You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

91 lines
2.9 KiB

import math
from numbers import Number
import torch
from torch import inf, nan
from torch.distributions import constraints
from torch.distributions.distribution import Distribution
from torch.distributions.utils import broadcast_all
__all__ = ["Cauchy"]
class Cauchy(Distribution):
r"""
Samples from a Cauchy (Lorentz) distribution. The distribution of the ratio of
independent normally distributed random variables with means `0` follows a
Cauchy distribution.
Example::
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> m = Cauchy(torch.tensor([0.0]), torch.tensor([1.0]))
>>> m.sample() # sample from a Cauchy distribution with loc=0 and scale=1
tensor([ 2.3214])
Args:
loc (float or Tensor): mode or median of the distribution.
scale (float or Tensor): half width at half maximum.
"""
arg_constraints = {"loc": constraints.real, "scale": constraints.positive}
support = constraints.real
has_rsample = True
def __init__(self, loc, scale, validate_args=None):
self.loc, self.scale = broadcast_all(loc, scale)
if isinstance(loc, Number) and isinstance(scale, Number):
batch_shape = torch.Size()
else:
batch_shape = self.loc.size()
super().__init__(batch_shape, validate_args=validate_args)
def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(Cauchy, _instance)
batch_shape = torch.Size(batch_shape)
new.loc = self.loc.expand(batch_shape)
new.scale = self.scale.expand(batch_shape)
super(Cauchy, new).__init__(batch_shape, validate_args=False)
new._validate_args = self._validate_args
return new
@property
def mean(self):
return torch.full(
self._extended_shape(), nan, dtype=self.loc.dtype, device=self.loc.device
)
@property
def mode(self):
return self.loc
@property
def variance(self):
return torch.full(
self._extended_shape(), inf, dtype=self.loc.dtype, device=self.loc.device
)
def rsample(self, sample_shape=torch.Size()):
shape = self._extended_shape(sample_shape)
eps = self.loc.new(shape).cauchy_()
return self.loc + eps * self.scale
def log_prob(self, value):
if self._validate_args:
self._validate_sample(value)
return (
-math.log(math.pi)
- self.scale.log()
- (((value - self.loc) / self.scale) ** 2).log1p()
)
def cdf(self, value):
if self._validate_args:
self._validate_sample(value)
return torch.atan((value - self.loc) / self.scale) / math.pi + 0.5
def icdf(self, value):
return torch.tan(math.pi * (value - 0.5)) * self.scale + self.loc
def entropy(self):
return math.log(4 * math.pi) + self.scale.log()