You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
91 lines
2.9 KiB
91 lines
2.9 KiB
import math
|
|
from numbers import Number
|
|
|
|
import torch
|
|
from torch import inf, nan
|
|
from torch.distributions import constraints
|
|
from torch.distributions.distribution import Distribution
|
|
from torch.distributions.utils import broadcast_all
|
|
|
|
__all__ = ["Cauchy"]
|
|
|
|
|
|
class Cauchy(Distribution):
|
|
r"""
|
|
Samples from a Cauchy (Lorentz) distribution. The distribution of the ratio of
|
|
independent normally distributed random variables with means `0` follows a
|
|
Cauchy distribution.
|
|
|
|
Example::
|
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
|
>>> m = Cauchy(torch.tensor([0.0]), torch.tensor([1.0]))
|
|
>>> m.sample() # sample from a Cauchy distribution with loc=0 and scale=1
|
|
tensor([ 2.3214])
|
|
|
|
Args:
|
|
loc (float or Tensor): mode or median of the distribution.
|
|
scale (float or Tensor): half width at half maximum.
|
|
"""
|
|
arg_constraints = {"loc": constraints.real, "scale": constraints.positive}
|
|
support = constraints.real
|
|
has_rsample = True
|
|
|
|
def __init__(self, loc, scale, validate_args=None):
|
|
self.loc, self.scale = broadcast_all(loc, scale)
|
|
if isinstance(loc, Number) and isinstance(scale, Number):
|
|
batch_shape = torch.Size()
|
|
else:
|
|
batch_shape = self.loc.size()
|
|
super().__init__(batch_shape, validate_args=validate_args)
|
|
|
|
def expand(self, batch_shape, _instance=None):
|
|
new = self._get_checked_instance(Cauchy, _instance)
|
|
batch_shape = torch.Size(batch_shape)
|
|
new.loc = self.loc.expand(batch_shape)
|
|
new.scale = self.scale.expand(batch_shape)
|
|
super(Cauchy, new).__init__(batch_shape, validate_args=False)
|
|
new._validate_args = self._validate_args
|
|
return new
|
|
|
|
@property
|
|
def mean(self):
|
|
return torch.full(
|
|
self._extended_shape(), nan, dtype=self.loc.dtype, device=self.loc.device
|
|
)
|
|
|
|
@property
|
|
def mode(self):
|
|
return self.loc
|
|
|
|
@property
|
|
def variance(self):
|
|
return torch.full(
|
|
self._extended_shape(), inf, dtype=self.loc.dtype, device=self.loc.device
|
|
)
|
|
|
|
def rsample(self, sample_shape=torch.Size()):
|
|
shape = self._extended_shape(sample_shape)
|
|
eps = self.loc.new(shape).cauchy_()
|
|
return self.loc + eps * self.scale
|
|
|
|
def log_prob(self, value):
|
|
if self._validate_args:
|
|
self._validate_sample(value)
|
|
return (
|
|
-math.log(math.pi)
|
|
- self.scale.log()
|
|
- (((value - self.loc) / self.scale) ** 2).log1p()
|
|
)
|
|
|
|
def cdf(self, value):
|
|
if self._validate_args:
|
|
self._validate_sample(value)
|
|
return torch.atan((value - self.loc) / self.scale) / math.pi + 0.5
|
|
|
|
def icdf(self, value):
|
|
return torch.tan(math.pi * (value - 0.5)) * self.scale + self.loc
|
|
|
|
def entropy(self):
|
|
return math.log(4 * math.pi) + self.scale.log()
|