You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
274 lines
10 KiB
274 lines
10 KiB
"""Utility functions for classifying and solving
|
|
ordinary and partial differential equations.
|
|
|
|
Contains
|
|
========
|
|
_preprocess
|
|
ode_order
|
|
_desolve
|
|
|
|
"""
|
|
from sympy.core import Pow
|
|
from sympy.core.function import Derivative, AppliedUndef
|
|
from sympy.core.relational import Equality
|
|
from sympy.core.symbol import Wild
|
|
|
|
def _preprocess(expr, func=None, hint='_Integral'):
|
|
"""Prepare expr for solving by making sure that differentiation
|
|
is done so that only func remains in unevaluated derivatives and
|
|
(if hint does not end with _Integral) that doit is applied to all
|
|
other derivatives. If hint is None, do not do any differentiation.
|
|
(Currently this may cause some simple differential equations to
|
|
fail.)
|
|
|
|
In case func is None, an attempt will be made to autodetect the
|
|
function to be solved for.
|
|
|
|
>>> from sympy.solvers.deutils import _preprocess
|
|
>>> from sympy import Derivative, Function
|
|
>>> from sympy.abc import x, y, z
|
|
>>> f, g = map(Function, 'fg')
|
|
|
|
If f(x)**p == 0 and p>0 then we can solve for f(x)=0
|
|
>>> _preprocess((f(x).diff(x)-4)**5, f(x))
|
|
(Derivative(f(x), x) - 4, f(x))
|
|
|
|
Apply doit to derivatives that contain more than the function
|
|
of interest:
|
|
|
|
>>> _preprocess(Derivative(f(x) + x, x))
|
|
(Derivative(f(x), x) + 1, f(x))
|
|
|
|
Do others if the differentiation variable(s) intersect with those
|
|
of the function of interest or contain the function of interest:
|
|
|
|
>>> _preprocess(Derivative(g(x), y, z), f(y))
|
|
(0, f(y))
|
|
>>> _preprocess(Derivative(f(y), z), f(y))
|
|
(0, f(y))
|
|
|
|
Do others if the hint does not end in '_Integral' (the default
|
|
assumes that it does):
|
|
|
|
>>> _preprocess(Derivative(g(x), y), f(x))
|
|
(Derivative(g(x), y), f(x))
|
|
>>> _preprocess(Derivative(f(x), y), f(x), hint='')
|
|
(0, f(x))
|
|
|
|
Do not do any derivatives if hint is None:
|
|
|
|
>>> eq = Derivative(f(x) + 1, x) + Derivative(f(x), y)
|
|
>>> _preprocess(eq, f(x), hint=None)
|
|
(Derivative(f(x) + 1, x) + Derivative(f(x), y), f(x))
|
|
|
|
If it's not clear what the function of interest is, it must be given:
|
|
|
|
>>> eq = Derivative(f(x) + g(x), x)
|
|
>>> _preprocess(eq, g(x))
|
|
(Derivative(f(x), x) + Derivative(g(x), x), g(x))
|
|
>>> try: _preprocess(eq)
|
|
... except ValueError: print("A ValueError was raised.")
|
|
A ValueError was raised.
|
|
|
|
"""
|
|
if isinstance(expr, Pow):
|
|
# if f(x)**p=0 then f(x)=0 (p>0)
|
|
if (expr.exp).is_positive:
|
|
expr = expr.base
|
|
derivs = expr.atoms(Derivative)
|
|
if not func:
|
|
funcs = set().union(*[d.atoms(AppliedUndef) for d in derivs])
|
|
if len(funcs) != 1:
|
|
raise ValueError('The function cannot be '
|
|
'automatically detected for %s.' % expr)
|
|
func = funcs.pop()
|
|
fvars = set(func.args)
|
|
if hint is None:
|
|
return expr, func
|
|
reps = [(d, d.doit()) for d in derivs if not hint.endswith('_Integral') or
|
|
d.has(func) or set(d.variables) & fvars]
|
|
eq = expr.subs(reps)
|
|
return eq, func
|
|
|
|
|
|
def ode_order(expr, func):
|
|
"""
|
|
Returns the order of a given differential
|
|
equation with respect to func.
|
|
|
|
This function is implemented recursively.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Function
|
|
>>> from sympy.solvers.deutils import ode_order
|
|
>>> from sympy.abc import x
|
|
>>> f, g = map(Function, ['f', 'g'])
|
|
>>> ode_order(f(x).diff(x, 2) + f(x).diff(x)**2 +
|
|
... f(x).diff(x), f(x))
|
|
2
|
|
>>> ode_order(f(x).diff(x, 2) + g(x).diff(x, 3), f(x))
|
|
2
|
|
>>> ode_order(f(x).diff(x, 2) + g(x).diff(x, 3), g(x))
|
|
3
|
|
|
|
"""
|
|
a = Wild('a', exclude=[func])
|
|
if expr.match(a):
|
|
return 0
|
|
|
|
if isinstance(expr, Derivative):
|
|
if expr.args[0] == func:
|
|
return len(expr.variables)
|
|
else:
|
|
args = expr.args[0].args
|
|
rv = len(expr.variables)
|
|
if args:
|
|
rv += max(ode_order(_, func) for _ in args)
|
|
return rv
|
|
else:
|
|
return max(ode_order(_, func) for _ in expr.args) if expr.args else 0
|
|
|
|
|
|
def _desolve(eq, func=None, hint="default", ics=None, simplify=True, *, prep=True, **kwargs):
|
|
"""This is a helper function to dsolve and pdsolve in the ode
|
|
and pde modules.
|
|
|
|
If the hint provided to the function is "default", then a dict with
|
|
the following keys are returned
|
|
|
|
'func' - It provides the function for which the differential equation
|
|
has to be solved. This is useful when the expression has
|
|
more than one function in it.
|
|
|
|
'default' - The default key as returned by classifier functions in ode
|
|
and pde.py
|
|
|
|
'hint' - The hint given by the user for which the differential equation
|
|
is to be solved. If the hint given by the user is 'default',
|
|
then the value of 'hint' and 'default' is the same.
|
|
|
|
'order' - The order of the function as returned by ode_order
|
|
|
|
'match' - It returns the match as given by the classifier functions, for
|
|
the default hint.
|
|
|
|
If the hint provided to the function is not "default" and is not in
|
|
('all', 'all_Integral', 'best'), then a dict with the above mentioned keys
|
|
is returned along with the keys which are returned when dict in
|
|
classify_ode or classify_pde is set True
|
|
|
|
If the hint given is in ('all', 'all_Integral', 'best'), then this function
|
|
returns a nested dict, with the keys, being the set of classified hints
|
|
returned by classifier functions, and the values being the dict of form
|
|
as mentioned above.
|
|
|
|
Key 'eq' is a common key to all the above mentioned hints which returns an
|
|
expression if eq given by user is an Equality.
|
|
|
|
See Also
|
|
========
|
|
classify_ode(ode.py)
|
|
classify_pde(pde.py)
|
|
"""
|
|
if isinstance(eq, Equality):
|
|
eq = eq.lhs - eq.rhs
|
|
|
|
# preprocess the equation and find func if not given
|
|
if prep or func is None:
|
|
eq, func = _preprocess(eq, func)
|
|
prep = False
|
|
|
|
# type is an argument passed by the solve functions in ode and pde.py
|
|
# that identifies whether the function caller is an ordinary
|
|
# or partial differential equation. Accordingly corresponding
|
|
# changes are made in the function.
|
|
type = kwargs.get('type', None)
|
|
xi = kwargs.get('xi')
|
|
eta = kwargs.get('eta')
|
|
x0 = kwargs.get('x0', 0)
|
|
terms = kwargs.get('n')
|
|
|
|
if type == 'ode':
|
|
from sympy.solvers.ode import classify_ode, allhints
|
|
classifier = classify_ode
|
|
string = 'ODE '
|
|
dummy = ''
|
|
|
|
elif type == 'pde':
|
|
from sympy.solvers.pde import classify_pde, allhints
|
|
classifier = classify_pde
|
|
string = 'PDE '
|
|
dummy = 'p'
|
|
|
|
# Magic that should only be used internally. Prevents classify_ode from
|
|
# being called more than it needs to be by passing its results through
|
|
# recursive calls.
|
|
if kwargs.get('classify', True):
|
|
hints = classifier(eq, func, dict=True, ics=ics, xi=xi, eta=eta,
|
|
n=terms, x0=x0, hint=hint, prep=prep)
|
|
|
|
else:
|
|
# Here is what all this means:
|
|
#
|
|
# hint: The hint method given to _desolve() by the user.
|
|
# hints: The dictionary of hints that match the DE, along with other
|
|
# information (including the internal pass-through magic).
|
|
# default: The default hint to return, the first hint from allhints
|
|
# that matches the hint; obtained from classify_ode().
|
|
# match: Dictionary containing the match dictionary for each hint
|
|
# (the parts of the DE for solving). When going through the
|
|
# hints in "all", this holds the match string for the current
|
|
# hint.
|
|
# order: The order of the DE, as determined by ode_order().
|
|
hints = kwargs.get('hint',
|
|
{'default': hint,
|
|
hint: kwargs['match'],
|
|
'order': kwargs['order']})
|
|
if not hints['default']:
|
|
# classify_ode will set hints['default'] to None if no hints match.
|
|
if hint not in allhints and hint != 'default':
|
|
raise ValueError("Hint not recognized: " + hint)
|
|
elif hint not in hints['ordered_hints'] and hint != 'default':
|
|
raise ValueError(string + str(eq) + " does not match hint " + hint)
|
|
# If dsolve can't solve the purely algebraic equation then dsolve will raise
|
|
# ValueError
|
|
elif hints['order'] == 0:
|
|
raise ValueError(
|
|
str(eq) + " is not a solvable differential equation in " + str(func))
|
|
else:
|
|
raise NotImplementedError(dummy + "solve" + ": Cannot solve " + str(eq))
|
|
if hint == 'default':
|
|
return _desolve(eq, func, ics=ics, hint=hints['default'], simplify=simplify,
|
|
prep=prep, x0=x0, classify=False, order=hints['order'],
|
|
match=hints[hints['default']], xi=xi, eta=eta, n=terms, type=type)
|
|
elif hint in ('all', 'all_Integral', 'best'):
|
|
retdict = {}
|
|
gethints = set(hints) - {'order', 'default', 'ordered_hints'}
|
|
if hint == 'all_Integral':
|
|
for i in hints:
|
|
if i.endswith('_Integral'):
|
|
gethints.remove(i[:-len('_Integral')])
|
|
# special cases
|
|
for k in ["1st_homogeneous_coeff_best", "1st_power_series",
|
|
"lie_group", "2nd_power_series_ordinary", "2nd_power_series_regular"]:
|
|
if k in gethints:
|
|
gethints.remove(k)
|
|
for i in gethints:
|
|
sol = _desolve(eq, func, ics=ics, hint=i, x0=x0, simplify=simplify, prep=prep,
|
|
classify=False, n=terms, order=hints['order'], match=hints[i], type=type)
|
|
retdict[i] = sol
|
|
retdict['all'] = True
|
|
retdict['eq'] = eq
|
|
return retdict
|
|
elif hint not in allhints: # and hint not in ('default', 'ordered_hints'):
|
|
raise ValueError("Hint not recognized: " + hint)
|
|
elif hint not in hints:
|
|
raise ValueError(string + str(eq) + " does not match hint " + hint)
|
|
else:
|
|
# Key added to identify the hint needed to solve the equation
|
|
hints['hint'] = hint
|
|
hints.update({'func': func, 'eq': eq})
|
|
return hints
|