You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
203 lines
8.3 KiB
203 lines
8.3 KiB
"""
|
|
SymPy statistics module
|
|
|
|
Introduces a random variable type into the SymPy language.
|
|
|
|
Random variables may be declared using prebuilt functions such as
|
|
Normal, Exponential, Coin, Die, etc... or built with functions like FiniteRV.
|
|
|
|
Queries on random expressions can be made using the functions
|
|
|
|
========================= =============================
|
|
Expression Meaning
|
|
------------------------- -----------------------------
|
|
``P(condition)`` Probability
|
|
``E(expression)`` Expected value
|
|
``H(expression)`` Entropy
|
|
``variance(expression)`` Variance
|
|
``density(expression)`` Probability Density Function
|
|
``sample(expression)`` Produce a realization
|
|
``where(condition)`` Where the condition is true
|
|
========================= =============================
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.stats import P, E, variance, Die, Normal
|
|
>>> from sympy import simplify
|
|
>>> X, Y = Die('X', 6), Die('Y', 6) # Define two six sided dice
|
|
>>> Z = Normal('Z', 0, 1) # Declare a Normal random variable with mean 0, std 1
|
|
>>> P(X>3) # Probability X is greater than 3
|
|
1/2
|
|
>>> E(X+Y) # Expectation of the sum of two dice
|
|
7
|
|
>>> variance(X+Y) # Variance of the sum of two dice
|
|
35/6
|
|
>>> simplify(P(Z>1)) # Probability of Z being greater than 1
|
|
1/2 - erf(sqrt(2)/2)/2
|
|
|
|
|
|
One could also create custom distribution and define custom random variables
|
|
as follows:
|
|
|
|
1. If you want to create a Continuous Random Variable:
|
|
|
|
>>> from sympy.stats import ContinuousRV, P, E
|
|
>>> from sympy import exp, Symbol, Interval, oo
|
|
>>> x = Symbol('x')
|
|
>>> pdf = exp(-x) # pdf of the Continuous Distribution
|
|
>>> Z = ContinuousRV(x, pdf, set=Interval(0, oo))
|
|
>>> E(Z)
|
|
1
|
|
>>> P(Z > 5)
|
|
exp(-5)
|
|
|
|
1.1 To create an instance of Continuous Distribution:
|
|
|
|
>>> from sympy.stats import ContinuousDistributionHandmade
|
|
>>> from sympy import Lambda
|
|
>>> dist = ContinuousDistributionHandmade(Lambda(x, pdf), set=Interval(0, oo))
|
|
>>> dist.pdf(x)
|
|
exp(-x)
|
|
|
|
2. If you want to create a Discrete Random Variable:
|
|
|
|
>>> from sympy.stats import DiscreteRV, P, E
|
|
>>> from sympy import Symbol, S
|
|
>>> p = S(1)/2
|
|
>>> x = Symbol('x', integer=True, positive=True)
|
|
>>> pdf = p*(1 - p)**(x - 1)
|
|
>>> D = DiscreteRV(x, pdf, set=S.Naturals)
|
|
>>> E(D)
|
|
2
|
|
>>> P(D > 3)
|
|
1/8
|
|
|
|
2.1 To create an instance of Discrete Distribution:
|
|
|
|
>>> from sympy.stats import DiscreteDistributionHandmade
|
|
>>> from sympy import Lambda
|
|
>>> dist = DiscreteDistributionHandmade(Lambda(x, pdf), set=S.Naturals)
|
|
>>> dist.pdf(x)
|
|
2**(1 - x)/2
|
|
|
|
3. If you want to create a Finite Random Variable:
|
|
|
|
>>> from sympy.stats import FiniteRV, P, E
|
|
>>> from sympy import Rational, Eq
|
|
>>> pmf = {1: Rational(1, 3), 2: Rational(1, 6), 3: Rational(1, 4), 4: Rational(1, 4)}
|
|
>>> X = FiniteRV('X', pmf)
|
|
>>> E(X)
|
|
29/12
|
|
>>> P(X > 3)
|
|
1/4
|
|
|
|
3.1 To create an instance of Finite Distribution:
|
|
|
|
>>> from sympy.stats import FiniteDistributionHandmade
|
|
>>> dist = FiniteDistributionHandmade(pmf)
|
|
>>> dist.pmf(x)
|
|
Lambda(x, Piecewise((1/3, Eq(x, 1)), (1/6, Eq(x, 2)), (1/4, Eq(x, 3) | Eq(x, 4)), (0, True)))
|
|
"""
|
|
|
|
__all__ = [
|
|
'P', 'E', 'H', 'density', 'where', 'given', 'sample', 'cdf','median',
|
|
'characteristic_function', 'pspace', 'sample_iter', 'variance', 'std',
|
|
'skewness', 'kurtosis', 'covariance', 'dependent', 'entropy', 'independent',
|
|
'random_symbols', 'correlation', 'factorial_moment', 'moment', 'cmoment',
|
|
'sampling_density', 'moment_generating_function', 'smoment', 'quantile',
|
|
'coskewness', 'sample_stochastic_process',
|
|
|
|
'FiniteRV', 'DiscreteUniform', 'Die', 'Bernoulli', 'Coin', 'Binomial',
|
|
'BetaBinomial', 'Hypergeometric', 'Rademacher', 'IdealSoliton', 'RobustSoliton',
|
|
'FiniteDistributionHandmade',
|
|
|
|
'ContinuousRV', 'Arcsin', 'Benini', 'Beta', 'BetaNoncentral', 'BetaPrime',
|
|
'BoundedPareto', 'Cauchy', 'Chi', 'ChiNoncentral', 'ChiSquared', 'Dagum', 'Erlang',
|
|
'ExGaussian', 'Exponential', 'ExponentialPower', 'FDistribution',
|
|
'FisherZ', 'Frechet', 'Gamma', 'GammaInverse', 'Gompertz', 'Gumbel',
|
|
'Kumaraswamy', 'Laplace', 'Levy', 'Logistic','LogCauchy', 'LogLogistic', 'LogitNormal', 'LogNormal', 'Lomax',
|
|
'Moyal', 'Maxwell', 'Nakagami', 'Normal', 'GaussianInverse', 'Pareto', 'PowerFunction',
|
|
'QuadraticU', 'RaisedCosine', 'Rayleigh','Reciprocal', 'StudentT', 'ShiftedGompertz',
|
|
'Trapezoidal', 'Triangular', 'Uniform', 'UniformSum', 'VonMises', 'Wald',
|
|
'Weibull', 'WignerSemicircle', 'ContinuousDistributionHandmade',
|
|
|
|
'FlorySchulz', 'Geometric','Hermite', 'Logarithmic', 'NegativeBinomial', 'Poisson', 'Skellam',
|
|
'YuleSimon', 'Zeta', 'DiscreteRV', 'DiscreteDistributionHandmade',
|
|
|
|
'JointRV', 'Dirichlet', 'GeneralizedMultivariateLogGamma',
|
|
'GeneralizedMultivariateLogGammaOmega', 'Multinomial', 'MultivariateBeta',
|
|
'MultivariateEwens', 'MultivariateT', 'NegativeMultinomial',
|
|
'NormalGamma', 'MultivariateNormal', 'MultivariateLaplace', 'marginal_distribution',
|
|
|
|
'StochasticProcess', 'DiscreteTimeStochasticProcess',
|
|
'DiscreteMarkovChain', 'TransitionMatrixOf', 'StochasticStateSpaceOf',
|
|
'GeneratorMatrixOf', 'ContinuousMarkovChain', 'BernoulliProcess',
|
|
'PoissonProcess', 'WienerProcess', 'GammaProcess',
|
|
|
|
'CircularEnsemble', 'CircularUnitaryEnsemble',
|
|
'CircularOrthogonalEnsemble', 'CircularSymplecticEnsemble',
|
|
'GaussianEnsemble', 'GaussianUnitaryEnsemble',
|
|
'GaussianOrthogonalEnsemble', 'GaussianSymplecticEnsemble',
|
|
'joint_eigen_distribution', 'JointEigenDistribution',
|
|
'level_spacing_distribution',
|
|
|
|
'MatrixGamma', 'Wishart', 'MatrixNormal', 'MatrixStudentT',
|
|
|
|
'Probability', 'Expectation', 'Variance', 'Covariance', 'Moment',
|
|
'CentralMoment',
|
|
|
|
'ExpectationMatrix', 'VarianceMatrix', 'CrossCovarianceMatrix'
|
|
|
|
]
|
|
from .rv_interface import (P, E, H, density, where, given, sample, cdf, median,
|
|
characteristic_function, pspace, sample_iter, variance, std, skewness,
|
|
kurtosis, covariance, dependent, entropy, independent, random_symbols,
|
|
correlation, factorial_moment, moment, cmoment, sampling_density,
|
|
moment_generating_function, smoment, quantile, coskewness,
|
|
sample_stochastic_process)
|
|
|
|
from .frv_types import (FiniteRV, DiscreteUniform, Die, Bernoulli, Coin,
|
|
Binomial, BetaBinomial, Hypergeometric, Rademacher,
|
|
FiniteDistributionHandmade, IdealSoliton, RobustSoliton)
|
|
|
|
from .crv_types import (ContinuousRV, Arcsin, Benini, Beta, BetaNoncentral,
|
|
BetaPrime, BoundedPareto, Cauchy, Chi, ChiNoncentral, ChiSquared,
|
|
Dagum, Erlang, ExGaussian, Exponential, ExponentialPower,
|
|
FDistribution, FisherZ, Frechet, Gamma, GammaInverse, GaussianInverse,
|
|
Gompertz, Gumbel, Kumaraswamy, Laplace, Levy, Logistic, LogCauchy,
|
|
LogLogistic, LogitNormal, LogNormal, Lomax, Maxwell, Moyal, Nakagami,
|
|
Normal, Pareto, QuadraticU, RaisedCosine, Rayleigh, Reciprocal,
|
|
StudentT, PowerFunction, ShiftedGompertz, Trapezoidal, Triangular,
|
|
Uniform, UniformSum, VonMises, Wald, Weibull, WignerSemicircle,
|
|
ContinuousDistributionHandmade)
|
|
|
|
from .drv_types import (FlorySchulz, Geometric, Hermite, Logarithmic, NegativeBinomial, Poisson,
|
|
Skellam, YuleSimon, Zeta, DiscreteRV, DiscreteDistributionHandmade)
|
|
|
|
from .joint_rv_types import (JointRV, Dirichlet,
|
|
GeneralizedMultivariateLogGamma, GeneralizedMultivariateLogGammaOmega,
|
|
Multinomial, MultivariateBeta, MultivariateEwens, MultivariateT,
|
|
NegativeMultinomial, NormalGamma, MultivariateNormal, MultivariateLaplace,
|
|
marginal_distribution)
|
|
|
|
from .stochastic_process_types import (StochasticProcess,
|
|
DiscreteTimeStochasticProcess, DiscreteMarkovChain,
|
|
TransitionMatrixOf, StochasticStateSpaceOf, GeneratorMatrixOf,
|
|
ContinuousMarkovChain, BernoulliProcess, PoissonProcess, WienerProcess,
|
|
GammaProcess)
|
|
|
|
from .random_matrix_models import (CircularEnsemble, CircularUnitaryEnsemble,
|
|
CircularOrthogonalEnsemble, CircularSymplecticEnsemble,
|
|
GaussianEnsemble, GaussianUnitaryEnsemble, GaussianOrthogonalEnsemble,
|
|
GaussianSymplecticEnsemble, joint_eigen_distribution,
|
|
JointEigenDistribution, level_spacing_distribution)
|
|
|
|
from .matrix_distributions import MatrixGamma, Wishart, MatrixNormal, MatrixStudentT
|
|
|
|
from .symbolic_probability import (Probability, Expectation, Variance,
|
|
Covariance, Moment, CentralMoment)
|
|
|
|
from .symbolic_multivariate_probability import (ExpectationMatrix, VarianceMatrix,
|
|
CrossCovarianceMatrix)
|