node = EvaluateFalseTransformer().visit(node)
# node is a Module, we want an Expression
transformed_node = ast.Expression(transformed_node.body[0].value)
return ast.fix_missing_locations(transformed_node)
class EvaluateFalseTransformer(ast.NodeTransformer):
operators = {
ast.Add: 'Add',
ast.Mult: 'Mul',
ast.Pow: 'Pow',
ast.Sub: 'Add',
ast.Div: 'Mul',
ast.BitOr: 'Or',
ast.BitAnd: 'And',
ast.BitXor: 'Not',
}
functions = (
'Abs', 'im', 're', 'sign', 'arg', 'conjugate',
'acos', 'acot', 'acsc', 'asec', 'asin', 'atan',
'acosh', 'acoth', 'acsch', 'asech', 'asinh', 'atanh',
'cos', 'cot', 'csc', 'sec', 'sin', 'tan',
'cosh', 'coth', 'csch', 'sech', 'sinh', 'tanh',
'exp', 'ln', 'log', 'sqrt', 'cbrt',
)
relational_operators = {
ast.NotEq: 'Ne',
ast.Lt: 'Lt',
ast.LtE: 'Le',
ast.Gt: 'Gt',
ast.GtE: 'Ge',
ast.Eq: 'Eq'
}
def visit_Compare(self, node):
if node.ops[0].__class__ in self.relational_operators:
sympy_class = self.relational_operators[node.ops[0].__class__]
right = self.visit(node.comparators[0])
left = self.visit(node.left)
new_node = ast.Call(
func=ast.Name(id=sympy_class, ctx=ast.Load()),
args=[left, right],
keywords=[ast.keyword(arg='evaluate', value=ast.Constant(value=False))]
)
return new_node
return node
def flatten(self, args, func):
result = []
for arg in args:
if isinstance(arg, ast.Call):
arg_func = arg.func
if isinstance(arg_func, ast.Call):
arg_func = arg_func.func
if arg_func.id == func:
result.extend(self.flatten(arg.args, func))
else:
result.append(arg)
else:
result.append(arg)
return result
def visit_BinOp(self, node):
if node.op.__class__ in self.operators:
sympy_class = self.operators[node.op.__class__]
right = self.visit(node.right)
left = self.visit(node.left)
rev = False
if isinstance(node.op, ast.Sub):
right = ast.Call(
func=ast.Name(id='Mul', ctx=ast.Load()),
args=[ast.UnaryOp(op=ast.USub(), operand=ast.Constant(1)), right],
keywords=[ast.keyword(arg='evaluate', value=ast.Constant(value=False))]
)
elif isinstance(node.op, ast.Div):
if isinstance(node.left, ast.UnaryOp):
left, right = right, left
rev = True
left = ast.Call(
func=ast.Name(id='Pow', ctx=ast.Load()),
args=[left, ast.UnaryOp(op=ast.USub(), operand=ast.Constant(1))],
keywords=[ast.keyword(arg='evaluate', value=ast.Constant(value=False))]
)
else:
right = ast.Call(
func=ast.Name(id='Pow', ctx=ast.Load()),
args=[right, ast.UnaryOp(op=ast.USub(), operand=ast.Constant(1))],
keywords=[ast.keyword(arg='evaluate', value=ast.Constant(value=False))]
)
if rev: # undo reversal
left, right = right, left
new_node = ast.Call(
func=ast.Name(id=sympy_class, ctx=ast.Load()),
args=[left, right],
keywords=[ast.keyword(arg='evaluate', value=ast.Constant(value=False))]
)
if sympy_class in ('Add', 'Mul'):
# Denest Add or Mul as appropriate
new_node.args = self.flatten(new_node.args, sympy_class)
return new_node
return node
def visit_Call(self, node):
new_node = self.generic_visit(node)
if isinstance(node.func, ast.Name) and node.func.id in self.functions:
new_node.keywords.append(ast.keyword(arg='evaluate', value=ast.Constant(value=False)))
return new_node
_transformation = { # items can be added but never re-ordered
0: lambda_notation,
1: auto_symbol,
2: repeated_decimals,
3: auto_number,
4: factorial_notation,
5: implicit_multiplication_application,
6: convert_xor,
7: implicit_application,
8: implicit_multiplication,
9: convert_equals_signs,
10: function_exponentiation,
11: rationalize}
transformations = '\n'.join('%s: %s' % (i, func_name(f)) for i, f in _transformation.items())
class _T():
"""class to retrieve transformations from a given slice
EXAMPLES
========
>>> from sympy.parsing.sympy_parser import T, standard_transformations
>>> assert T[:5] == standard_transformations
"""
def __init__(self):
self.N = len(_transformation)
def __str__(self):
return transformations
def __getitem__(self, t):
if not type(t) is tuple:
t = (t,)
i = []
for ti in t:
if type(ti) is int:
i.append(range(self.N)[ti])
elif type(ti) is slice:
i.extend(range(*ti.indices(self.N)))
else:
raise TypeError('unexpected slice arg')
return tuple([_transformation[_] for _ in i])
T = _T()