You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

238 lines
9.2 KiB

import functools
import warnings
from typing import Any, Callable, List, Optional, Tuple, Union
import torch
from torch import Tensor
from torch.utils._pytree import _broadcast_to_and_flatten, tree_flatten, tree_unflatten
in_dims_t = Union[int, Tuple]
out_dims_t = Union[int, Tuple[int, ...]]
# Checks that all args-to-be-batched have the same batch dim size
def _validate_and_get_batch_size(
flat_in_dims: List[Optional[int]], flat_args: List
) -> int:
batch_sizes = [
arg.size(in_dim)
for in_dim, arg in zip(flat_in_dims, flat_args)
if in_dim is not None
]
if batch_sizes and any(size != batch_sizes[0] for size in batch_sizes):
raise ValueError(
f"vmap: Expected all tensors to have the same size in the mapped "
f"dimension, got sizes {batch_sizes} for the mapped dimension"
)
return batch_sizes[0]
def _num_outputs(batched_outputs: Union[Tensor, Tuple[Tensor, ...]]) -> int:
if isinstance(batched_outputs, tuple):
return len(batched_outputs)
return 1
# If value is a tuple, check it has length `num_elements`.
# If value is not a tuple, make a tuple with `value` repeated `num_elements` times
def _as_tuple(
value: Any, num_elements: int, error_message_lambda: Callable[[], str]
) -> Tuple:
if not isinstance(value, tuple):
return (value,) * num_elements
if len(value) != num_elements:
raise ValueError(error_message_lambda())
return value
# Creates BatchedTensors for every Tensor in arg that should be batched.
# Returns the (potentially) batched arguments and the batch_size.
def _create_batched_inputs(
in_dims: in_dims_t, args: Tuple, vmap_level: int, func: Callable
) -> Tuple[Tuple, int]:
if not isinstance(in_dims, int) and not isinstance(in_dims, tuple):
raise ValueError(
f"vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): "
f"expected `in_dims` to be int or a (potentially nested) tuple "
f"matching the structure of inputs, got: {type(in_dims)}."
)
if len(args) == 0:
raise ValueError(
f"vmap({_get_name(func)})(<inputs>): got no inputs. Maybe you forgot to add "
f"inputs, or you are trying to vmap over a function with no inputs. "
f"The latter is unsupported."
)
flat_args, args_spec = tree_flatten(args)
flat_in_dims = _broadcast_to_and_flatten(in_dims, args_spec)
if flat_in_dims is None:
raise ValueError(
f"vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): "
f"in_dims is not compatible with the structure of `inputs`. "
f"in_dims has structure {tree_flatten(in_dims)[1]} but inputs "
f"has structure {args_spec}."
)
for arg, in_dim in zip(flat_args, flat_in_dims):
if not isinstance(in_dim, int) and in_dim is not None:
raise ValueError(
f"vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): "
f"Got in_dim={in_dim} for an input but in_dim must be either "
f"an integer dimension or None."
)
if isinstance(in_dim, int) and not isinstance(arg, Tensor):
raise ValueError(
f"vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): "
f"Got in_dim={in_dim} for an input but the input is of type "
f"{type(arg)}. We cannot vmap over non-Tensor arguments, "
f"please use None as the respective in_dim"
)
if in_dim is not None and (in_dim < 0 or in_dim >= arg.dim()):
raise ValueError(
f"vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): "
f"Got in_dim={in_dim} for some input, but that input is a Tensor "
f"of dimensionality {arg.dim()} so expected in_dim to satisfy "
f"0 <= in_dim < {arg.dim()}."
)
batch_size = _validate_and_get_batch_size(flat_in_dims, flat_args)
# See NOTE [Ignored _remove_batch_dim, _add_batch_dim]
batched_inputs = [
arg if in_dim is None else torch._add_batch_dim(arg, in_dim, vmap_level)
for in_dim, arg in zip(flat_in_dims, flat_args)
]
return tree_unflatten(batched_inputs, args_spec), batch_size
# Undos the batching (and any batch dimensions) associated with the `vmap_level`.
def _unwrap_batched(
batched_outputs: Union[Tensor, Tuple[Tensor, ...]],
out_dims: out_dims_t,
vmap_level: int,
batch_size: int,
func: Callable,
allow_none_pass_through: bool = False,
) -> Tuple:
num_outputs = _num_outputs(batched_outputs)
out_dims_as_tuple = _as_tuple(
out_dims,
num_outputs,
lambda: f"vmap({_get_name(func)}, ..., out_dims={out_dims}): `out_dims` must "
f"have one dim per output (got {num_outputs} outputs) of {_get_name(func)}.",
)
# NOTE [Ignored _remove_batch_dim, _add_batch_dim]
# There is something wrong with our type bindings for functions that begin
# with '_', see #40397.
if isinstance(batched_outputs, Tensor):
out_dim = out_dims_as_tuple[0]
return torch._remove_batch_dim(batched_outputs, vmap_level, batch_size, out_dim) # type: ignore[return-value]
if allow_none_pass_through:
return tuple(
(
torch._remove_batch_dim(out, vmap_level, batch_size, out_dim)
if out is not None
else None
)
for out, out_dim in zip(batched_outputs, out_dims_as_tuple)
)
else:
return tuple(
torch._remove_batch_dim(out, vmap_level, batch_size, out_dim)
for out, out_dim in zip(batched_outputs, out_dims_as_tuple)
)
# Checks that `fn` returned one or more Tensors and nothing else.
# NB: A python function that return multiple arguments returns a single tuple,
# so we are effectively checking that `outputs` is a single Tensor or a tuple of
# Tensors.
def _validate_outputs(outputs: Any, func: Callable) -> None:
if isinstance(outputs, Tensor):
return
if not isinstance(outputs, tuple):
raise ValueError(
f"vmap({_get_name(func)}, ...): `{_get_name(func)}` must only return "
f"Tensors, got type {type(outputs)} as the return."
)
for idx, output in enumerate(outputs):
if isinstance(output, Tensor):
continue
raise ValueError(
f"vmap({_get_name(func)}, ...): `{_get_name(func)}` must only return "
f"Tensors, got type {type(output)} for return {idx}."
)
def _check_out_dims_is_int_or_int_tuple(out_dims: out_dims_t, func: Callable) -> None:
if isinstance(out_dims, int):
return
if not isinstance(out_dims, tuple) or not all(
isinstance(out_dim, int) for out_dim in out_dims
):
raise ValueError(
f"vmap({_get_name(func)}, ..., out_dims={out_dims}): `out_dims` must be "
f"an int or a tuple of int representing where in the outputs the "
f"vmapped dimension should appear."
)
def _get_name(func: Callable):
if hasattr(func, "__name__"):
return func.__name__
# Not all callables have __name__, in fact, only static functions/methods do.
# A callable created via functools.partial or an nn.Module, to name some
# examples, don't have a __name__.
return repr(func)
# vmap(func)(inputs) wraps all Tensor inputs to be batched in BatchedTensors,
# sends those into func, and then unwraps the output BatchedTensors. Operations
# on BatchedTensors perform the batched operations that the user is asking for.
def vmap(func: Callable, in_dims: in_dims_t = 0, out_dims: out_dims_t = 0) -> Callable:
"""
Please use torch.vmap instead of this API.
"""
warnings.warn(
"Please use torch.vmap instead of torch._vmap_internals.vmap. ",
stacklevel=2,
)
return _vmap(func, in_dims, out_dims)
# A version of vmap but without the initial "experimental prototype" warning
def _vmap(
func: Callable,
in_dims: in_dims_t = 0,
out_dims: out_dims_t = 0,
allow_none_pass_through: bool = False,
) -> Callable:
# The `allow_none_pass_through` argument is a temporary workaround may be removed.
# Currently it enables us to wrap the call in `autograd.grad` to the autograd engine,
# which may return None if any of the inputs are unused. See the issue discussing this:
# https://github.com/facebookresearch/functorch/issues/159.
@functools.wraps(func)
def wrapped(*args):
_check_out_dims_is_int_or_int_tuple(out_dims, func)
vmap_level = torch._C._vmapmode_increment_nesting()
try:
batched_inputs, batch_size = _create_batched_inputs(
in_dims, args, vmap_level, func
)
batched_outputs = func(*batched_inputs)
if not allow_none_pass_through:
_validate_outputs(batched_outputs, func)
return _unwrap_batched(
batched_outputs,
out_dims,
vmap_level,
batch_size,
func,
allow_none_pass_through=allow_none_pass_through,
)
finally:
torch._C._vmapmode_decrement_nesting()
return wrapped