You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
751 lines
25 KiB
751 lines
25 KiB
from functools import reduce
|
|
import itertools
|
|
from operator import add
|
|
|
|
from sympy.codegen.matrix_nodes import MatrixSolve
|
|
from sympy.core.add import Add
|
|
from sympy.core.containers import Tuple
|
|
from sympy.core.expr import UnevaluatedExpr
|
|
from sympy.core.function import Function
|
|
from sympy.core.mul import Mul
|
|
from sympy.core.power import Pow
|
|
from sympy.core.relational import Eq
|
|
from sympy.core.singleton import S
|
|
from sympy.core.symbol import (Symbol, symbols)
|
|
from sympy.core.sympify import sympify
|
|
from sympy.functions.elementary.exponential import exp
|
|
from sympy.functions.elementary.miscellaneous import sqrt
|
|
from sympy.functions.elementary.piecewise import Piecewise
|
|
from sympy.functions.elementary.trigonometric import (cos, sin)
|
|
from sympy.matrices.dense import Matrix
|
|
from sympy.matrices.expressions import Inverse, MatAdd, MatMul, Transpose
|
|
from sympy.polys.rootoftools import CRootOf
|
|
from sympy.series.order import O
|
|
from sympy.simplify.cse_main import cse
|
|
from sympy.simplify.simplify import signsimp
|
|
from sympy.tensor.indexed import (Idx, IndexedBase)
|
|
|
|
from sympy.core.function import count_ops
|
|
from sympy.simplify.cse_opts import sub_pre, sub_post
|
|
from sympy.functions.special.hyper import meijerg
|
|
from sympy.simplify import cse_main, cse_opts
|
|
from sympy.utilities.iterables import subsets
|
|
from sympy.testing.pytest import XFAIL, raises
|
|
from sympy.matrices import (MutableDenseMatrix, MutableSparseMatrix,
|
|
ImmutableDenseMatrix, ImmutableSparseMatrix)
|
|
from sympy.matrices.expressions import MatrixSymbol
|
|
|
|
|
|
w, x, y, z = symbols('w,x,y,z')
|
|
x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12 = symbols('x:13')
|
|
|
|
|
|
def test_numbered_symbols():
|
|
ns = cse_main.numbered_symbols(prefix='y')
|
|
assert list(itertools.islice(
|
|
ns, 0, 10)) == [Symbol('y%s' % i) for i in range(0, 10)]
|
|
ns = cse_main.numbered_symbols(prefix='y')
|
|
assert list(itertools.islice(
|
|
ns, 10, 20)) == [Symbol('y%s' % i) for i in range(10, 20)]
|
|
ns = cse_main.numbered_symbols()
|
|
assert list(itertools.islice(
|
|
ns, 0, 10)) == [Symbol('x%s' % i) for i in range(0, 10)]
|
|
|
|
# Dummy "optimization" functions for testing.
|
|
|
|
|
|
def opt1(expr):
|
|
return expr + y
|
|
|
|
|
|
def opt2(expr):
|
|
return expr*z
|
|
|
|
|
|
def test_preprocess_for_cse():
|
|
assert cse_main.preprocess_for_cse(x, [(opt1, None)]) == x + y
|
|
assert cse_main.preprocess_for_cse(x, [(None, opt1)]) == x
|
|
assert cse_main.preprocess_for_cse(x, [(None, None)]) == x
|
|
assert cse_main.preprocess_for_cse(x, [(opt1, opt2)]) == x + y
|
|
assert cse_main.preprocess_for_cse(
|
|
x, [(opt1, None), (opt2, None)]) == (x + y)*z
|
|
|
|
|
|
def test_postprocess_for_cse():
|
|
assert cse_main.postprocess_for_cse(x, [(opt1, None)]) == x
|
|
assert cse_main.postprocess_for_cse(x, [(None, opt1)]) == x + y
|
|
assert cse_main.postprocess_for_cse(x, [(None, None)]) == x
|
|
assert cse_main.postprocess_for_cse(x, [(opt1, opt2)]) == x*z
|
|
# Note the reverse order of application.
|
|
assert cse_main.postprocess_for_cse(
|
|
x, [(None, opt1), (None, opt2)]) == x*z + y
|
|
|
|
|
|
def test_cse_single():
|
|
# Simple substitution.
|
|
e = Add(Pow(x + y, 2), sqrt(x + y))
|
|
substs, reduced = cse([e])
|
|
assert substs == [(x0, x + y)]
|
|
assert reduced == [sqrt(x0) + x0**2]
|
|
|
|
subst42, (red42,) = cse([42]) # issue_15082
|
|
assert len(subst42) == 0 and red42 == 42
|
|
subst_half, (red_half,) = cse([0.5])
|
|
assert len(subst_half) == 0 and red_half == 0.5
|
|
|
|
|
|
def test_cse_single2():
|
|
# Simple substitution, test for being able to pass the expression directly
|
|
e = Add(Pow(x + y, 2), sqrt(x + y))
|
|
substs, reduced = cse(e)
|
|
assert substs == [(x0, x + y)]
|
|
assert reduced == [sqrt(x0) + x0**2]
|
|
substs, reduced = cse(Matrix([[1]]))
|
|
assert isinstance(reduced[0], Matrix)
|
|
|
|
subst42, (red42,) = cse(42) # issue 15082
|
|
assert len(subst42) == 0 and red42 == 42
|
|
subst_half, (red_half,) = cse(0.5) # issue 15082
|
|
assert len(subst_half) == 0 and red_half == 0.5
|
|
|
|
|
|
def test_cse_not_possible():
|
|
# No substitution possible.
|
|
e = Add(x, y)
|
|
substs, reduced = cse([e])
|
|
assert substs == []
|
|
assert reduced == [x + y]
|
|
# issue 6329
|
|
eq = (meijerg((1, 2), (y, 4), (5,), [], x) +
|
|
meijerg((1, 3), (y, 4), (5,), [], x))
|
|
assert cse(eq) == ([], [eq])
|
|
|
|
|
|
def test_nested_substitution():
|
|
# Substitution within a substitution.
|
|
e = Add(Pow(w*x + y, 2), sqrt(w*x + y))
|
|
substs, reduced = cse([e])
|
|
assert substs == [(x0, w*x + y)]
|
|
assert reduced == [sqrt(x0) + x0**2]
|
|
|
|
|
|
def test_subtraction_opt():
|
|
# Make sure subtraction is optimized.
|
|
e = (x - y)*(z - y) + exp((x - y)*(z - y))
|
|
substs, reduced = cse(
|
|
[e], optimizations=[(cse_opts.sub_pre, cse_opts.sub_post)])
|
|
assert substs == [(x0, (x - y)*(y - z))]
|
|
assert reduced == [-x0 + exp(-x0)]
|
|
e = -(x - y)*(z - y) + exp(-(x - y)*(z - y))
|
|
substs, reduced = cse(
|
|
[e], optimizations=[(cse_opts.sub_pre, cse_opts.sub_post)])
|
|
assert substs == [(x0, (x - y)*(y - z))]
|
|
assert reduced == [x0 + exp(x0)]
|
|
# issue 4077
|
|
n = -1 + 1/x
|
|
e = n/x/(-n)**2 - 1/n/x
|
|
assert cse(e, optimizations=[(cse_opts.sub_pre, cse_opts.sub_post)]) == \
|
|
([], [0])
|
|
assert cse(((w + x + y + z)*(w - y - z))/(w + x)**3) == \
|
|
([(x0, w + x), (x1, y + z)], [(w - x1)*(x0 + x1)/x0**3])
|
|
|
|
|
|
def test_multiple_expressions():
|
|
e1 = (x + y)*z
|
|
e2 = (x + y)*w
|
|
substs, reduced = cse([e1, e2])
|
|
assert substs == [(x0, x + y)]
|
|
assert reduced == [x0*z, x0*w]
|
|
l = [w*x*y + z, w*y]
|
|
substs, reduced = cse(l)
|
|
rsubsts, _ = cse(reversed(l))
|
|
assert substs == rsubsts
|
|
assert reduced == [z + x*x0, x0]
|
|
l = [w*x*y, w*x*y + z, w*y]
|
|
substs, reduced = cse(l)
|
|
rsubsts, _ = cse(reversed(l))
|
|
assert substs == rsubsts
|
|
assert reduced == [x1, x1 + z, x0]
|
|
l = [(x - z)*(y - z), x - z, y - z]
|
|
substs, reduced = cse(l)
|
|
rsubsts, _ = cse(reversed(l))
|
|
assert substs == [(x0, -z), (x1, x + x0), (x2, x0 + y)]
|
|
assert rsubsts == [(x0, -z), (x1, x0 + y), (x2, x + x0)]
|
|
assert reduced == [x1*x2, x1, x2]
|
|
l = [w*y + w + x + y + z, w*x*y]
|
|
assert cse(l) == ([(x0, w*y)], [w + x + x0 + y + z, x*x0])
|
|
assert cse([x + y, x + y + z]) == ([(x0, x + y)], [x0, z + x0])
|
|
assert cse([x + y, x + z]) == ([], [x + y, x + z])
|
|
assert cse([x*y, z + x*y, x*y*z + 3]) == \
|
|
([(x0, x*y)], [x0, z + x0, 3 + x0*z])
|
|
|
|
|
|
@XFAIL # CSE of non-commutative Mul terms is disabled
|
|
def test_non_commutative_cse():
|
|
A, B, C = symbols('A B C', commutative=False)
|
|
l = [A*B*C, A*C]
|
|
assert cse(l) == ([], l)
|
|
l = [A*B*C, A*B]
|
|
assert cse(l) == ([(x0, A*B)], [x0*C, x0])
|
|
|
|
|
|
# Test if CSE of non-commutative Mul terms is disabled
|
|
def test_bypass_non_commutatives():
|
|
A, B, C = symbols('A B C', commutative=False)
|
|
l = [A*B*C, A*C]
|
|
assert cse(l) == ([], l)
|
|
l = [A*B*C, A*B]
|
|
assert cse(l) == ([], l)
|
|
l = [B*C, A*B*C]
|
|
assert cse(l) == ([], l)
|
|
|
|
|
|
@XFAIL # CSE fails when replacing non-commutative sub-expressions
|
|
def test_non_commutative_order():
|
|
A, B, C = symbols('A B C', commutative=False)
|
|
x0 = symbols('x0', commutative=False)
|
|
l = [B+C, A*(B+C)]
|
|
assert cse(l) == ([(x0, B+C)], [x0, A*x0])
|
|
|
|
|
|
@XFAIL # Worked in gh-11232, but was reverted due to performance considerations
|
|
def test_issue_10228():
|
|
assert cse([x*y**2 + x*y]) == ([(x0, x*y)], [x0*y + x0])
|
|
assert cse([x + y, 2*x + y]) == ([(x0, x + y)], [x0, x + x0])
|
|
assert cse((w + 2*x + y + z, w + x + 1)) == (
|
|
[(x0, w + x)], [x0 + x + y + z, x0 + 1])
|
|
assert cse(((w + x + y + z)*(w - x))/(w + x)) == (
|
|
[(x0, w + x)], [(x0 + y + z)*(w - x)/x0])
|
|
a, b, c, d, f, g, j, m = symbols('a, b, c, d, f, g, j, m')
|
|
exprs = (d*g**2*j*m, 4*a*f*g*m, a*b*c*f**2)
|
|
assert cse(exprs) == (
|
|
[(x0, g*m), (x1, a*f)], [d*g*j*x0, 4*x0*x1, b*c*f*x1]
|
|
)
|
|
|
|
@XFAIL
|
|
def test_powers():
|
|
assert cse(x*y**2 + x*y) == ([(x0, x*y)], [x0*y + x0])
|
|
|
|
|
|
def test_issue_4498():
|
|
assert cse(w/(x - y) + z/(y - x), optimizations='basic') == \
|
|
([], [(w - z)/(x - y)])
|
|
|
|
|
|
def test_issue_4020():
|
|
assert cse(x**5 + x**4 + x**3 + x**2, optimizations='basic') \
|
|
== ([(x0, x**2)], [x0*(x**3 + x + x0 + 1)])
|
|
|
|
|
|
def test_issue_4203():
|
|
assert cse(sin(x**x)/x**x) == ([(x0, x**x)], [sin(x0)/x0])
|
|
|
|
|
|
def test_issue_6263():
|
|
e = Eq(x*(-x + 1) + x*(x - 1), 0)
|
|
assert cse(e, optimizations='basic') == ([], [True])
|
|
|
|
|
|
def test_dont_cse_tuples():
|
|
from sympy.core.function import Subs
|
|
f = Function("f")
|
|
g = Function("g")
|
|
|
|
name_val, (expr,) = cse(
|
|
Subs(f(x, y), (x, y), (0, 1))
|
|
+ Subs(g(x, y), (x, y), (0, 1)))
|
|
|
|
assert name_val == []
|
|
assert expr == (Subs(f(x, y), (x, y), (0, 1))
|
|
+ Subs(g(x, y), (x, y), (0, 1)))
|
|
|
|
name_val, (expr,) = cse(
|
|
Subs(f(x, y), (x, y), (0, x + y))
|
|
+ Subs(g(x, y), (x, y), (0, x + y)))
|
|
|
|
assert name_val == [(x0, x + y)]
|
|
assert expr == Subs(f(x, y), (x, y), (0, x0)) + \
|
|
Subs(g(x, y), (x, y), (0, x0))
|
|
|
|
|
|
def test_pow_invpow():
|
|
assert cse(1/x**2 + x**2) == \
|
|
([(x0, x**2)], [x0 + 1/x0])
|
|
assert cse(x**2 + (1 + 1/x**2)/x**2) == \
|
|
([(x0, x**2), (x1, 1/x0)], [x0 + x1*(x1 + 1)])
|
|
assert cse(1/x**2 + (1 + 1/x**2)*x**2) == \
|
|
([(x0, x**2), (x1, 1/x0)], [x0*(x1 + 1) + x1])
|
|
assert cse(cos(1/x**2) + sin(1/x**2)) == \
|
|
([(x0, x**(-2))], [sin(x0) + cos(x0)])
|
|
assert cse(cos(x**2) + sin(x**2)) == \
|
|
([(x0, x**2)], [sin(x0) + cos(x0)])
|
|
assert cse(y/(2 + x**2) + z/x**2/y) == \
|
|
([(x0, x**2)], [y/(x0 + 2) + z/(x0*y)])
|
|
assert cse(exp(x**2) + x**2*cos(1/x**2)) == \
|
|
([(x0, x**2)], [x0*cos(1/x0) + exp(x0)])
|
|
assert cse((1 + 1/x**2)/x**2) == \
|
|
([(x0, x**(-2))], [x0*(x0 + 1)])
|
|
assert cse(x**(2*y) + x**(-2*y)) == \
|
|
([(x0, x**(2*y))], [x0 + 1/x0])
|
|
|
|
|
|
def test_postprocess():
|
|
eq = (x + 1 + exp((x + 1)/(y + 1)) + cos(y + 1))
|
|
assert cse([eq, Eq(x, z + 1), z - 2, (z + 1)*(x + 1)],
|
|
postprocess=cse_main.cse_separate) == \
|
|
[[(x0, y + 1), (x2, z + 1), (x, x2), (x1, x + 1)],
|
|
[x1 + exp(x1/x0) + cos(x0), z - 2, x1*x2]]
|
|
|
|
|
|
def test_issue_4499():
|
|
# previously, this gave 16 constants
|
|
from sympy.abc import a, b
|
|
B = Function('B')
|
|
G = Function('G')
|
|
t = Tuple(*
|
|
(a, a + S.Half, 2*a, b, 2*a - b + 1, (sqrt(z)/2)**(-2*a + 1)*B(2*a -
|
|
b, sqrt(z))*B(b - 1, sqrt(z))*G(b)*G(2*a - b + 1),
|
|
sqrt(z)*(sqrt(z)/2)**(-2*a + 1)*B(b, sqrt(z))*B(2*a - b,
|
|
sqrt(z))*G(b)*G(2*a - b + 1), sqrt(z)*(sqrt(z)/2)**(-2*a + 1)*B(b - 1,
|
|
sqrt(z))*B(2*a - b + 1, sqrt(z))*G(b)*G(2*a - b + 1),
|
|
(sqrt(z)/2)**(-2*a + 1)*B(b, sqrt(z))*B(2*a - b + 1,
|
|
sqrt(z))*G(b)*G(2*a - b + 1), 1, 0, S.Half, z/2, -b + 1, -2*a + b,
|
|
-2*a))
|
|
c = cse(t)
|
|
ans = (
|
|
[(x0, 2*a), (x1, -b + x0), (x2, x1 + 1), (x3, b - 1), (x4, sqrt(z)),
|
|
(x5, B(x3, x4)), (x6, (x4/2)**(1 - x0)*G(b)*G(x2)), (x7, x6*B(x1, x4)),
|
|
(x8, B(b, x4)), (x9, x6*B(x2, x4))],
|
|
[(a, a + S.Half, x0, b, x2, x5*x7, x4*x7*x8, x4*x5*x9, x8*x9,
|
|
1, 0, S.Half, z/2, -x3, -x1, -x0)])
|
|
assert ans == c
|
|
|
|
|
|
def test_issue_6169():
|
|
r = CRootOf(x**6 - 4*x**5 - 2, 1)
|
|
assert cse(r) == ([], [r])
|
|
# and a check that the right thing is done with the new
|
|
# mechanism
|
|
assert sub_post(sub_pre((-x - y)*z - x - y)) == -z*(x + y) - x - y
|
|
|
|
|
|
def test_cse_Indexed():
|
|
len_y = 5
|
|
y = IndexedBase('y', shape=(len_y,))
|
|
x = IndexedBase('x', shape=(len_y,))
|
|
i = Idx('i', len_y-1)
|
|
|
|
expr1 = (y[i+1]-y[i])/(x[i+1]-x[i])
|
|
expr2 = 1/(x[i+1]-x[i])
|
|
replacements, reduced_exprs = cse([expr1, expr2])
|
|
assert len(replacements) > 0
|
|
|
|
|
|
def test_cse_MatrixSymbol():
|
|
# MatrixSymbols have non-Basic args, so make sure that works
|
|
A = MatrixSymbol("A", 3, 3)
|
|
assert cse(A) == ([], [A])
|
|
|
|
n = symbols('n', integer=True)
|
|
B = MatrixSymbol("B", n, n)
|
|
assert cse(B) == ([], [B])
|
|
|
|
assert cse(A[0] * A[0]) == ([], [A[0]*A[0]])
|
|
|
|
assert cse(A[0,0]*A[0,1] + A[0,0]*A[0,1]*A[0,2]) == ([(x0, A[0, 0]*A[0, 1])], [x0*A[0, 2] + x0])
|
|
|
|
def test_cse_MatrixExpr():
|
|
A = MatrixSymbol('A', 3, 3)
|
|
y = MatrixSymbol('y', 3, 1)
|
|
|
|
expr1 = (A.T*A).I * A * y
|
|
expr2 = (A.T*A) * A * y
|
|
replacements, reduced_exprs = cse([expr1, expr2])
|
|
assert len(replacements) > 0
|
|
|
|
replacements, reduced_exprs = cse([expr1 + expr2, expr1])
|
|
assert replacements
|
|
|
|
replacements, reduced_exprs = cse([A**2, A + A**2])
|
|
assert replacements
|
|
|
|
|
|
def test_Piecewise():
|
|
f = Piecewise((-z + x*y, Eq(y, 0)), (-z - x*y, True))
|
|
ans = cse(f)
|
|
actual_ans = ([(x0, x*y)],
|
|
[Piecewise((x0 - z, Eq(y, 0)), (-z - x0, True))])
|
|
assert ans == actual_ans
|
|
|
|
|
|
def test_ignore_order_terms():
|
|
eq = exp(x).series(x,0,3) + sin(y+x**3) - 1
|
|
assert cse(eq) == ([], [sin(x**3 + y) + x + x**2/2 + O(x**3)])
|
|
|
|
|
|
def test_name_conflict():
|
|
z1 = x0 + y
|
|
z2 = x2 + x3
|
|
l = [cos(z1) + z1, cos(z2) + z2, x0 + x2]
|
|
substs, reduced = cse(l)
|
|
assert [e.subs(reversed(substs)) for e in reduced] == l
|
|
|
|
|
|
def test_name_conflict_cust_symbols():
|
|
z1 = x0 + y
|
|
z2 = x2 + x3
|
|
l = [cos(z1) + z1, cos(z2) + z2, x0 + x2]
|
|
substs, reduced = cse(l, symbols("x:10"))
|
|
assert [e.subs(reversed(substs)) for e in reduced] == l
|
|
|
|
|
|
def test_symbols_exhausted_error():
|
|
l = cos(x+y)+x+y+cos(w+y)+sin(w+y)
|
|
sym = [x, y, z]
|
|
with raises(ValueError):
|
|
cse(l, symbols=sym)
|
|
|
|
|
|
def test_issue_7840():
|
|
# daveknippers' example
|
|
C393 = sympify( \
|
|
'Piecewise((C391 - 1.65, C390 < 0.5), (Piecewise((C391 - 1.65, \
|
|
C391 > 2.35), (C392, True)), True))'
|
|
)
|
|
C391 = sympify( \
|
|
'Piecewise((2.05*C390**(-1.03), C390 < 0.5), (2.5*C390**(-0.625), True))'
|
|
)
|
|
C393 = C393.subs('C391',C391)
|
|
# simple substitution
|
|
sub = {}
|
|
sub['C390'] = 0.703451854
|
|
sub['C392'] = 1.01417794
|
|
ss_answer = C393.subs(sub)
|
|
# cse
|
|
substitutions,new_eqn = cse(C393)
|
|
for pair in substitutions:
|
|
sub[pair[0].name] = pair[1].subs(sub)
|
|
cse_answer = new_eqn[0].subs(sub)
|
|
# both methods should be the same
|
|
assert ss_answer == cse_answer
|
|
|
|
# GitRay's example
|
|
expr = sympify(
|
|
"Piecewise((Symbol('ON'), Equality(Symbol('mode'), Symbol('ON'))), \
|
|
(Piecewise((Piecewise((Symbol('OFF'), StrictLessThan(Symbol('x'), \
|
|
Symbol('threshold'))), (Symbol('ON'), true)), Equality(Symbol('mode'), \
|
|
Symbol('AUTO'))), (Symbol('OFF'), true)), true))"
|
|
)
|
|
substitutions, new_eqn = cse(expr)
|
|
# this Piecewise should be exactly the same
|
|
assert new_eqn[0] == expr
|
|
# there should not be any replacements
|
|
assert len(substitutions) < 1
|
|
|
|
|
|
def test_issue_8891():
|
|
for cls in (MutableDenseMatrix, MutableSparseMatrix,
|
|
ImmutableDenseMatrix, ImmutableSparseMatrix):
|
|
m = cls(2, 2, [x + y, 0, 0, 0])
|
|
res = cse([x + y, m])
|
|
ans = ([(x0, x + y)], [x0, cls([[x0, 0], [0, 0]])])
|
|
assert res == ans
|
|
assert isinstance(res[1][-1], cls)
|
|
|
|
|
|
def test_issue_11230():
|
|
# a specific test that always failed
|
|
a, b, f, k, l, i = symbols('a b f k l i')
|
|
p = [a*b*f*k*l, a*i*k**2*l, f*i*k**2*l]
|
|
R, C = cse(p)
|
|
assert not any(i.is_Mul for a in C for i in a.args)
|
|
|
|
# random tests for the issue
|
|
from sympy.core.random import choice
|
|
from sympy.core.function import expand_mul
|
|
s = symbols('a:m')
|
|
# 35 Mul tests, none of which should ever fail
|
|
ex = [Mul(*[choice(s) for i in range(5)]) for i in range(7)]
|
|
for p in subsets(ex, 3):
|
|
p = list(p)
|
|
R, C = cse(p)
|
|
assert not any(i.is_Mul for a in C for i in a.args)
|
|
for ri in reversed(R):
|
|
for i in range(len(C)):
|
|
C[i] = C[i].subs(*ri)
|
|
assert p == C
|
|
# 35 Add tests, none of which should ever fail
|
|
ex = [Add(*[choice(s[:7]) for i in range(5)]) for i in range(7)]
|
|
for p in subsets(ex, 3):
|
|
p = list(p)
|
|
R, C = cse(p)
|
|
assert not any(i.is_Add for a in C for i in a.args)
|
|
for ri in reversed(R):
|
|
for i in range(len(C)):
|
|
C[i] = C[i].subs(*ri)
|
|
# use expand_mul to handle cases like this:
|
|
# p = [a + 2*b + 2*e, 2*b + c + 2*e, b + 2*c + 2*g]
|
|
# x0 = 2*(b + e) is identified giving a rebuilt p that
|
|
# is now `[a + 2*(b + e), c + 2*(b + e), b + 2*c + 2*g]`
|
|
assert p == [expand_mul(i) for i in C]
|
|
|
|
|
|
@XFAIL
|
|
def test_issue_11577():
|
|
def check(eq):
|
|
r, c = cse(eq)
|
|
assert eq.count_ops() >= \
|
|
len(r) + sum([i[1].count_ops() for i in r]) + \
|
|
count_ops(c)
|
|
|
|
eq = x**5*y**2 + x**5*y + x**5
|
|
assert cse(eq) == (
|
|
[(x0, x**4), (x1, x*y)], [x**5 + x0*x1*y + x0*x1])
|
|
# ([(x0, x**5*y)], [x0*y + x0 + x**5]) or
|
|
# ([(x0, x**5)], [x0*y**2 + x0*y + x0])
|
|
check(eq)
|
|
|
|
eq = x**2/(y + 1)**2 + x/(y + 1)
|
|
assert cse(eq) == (
|
|
[(x0, y + 1)], [x**2/x0**2 + x/x0])
|
|
# ([(x0, x/(y + 1))], [x0**2 + x0])
|
|
check(eq)
|
|
|
|
|
|
def test_hollow_rejection():
|
|
eq = [x + 3, x + 4]
|
|
assert cse(eq) == ([], eq)
|
|
|
|
|
|
def test_cse_ignore():
|
|
exprs = [exp(y)*(3*y + 3*sqrt(x+1)), exp(y)*(5*y + 5*sqrt(x+1))]
|
|
subst1, red1 = cse(exprs)
|
|
assert any(y in sub.free_symbols for _, sub in subst1), "cse failed to identify any term with y"
|
|
|
|
subst2, red2 = cse(exprs, ignore=(y,)) # y is not allowed in substitutions
|
|
assert not any(y in sub.free_symbols for _, sub in subst2), "Sub-expressions containing y must be ignored"
|
|
assert any(sub - sqrt(x + 1) == 0 for _, sub in subst2), "cse failed to identify sqrt(x + 1) as sub-expression"
|
|
|
|
def test_cse_ignore_issue_15002():
|
|
l = [
|
|
w*exp(x)*exp(-z),
|
|
exp(y)*exp(x)*exp(-z)
|
|
]
|
|
substs, reduced = cse(l, ignore=(x,))
|
|
rl = [e.subs(reversed(substs)) for e in reduced]
|
|
assert rl == l
|
|
|
|
|
|
def test_cse_unevaluated():
|
|
xp1 = UnevaluatedExpr(x + 1)
|
|
# This used to cause RecursionError
|
|
[(x0, ue)], [red] = cse([(-1 - xp1) / (1 - xp1)])
|
|
if ue == xp1:
|
|
assert red == (-1 - x0) / (1 - x0)
|
|
elif ue == -xp1:
|
|
assert red == (-1 + x0) / (1 + x0)
|
|
else:
|
|
msg = f'Expected common subexpression {xp1} or {-xp1}, instead got {ue}'
|
|
assert False, msg
|
|
|
|
|
|
def test_cse__performance():
|
|
nexprs, nterms = 3, 20
|
|
x = symbols('x:%d' % nterms)
|
|
exprs = [
|
|
reduce(add, [x[j]*(-1)**(i+j) for j in range(nterms)])
|
|
for i in range(nexprs)
|
|
]
|
|
assert (exprs[0] + exprs[1]).simplify() == 0
|
|
subst, red = cse(exprs)
|
|
assert len(subst) > 0, "exprs[0] == -exprs[2], i.e. a CSE"
|
|
for i, e in enumerate(red):
|
|
assert (e.subs(reversed(subst)) - exprs[i]).simplify() == 0
|
|
|
|
|
|
def test_issue_12070():
|
|
exprs = [x + y, 2 + x + y, x + y + z, 3 + x + y + z]
|
|
subst, red = cse(exprs)
|
|
assert 6 >= (len(subst) + sum([v.count_ops() for k, v in subst]) +
|
|
count_ops(red))
|
|
|
|
|
|
def test_issue_13000():
|
|
eq = x/(-4*x**2 + y**2)
|
|
cse_eq = cse(eq)[1][0]
|
|
assert cse_eq == eq
|
|
|
|
|
|
def test_issue_18203():
|
|
eq = CRootOf(x**5 + 11*x - 2, 0) + CRootOf(x**5 + 11*x - 2, 1)
|
|
assert cse(eq) == ([], [eq])
|
|
|
|
|
|
def test_unevaluated_mul():
|
|
eq = Mul(x + y, x + y, evaluate=False)
|
|
assert cse(eq) == ([(x0, x + y)], [x0**2])
|
|
|
|
def test_cse_release_variables():
|
|
from sympy.simplify.cse_main import cse_release_variables
|
|
_0, _1, _2, _3, _4 = symbols('_:5')
|
|
eqs = [(x + y - 1)**2, x,
|
|
x + y, (x + y)/(2*x + 1) + (x + y - 1)**2,
|
|
(2*x + 1)**(x + y)]
|
|
r, e = cse(eqs, postprocess=cse_release_variables)
|
|
# this can change in keeping with the intention of the function
|
|
assert r, e == ([
|
|
(x0, x + y), (x1, (x0 - 1)**2), (x2, 2*x + 1),
|
|
(_3, x0/x2 + x1), (_4, x2**x0), (x2, None), (_0, x1),
|
|
(x1, None), (_2, x0), (x0, None), (_1, x)], (_0, _1, _2, _3, _4))
|
|
r.reverse()
|
|
r = [(s, v) for s, v in r if v is not None]
|
|
assert eqs == [i.subs(r) for i in e]
|
|
|
|
def test_cse_list():
|
|
_cse = lambda x: cse(x, list=False)
|
|
assert _cse(x) == ([], x)
|
|
assert _cse('x') == ([], 'x')
|
|
it = [x]
|
|
for c in (list, tuple, set):
|
|
assert _cse(c(it)) == ([], c(it))
|
|
#Tuple works different from tuple:
|
|
assert _cse(Tuple(*it)) == ([], Tuple(*it))
|
|
d = {x: 1}
|
|
assert _cse(d) == ([], d)
|
|
|
|
def test_issue_18991():
|
|
A = MatrixSymbol('A', 2, 2)
|
|
assert signsimp(-A * A - A) == -A * A - A
|
|
|
|
|
|
def test_unevaluated_Mul():
|
|
m = [Mul(1, 2, evaluate=False)]
|
|
assert cse(m) == ([], m)
|
|
|
|
|
|
def test_cse_matrix_expression_inverse():
|
|
A = ImmutableDenseMatrix(symbols('A:4')).reshape(2, 2)
|
|
x = Inverse(A)
|
|
cse_expr = cse(x)
|
|
assert cse_expr == ([], [Inverse(A)])
|
|
|
|
|
|
def test_cse_matrix_expression_matmul_inverse():
|
|
A = ImmutableDenseMatrix(symbols('A:4')).reshape(2, 2)
|
|
b = ImmutableDenseMatrix(symbols('b:2'))
|
|
x = MatMul(Inverse(A), b)
|
|
cse_expr = cse(x)
|
|
assert cse_expr == ([], [x])
|
|
|
|
|
|
def test_cse_matrix_negate_matrix():
|
|
A = ImmutableDenseMatrix(symbols('A:4')).reshape(2, 2)
|
|
x = MatMul(S.NegativeOne, A)
|
|
cse_expr = cse(x)
|
|
assert cse_expr == ([], [x])
|
|
|
|
|
|
def test_cse_matrix_negate_matmul_not_extracted():
|
|
A = ImmutableDenseMatrix(symbols('A:4')).reshape(2, 2)
|
|
B = ImmutableDenseMatrix(symbols('B:4')).reshape(2, 2)
|
|
x = MatMul(S.NegativeOne, A, B)
|
|
cse_expr = cse(x)
|
|
assert cse_expr == ([], [x])
|
|
|
|
|
|
@XFAIL # No simplification rule for nested associative operations
|
|
def test_cse_matrix_nested_matmul_collapsed():
|
|
A = ImmutableDenseMatrix(symbols('A:4')).reshape(2, 2)
|
|
B = ImmutableDenseMatrix(symbols('B:4')).reshape(2, 2)
|
|
x = MatMul(S.NegativeOne, MatMul(A, B))
|
|
cse_expr = cse(x)
|
|
assert cse_expr == ([], [MatMul(S.NegativeOne, A, B)])
|
|
|
|
|
|
def test_cse_matrix_optimize_out_single_argument_mul():
|
|
A = ImmutableDenseMatrix(symbols('A:4')).reshape(2, 2)
|
|
x = MatMul(MatMul(MatMul(A)))
|
|
cse_expr = cse(x)
|
|
assert cse_expr == ([], [A])
|
|
|
|
|
|
@XFAIL # Multiple simplification passed not supported in CSE
|
|
def test_cse_matrix_optimize_out_single_argument_mul_combined():
|
|
A = ImmutableDenseMatrix(symbols('A:4')).reshape(2, 2)
|
|
x = MatAdd(MatMul(MatMul(MatMul(A))), MatMul(MatMul(A)), MatMul(A), A)
|
|
cse_expr = cse(x)
|
|
assert cse_expr == ([], [MatMul(4, A)])
|
|
|
|
|
|
def test_cse_matrix_optimize_out_single_argument_add():
|
|
A = ImmutableDenseMatrix(symbols('A:4')).reshape(2, 2)
|
|
x = MatAdd(MatAdd(MatAdd(MatAdd(A))))
|
|
cse_expr = cse(x)
|
|
assert cse_expr == ([], [A])
|
|
|
|
|
|
@XFAIL # Multiple simplification passed not supported in CSE
|
|
def test_cse_matrix_optimize_out_single_argument_add_combined():
|
|
A = ImmutableDenseMatrix(symbols('A:4')).reshape(2, 2)
|
|
x = MatMul(MatAdd(MatAdd(MatAdd(A))), MatAdd(MatAdd(A)), MatAdd(A), A)
|
|
cse_expr = cse(x)
|
|
assert cse_expr == ([], [MatMul(4, A)])
|
|
|
|
|
|
def test_cse_matrix_expression_matrix_solve():
|
|
A = ImmutableDenseMatrix(symbols('A:4')).reshape(2, 2)
|
|
b = ImmutableDenseMatrix(symbols('b:2'))
|
|
x = MatrixSolve(A, b)
|
|
cse_expr = cse(x)
|
|
assert cse_expr == ([], [x])
|
|
|
|
|
|
def test_cse_matrix_matrix_expression():
|
|
X = ImmutableDenseMatrix(symbols('X:4')).reshape(2, 2)
|
|
y = ImmutableDenseMatrix(symbols('y:2'))
|
|
b = MatMul(Inverse(MatMul(Transpose(X), X)), Transpose(X), y)
|
|
cse_expr = cse(b)
|
|
x0 = MatrixSymbol('x0', 2, 2)
|
|
reduced_expr_expected = MatMul(Inverse(MatMul(x0, X)), x0, y)
|
|
assert cse_expr == ([(x0, Transpose(X))], [reduced_expr_expected])
|
|
|
|
|
|
def test_cse_matrix_kalman_filter():
|
|
"""Kalman Filter example from Matthew Rocklin's SciPy 2013 talk.
|
|
|
|
Talk titled: "Matrix Expressions and BLAS/LAPACK; SciPy 2013 Presentation"
|
|
|
|
Video: https://pyvideo.org/scipy-2013/matrix-expressions-and-blaslapack-scipy-2013-pr.html
|
|
|
|
Notes
|
|
=====
|
|
|
|
Equations are:
|
|
|
|
new_mu = mu + Sigma*H.T * (R + H*Sigma*H.T).I * (H*mu - data)
|
|
= MatAdd(mu, MatMul(Sigma, Transpose(H), Inverse(MatAdd(R, MatMul(H, Sigma, Transpose(H)))), MatAdd(MatMul(H, mu), MatMul(S.NegativeOne, data))))
|
|
new_Sigma = Sigma - Sigma*H.T * (R + H*Sigma*H.T).I * H * Sigma
|
|
= MatAdd(Sigma, MatMul(S.NegativeOne, Sigma, Transpose(H)), Inverse(MatAdd(R, MatMul(H*Sigma*Transpose(H)))), H, Sigma))
|
|
|
|
"""
|
|
N = 2
|
|
mu = ImmutableDenseMatrix(symbols(f'mu:{N}'))
|
|
Sigma = ImmutableDenseMatrix(symbols(f'Sigma:{N * N}')).reshape(N, N)
|
|
H = ImmutableDenseMatrix(symbols(f'H:{N * N}')).reshape(N, N)
|
|
R = ImmutableDenseMatrix(symbols(f'R:{N * N}')).reshape(N, N)
|
|
data = ImmutableDenseMatrix(symbols(f'data:{N}'))
|
|
new_mu = MatAdd(mu, MatMul(Sigma, Transpose(H), Inverse(MatAdd(R, MatMul(H, Sigma, Transpose(H)))), MatAdd(MatMul(H, mu), MatMul(S.NegativeOne, data))))
|
|
new_Sigma = MatAdd(Sigma, MatMul(S.NegativeOne, Sigma, Transpose(H), Inverse(MatAdd(R, MatMul(H, Sigma, Transpose(H)))), H, Sigma))
|
|
cse_expr = cse([new_mu, new_Sigma])
|
|
x0 = MatrixSymbol('x0', N, N)
|
|
x1 = MatrixSymbol('x1', N, N)
|
|
replacements_expected = [
|
|
(x0, Transpose(H)),
|
|
(x1, Inverse(MatAdd(R, MatMul(H, Sigma, x0)))),
|
|
]
|
|
reduced_exprs_expected = [
|
|
MatAdd(mu, MatMul(Sigma, x0, x1, MatAdd(MatMul(H, mu), MatMul(S.NegativeOne, data)))),
|
|
MatAdd(Sigma, MatMul(S.NegativeOne, Sigma, x0, x1, H, Sigma)),
|
|
]
|
|
assert cse_expr == (replacements_expected, reduced_exprs_expected)
|