You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
51 lines
1.9 KiB
51 lines
1.9 KiB
from sympy.parsing.maxima import parse_maxima
|
|
from sympy.core.numbers import (E, Rational, oo)
|
|
from sympy.core.symbol import Symbol
|
|
from sympy.functions.combinatorial.factorials import factorial
|
|
from sympy.functions.elementary.complexes import Abs
|
|
from sympy.functions.elementary.exponential import log
|
|
from sympy.functions.elementary.trigonometric import (cos, sin)
|
|
from sympy.abc import x
|
|
|
|
n = Symbol('n', integer=True)
|
|
|
|
|
|
def test_parser():
|
|
assert Abs(parse_maxima('float(1/3)') - 0.333333333) < 10**(-5)
|
|
assert parse_maxima('13^26') == 91733330193268616658399616009
|
|
assert parse_maxima('sin(%pi/2) + cos(%pi/3)') == Rational(3, 2)
|
|
assert parse_maxima('log(%e)') == 1
|
|
|
|
|
|
def test_injection():
|
|
parse_maxima('c: x+1', globals=globals())
|
|
# c created by parse_maxima
|
|
assert c == x + 1 # noqa:F821
|
|
|
|
parse_maxima('g: sqrt(81)', globals=globals())
|
|
# g created by parse_maxima
|
|
assert g == 9 # noqa:F821
|
|
|
|
|
|
def test_maxima_functions():
|
|
assert parse_maxima('expand( (x+1)^2)') == x**2 + 2*x + 1
|
|
assert parse_maxima('factor( x**2 + 2*x + 1)') == (x + 1)**2
|
|
assert parse_maxima('2*cos(x)^2 + sin(x)^2') == 2*cos(x)**2 + sin(x)**2
|
|
assert parse_maxima('trigexpand(sin(2*x)+cos(2*x))') == \
|
|
-1 + 2*cos(x)**2 + 2*cos(x)*sin(x)
|
|
assert parse_maxima('solve(x^2-4,x)') == [-2, 2]
|
|
assert parse_maxima('limit((1+1/x)^x,x,inf)') == E
|
|
assert parse_maxima('limit(sqrt(-x)/x,x,0,minus)') is -oo
|
|
assert parse_maxima('diff(x^x, x)') == x**x*(1 + log(x))
|
|
assert parse_maxima('sum(k, k, 1, n)', name_dict={
|
|
"n": Symbol('n', integer=True),
|
|
"k": Symbol('k', integer=True)
|
|
}) == (n**2 + n)/2
|
|
assert parse_maxima('product(k, k, 1, n)', name_dict={
|
|
"n": Symbol('n', integer=True),
|
|
"k": Symbol('k', integer=True)
|
|
}) == factorial(n)
|
|
assert parse_maxima('ratsimp((x^2-1)/(x+1))') == x - 1
|
|
assert Abs( parse_maxima(
|
|
'float(sec(%pi/3) + csc(%pi/3))') - 3.154700538379252) < 10**(-5)
|