You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
217 lines
7.7 KiB
217 lines
7.7 KiB
from sympy.external.importtools import version_tuple
|
|
from collections.abc import Iterable
|
|
|
|
from sympy.core.mul import Mul
|
|
from sympy.core.singleton import S
|
|
from sympy.codegen.cfunctions import Sqrt
|
|
from sympy.external import import_module
|
|
from sympy.printing.precedence import PRECEDENCE
|
|
from sympy.printing.pycode import AbstractPythonCodePrinter, ArrayPrinter
|
|
import sympy
|
|
|
|
tensorflow = import_module('tensorflow')
|
|
|
|
class TensorflowPrinter(ArrayPrinter, AbstractPythonCodePrinter):
|
|
"""
|
|
Tensorflow printer which handles vectorized piecewise functions,
|
|
logical operators, max/min, and relational operators.
|
|
"""
|
|
printmethod = "_tensorflowcode"
|
|
|
|
mapping = {
|
|
sympy.Abs: "tensorflow.math.abs",
|
|
sympy.sign: "tensorflow.math.sign",
|
|
|
|
# XXX May raise error for ints.
|
|
sympy.ceiling: "tensorflow.math.ceil",
|
|
sympy.floor: "tensorflow.math.floor",
|
|
sympy.log: "tensorflow.math.log",
|
|
sympy.exp: "tensorflow.math.exp",
|
|
Sqrt: "tensorflow.math.sqrt",
|
|
sympy.cos: "tensorflow.math.cos",
|
|
sympy.acos: "tensorflow.math.acos",
|
|
sympy.sin: "tensorflow.math.sin",
|
|
sympy.asin: "tensorflow.math.asin",
|
|
sympy.tan: "tensorflow.math.tan",
|
|
sympy.atan: "tensorflow.math.atan",
|
|
sympy.atan2: "tensorflow.math.atan2",
|
|
# XXX Also may give NaN for complex results.
|
|
sympy.cosh: "tensorflow.math.cosh",
|
|
sympy.acosh: "tensorflow.math.acosh",
|
|
sympy.sinh: "tensorflow.math.sinh",
|
|
sympy.asinh: "tensorflow.math.asinh",
|
|
sympy.tanh: "tensorflow.math.tanh",
|
|
sympy.atanh: "tensorflow.math.atanh",
|
|
|
|
sympy.re: "tensorflow.math.real",
|
|
sympy.im: "tensorflow.math.imag",
|
|
sympy.arg: "tensorflow.math.angle",
|
|
|
|
# XXX May raise error for ints and complexes
|
|
sympy.erf: "tensorflow.math.erf",
|
|
sympy.loggamma: "tensorflow.math.lgamma",
|
|
|
|
sympy.Eq: "tensorflow.math.equal",
|
|
sympy.Ne: "tensorflow.math.not_equal",
|
|
sympy.StrictGreaterThan: "tensorflow.math.greater",
|
|
sympy.StrictLessThan: "tensorflow.math.less",
|
|
sympy.LessThan: "tensorflow.math.less_equal",
|
|
sympy.GreaterThan: "tensorflow.math.greater_equal",
|
|
|
|
sympy.And: "tensorflow.math.logical_and",
|
|
sympy.Or: "tensorflow.math.logical_or",
|
|
sympy.Not: "tensorflow.math.logical_not",
|
|
sympy.Max: "tensorflow.math.maximum",
|
|
sympy.Min: "tensorflow.math.minimum",
|
|
|
|
# Matrices
|
|
sympy.MatAdd: "tensorflow.math.add",
|
|
sympy.HadamardProduct: "tensorflow.math.multiply",
|
|
sympy.Trace: "tensorflow.linalg.trace",
|
|
|
|
# XXX May raise error for integer matrices.
|
|
sympy.Determinant : "tensorflow.linalg.det",
|
|
}
|
|
|
|
_default_settings = dict(
|
|
AbstractPythonCodePrinter._default_settings,
|
|
tensorflow_version=None
|
|
)
|
|
|
|
def __init__(self, settings=None):
|
|
super().__init__(settings)
|
|
|
|
version = self._settings['tensorflow_version']
|
|
if version is None and tensorflow:
|
|
version = tensorflow.__version__
|
|
self.tensorflow_version = version
|
|
|
|
def _print_Function(self, expr):
|
|
op = self.mapping.get(type(expr), None)
|
|
if op is None:
|
|
return super()._print_Basic(expr)
|
|
children = [self._print(arg) for arg in expr.args]
|
|
if len(children) == 1:
|
|
return "%s(%s)" % (
|
|
self._module_format(op),
|
|
children[0]
|
|
)
|
|
else:
|
|
return self._expand_fold_binary_op(op, children)
|
|
|
|
_print_Expr = _print_Function
|
|
_print_Application = _print_Function
|
|
_print_MatrixExpr = _print_Function
|
|
# TODO: a better class structure would avoid this mess:
|
|
_print_Relational = _print_Function
|
|
_print_Not = _print_Function
|
|
_print_And = _print_Function
|
|
_print_Or = _print_Function
|
|
_print_HadamardProduct = _print_Function
|
|
_print_Trace = _print_Function
|
|
_print_Determinant = _print_Function
|
|
|
|
def _print_Inverse(self, expr):
|
|
op = self._module_format('tensorflow.linalg.inv')
|
|
return "{}({})".format(op, self._print(expr.arg))
|
|
|
|
def _print_Transpose(self, expr):
|
|
version = self.tensorflow_version
|
|
if version and version_tuple(version) < version_tuple('1.14'):
|
|
op = self._module_format('tensorflow.matrix_transpose')
|
|
else:
|
|
op = self._module_format('tensorflow.linalg.matrix_transpose')
|
|
return "{}({})".format(op, self._print(expr.arg))
|
|
|
|
def _print_Derivative(self, expr):
|
|
variables = expr.variables
|
|
if any(isinstance(i, Iterable) for i in variables):
|
|
raise NotImplementedError("derivation by multiple variables is not supported")
|
|
def unfold(expr, args):
|
|
if not args:
|
|
return self._print(expr)
|
|
return "%s(%s, %s)[0]" % (
|
|
self._module_format("tensorflow.gradients"),
|
|
unfold(expr, args[:-1]),
|
|
self._print(args[-1]),
|
|
)
|
|
return unfold(expr.expr, variables)
|
|
|
|
def _print_Piecewise(self, expr):
|
|
version = self.tensorflow_version
|
|
if version and version_tuple(version) < version_tuple('1.0'):
|
|
tensorflow_piecewise = "tensorflow.select"
|
|
else:
|
|
tensorflow_piecewise = "tensorflow.where"
|
|
|
|
from sympy.functions.elementary.piecewise import Piecewise
|
|
e, cond = expr.args[0].args
|
|
if len(expr.args) == 1:
|
|
return '{}({}, {}, {})'.format(
|
|
self._module_format(tensorflow_piecewise),
|
|
self._print(cond),
|
|
self._print(e),
|
|
0)
|
|
|
|
return '{}({}, {}, {})'.format(
|
|
self._module_format(tensorflow_piecewise),
|
|
self._print(cond),
|
|
self._print(e),
|
|
self._print(Piecewise(*expr.args[1:])))
|
|
|
|
def _print_Pow(self, expr):
|
|
# XXX May raise error for
|
|
# int**float or int**complex or float**complex
|
|
base, exp = expr.args
|
|
if expr.exp == S.Half:
|
|
return "{}({})".format(
|
|
self._module_format("tensorflow.math.sqrt"), self._print(base))
|
|
return "{}({}, {})".format(
|
|
self._module_format("tensorflow.math.pow"),
|
|
self._print(base), self._print(exp))
|
|
|
|
def _print_MatrixBase(self, expr):
|
|
tensorflow_f = "tensorflow.Variable" if expr.free_symbols else "tensorflow.constant"
|
|
data = "["+", ".join(["["+", ".join([self._print(j) for j in i])+"]" for i in expr.tolist()])+"]"
|
|
return "%s(%s)" % (
|
|
self._module_format(tensorflow_f),
|
|
data,
|
|
)
|
|
|
|
def _print_MatMul(self, expr):
|
|
from sympy.matrices.expressions import MatrixExpr
|
|
mat_args = [arg for arg in expr.args if isinstance(arg, MatrixExpr)]
|
|
args = [arg for arg in expr.args if arg not in mat_args]
|
|
if args:
|
|
return "%s*%s" % (
|
|
self.parenthesize(Mul.fromiter(args), PRECEDENCE["Mul"]),
|
|
self._expand_fold_binary_op(
|
|
"tensorflow.linalg.matmul", mat_args)
|
|
)
|
|
else:
|
|
return self._expand_fold_binary_op(
|
|
"tensorflow.linalg.matmul", mat_args)
|
|
|
|
def _print_MatPow(self, expr):
|
|
return self._expand_fold_binary_op(
|
|
"tensorflow.linalg.matmul", [expr.base]*expr.exp)
|
|
|
|
def _print_CodeBlock(self, expr):
|
|
# TODO: is this necessary?
|
|
ret = []
|
|
for subexpr in expr.args:
|
|
ret.append(self._print(subexpr))
|
|
return "\n".join(ret)
|
|
|
|
_module = "tensorflow"
|
|
_einsum = "linalg.einsum"
|
|
_add = "math.add"
|
|
_transpose = "transpose"
|
|
_ones = "ones"
|
|
_zeros = "zeros"
|
|
|
|
|
|
def tensorflow_code(expr, **settings):
|
|
printer = TensorflowPrinter(settings)
|
|
return printer.doprint(expr)
|