You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
131 lines
4.1 KiB
131 lines
4.1 KiB
from numbers import Number
|
|
|
|
import torch
|
|
from torch import nan
|
|
from torch.distributions import constraints
|
|
from torch.distributions.exp_family import ExponentialFamily
|
|
from torch.distributions.utils import (
|
|
broadcast_all,
|
|
lazy_property,
|
|
logits_to_probs,
|
|
probs_to_logits,
|
|
)
|
|
from torch.nn.functional import binary_cross_entropy_with_logits
|
|
|
|
__all__ = ["Bernoulli"]
|
|
|
|
|
|
class Bernoulli(ExponentialFamily):
|
|
r"""
|
|
Creates a Bernoulli distribution parameterized by :attr:`probs`
|
|
or :attr:`logits` (but not both).
|
|
|
|
Samples are binary (0 or 1). They take the value `1` with probability `p`
|
|
and `0` with probability `1 - p`.
|
|
|
|
Example::
|
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
|
>>> m = Bernoulli(torch.tensor([0.3]))
|
|
>>> m.sample() # 30% chance 1; 70% chance 0
|
|
tensor([ 0.])
|
|
|
|
Args:
|
|
probs (Number, Tensor): the probability of sampling `1`
|
|
logits (Number, Tensor): the log-odds of sampling `1`
|
|
"""
|
|
arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real}
|
|
support = constraints.boolean
|
|
has_enumerate_support = True
|
|
_mean_carrier_measure = 0
|
|
|
|
def __init__(self, probs=None, logits=None, validate_args=None):
|
|
if (probs is None) == (logits is None):
|
|
raise ValueError(
|
|
"Either `probs` or `logits` must be specified, but not both."
|
|
)
|
|
if probs is not None:
|
|
is_scalar = isinstance(probs, Number)
|
|
(self.probs,) = broadcast_all(probs)
|
|
else:
|
|
is_scalar = isinstance(logits, Number)
|
|
(self.logits,) = broadcast_all(logits)
|
|
self._param = self.probs if probs is not None else self.logits
|
|
if is_scalar:
|
|
batch_shape = torch.Size()
|
|
else:
|
|
batch_shape = self._param.size()
|
|
super().__init__(batch_shape, validate_args=validate_args)
|
|
|
|
def expand(self, batch_shape, _instance=None):
|
|
new = self._get_checked_instance(Bernoulli, _instance)
|
|
batch_shape = torch.Size(batch_shape)
|
|
if "probs" in self.__dict__:
|
|
new.probs = self.probs.expand(batch_shape)
|
|
new._param = new.probs
|
|
if "logits" in self.__dict__:
|
|
new.logits = self.logits.expand(batch_shape)
|
|
new._param = new.logits
|
|
super(Bernoulli, new).__init__(batch_shape, validate_args=False)
|
|
new._validate_args = self._validate_args
|
|
return new
|
|
|
|
def _new(self, *args, **kwargs):
|
|
return self._param.new(*args, **kwargs)
|
|
|
|
@property
|
|
def mean(self):
|
|
return self.probs
|
|
|
|
@property
|
|
def mode(self):
|
|
mode = (self.probs >= 0.5).to(self.probs)
|
|
mode[self.probs == 0.5] = nan
|
|
return mode
|
|
|
|
@property
|
|
def variance(self):
|
|
return self.probs * (1 - self.probs)
|
|
|
|
@lazy_property
|
|
def logits(self):
|
|
return probs_to_logits(self.probs, is_binary=True)
|
|
|
|
@lazy_property
|
|
def probs(self):
|
|
return logits_to_probs(self.logits, is_binary=True)
|
|
|
|
@property
|
|
def param_shape(self):
|
|
return self._param.size()
|
|
|
|
def sample(self, sample_shape=torch.Size()):
|
|
shape = self._extended_shape(sample_shape)
|
|
with torch.no_grad():
|
|
return torch.bernoulli(self.probs.expand(shape))
|
|
|
|
def log_prob(self, value):
|
|
if self._validate_args:
|
|
self._validate_sample(value)
|
|
logits, value = broadcast_all(self.logits, value)
|
|
return -binary_cross_entropy_with_logits(logits, value, reduction="none")
|
|
|
|
def entropy(self):
|
|
return binary_cross_entropy_with_logits(
|
|
self.logits, self.probs, reduction="none"
|
|
)
|
|
|
|
def enumerate_support(self, expand=True):
|
|
values = torch.arange(2, dtype=self._param.dtype, device=self._param.device)
|
|
values = values.view((-1,) + (1,) * len(self._batch_shape))
|
|
if expand:
|
|
values = values.expand((-1,) + self._batch_shape)
|
|
return values
|
|
|
|
@property
|
|
def _natural_params(self):
|
|
return (torch.logit(self.probs),)
|
|
|
|
def _log_normalizer(self, x):
|
|
return torch.log1p(torch.exp(x))
|