You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
337 lines
12 KiB
337 lines
12 KiB
import warnings
|
|
from typing import Any, Dict, Optional, Tuple
|
|
|
|
import torch
|
|
from torch.distributions import constraints
|
|
from torch.distributions.utils import lazy_property
|
|
from torch.types import _size
|
|
|
|
__all__ = ["Distribution"]
|
|
|
|
|
|
class Distribution:
|
|
r"""
|
|
Distribution is the abstract base class for probability distributions.
|
|
"""
|
|
|
|
has_rsample = False
|
|
has_enumerate_support = False
|
|
_validate_args = __debug__
|
|
|
|
@staticmethod
|
|
def set_default_validate_args(value: bool) -> None:
|
|
"""
|
|
Sets whether validation is enabled or disabled.
|
|
|
|
The default behavior mimics Python's ``assert`` statement: validation
|
|
is on by default, but is disabled if Python is run in optimized mode
|
|
(via ``python -O``). Validation may be expensive, so you may want to
|
|
disable it once a model is working.
|
|
|
|
Args:
|
|
value (bool): Whether to enable validation.
|
|
"""
|
|
if value not in [True, False]:
|
|
raise ValueError
|
|
Distribution._validate_args = value
|
|
|
|
def __init__(
|
|
self,
|
|
batch_shape: torch.Size = torch.Size(),
|
|
event_shape: torch.Size = torch.Size(),
|
|
validate_args: Optional[bool] = None,
|
|
):
|
|
self._batch_shape = batch_shape
|
|
self._event_shape = event_shape
|
|
if validate_args is not None:
|
|
self._validate_args = validate_args
|
|
if self._validate_args:
|
|
try:
|
|
arg_constraints = self.arg_constraints
|
|
except NotImplementedError:
|
|
arg_constraints = {}
|
|
warnings.warn(
|
|
f"{self.__class__} does not define `arg_constraints`. "
|
|
+ "Please set `arg_constraints = {}` or initialize the distribution "
|
|
+ "with `validate_args=False` to turn off validation."
|
|
)
|
|
for param, constraint in arg_constraints.items():
|
|
if constraints.is_dependent(constraint):
|
|
continue # skip constraints that cannot be checked
|
|
if param not in self.__dict__ and isinstance(
|
|
getattr(type(self), param), lazy_property
|
|
):
|
|
continue # skip checking lazily-constructed args
|
|
value = getattr(self, param)
|
|
valid = constraint.check(value)
|
|
if not valid.all():
|
|
raise ValueError(
|
|
f"Expected parameter {param} "
|
|
f"({type(value).__name__} of shape {tuple(value.shape)}) "
|
|
f"of distribution {repr(self)} "
|
|
f"to satisfy the constraint {repr(constraint)}, "
|
|
f"but found invalid values:\n{value}"
|
|
)
|
|
super().__init__()
|
|
|
|
def expand(self, batch_shape: torch.Size, _instance=None):
|
|
"""
|
|
Returns a new distribution instance (or populates an existing instance
|
|
provided by a derived class) with batch dimensions expanded to
|
|
`batch_shape`. This method calls :class:`~torch.Tensor.expand` on
|
|
the distribution's parameters. As such, this does not allocate new
|
|
memory for the expanded distribution instance. Additionally,
|
|
this does not repeat any args checking or parameter broadcasting in
|
|
`__init__.py`, when an instance is first created.
|
|
|
|
Args:
|
|
batch_shape (torch.Size): the desired expanded size.
|
|
_instance: new instance provided by subclasses that
|
|
need to override `.expand`.
|
|
|
|
Returns:
|
|
New distribution instance with batch dimensions expanded to
|
|
`batch_size`.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@property
|
|
def batch_shape(self) -> torch.Size:
|
|
"""
|
|
Returns the shape over which parameters are batched.
|
|
"""
|
|
return self._batch_shape
|
|
|
|
@property
|
|
def event_shape(self) -> torch.Size:
|
|
"""
|
|
Returns the shape of a single sample (without batching).
|
|
"""
|
|
return self._event_shape
|
|
|
|
@property
|
|
def arg_constraints(self) -> Dict[str, constraints.Constraint]:
|
|
"""
|
|
Returns a dictionary from argument names to
|
|
:class:`~torch.distributions.constraints.Constraint` objects that
|
|
should be satisfied by each argument of this distribution. Args that
|
|
are not tensors need not appear in this dict.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@property
|
|
def support(self) -> Optional[Any]:
|
|
"""
|
|
Returns a :class:`~torch.distributions.constraints.Constraint` object
|
|
representing this distribution's support.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@property
|
|
def mean(self) -> torch.Tensor:
|
|
"""
|
|
Returns the mean of the distribution.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@property
|
|
def mode(self) -> torch.Tensor:
|
|
"""
|
|
Returns the mode of the distribution.
|
|
"""
|
|
raise NotImplementedError(f"{self.__class__} does not implement mode")
|
|
|
|
@property
|
|
def variance(self) -> torch.Tensor:
|
|
"""
|
|
Returns the variance of the distribution.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@property
|
|
def stddev(self) -> torch.Tensor:
|
|
"""
|
|
Returns the standard deviation of the distribution.
|
|
"""
|
|
return self.variance.sqrt()
|
|
|
|
def sample(self, sample_shape: torch.Size = torch.Size()) -> torch.Tensor:
|
|
"""
|
|
Generates a sample_shape shaped sample or sample_shape shaped batch of
|
|
samples if the distribution parameters are batched.
|
|
"""
|
|
with torch.no_grad():
|
|
return self.rsample(sample_shape)
|
|
|
|
def rsample(self, sample_shape: torch.Size = torch.Size()) -> torch.Tensor:
|
|
"""
|
|
Generates a sample_shape shaped reparameterized sample or sample_shape
|
|
shaped batch of reparameterized samples if the distribution parameters
|
|
are batched.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def sample_n(self, n: int) -> torch.Tensor:
|
|
"""
|
|
Generates n samples or n batches of samples if the distribution
|
|
parameters are batched.
|
|
"""
|
|
warnings.warn(
|
|
"sample_n will be deprecated. Use .sample((n,)) instead", UserWarning
|
|
)
|
|
return self.sample(torch.Size((n,)))
|
|
|
|
def log_prob(self, value: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Returns the log of the probability density/mass function evaluated at
|
|
`value`.
|
|
|
|
Args:
|
|
value (Tensor):
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def cdf(self, value: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Returns the cumulative density/mass function evaluated at
|
|
`value`.
|
|
|
|
Args:
|
|
value (Tensor):
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def icdf(self, value: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Returns the inverse cumulative density/mass function evaluated at
|
|
`value`.
|
|
|
|
Args:
|
|
value (Tensor):
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def enumerate_support(self, expand: bool = True) -> torch.Tensor:
|
|
"""
|
|
Returns tensor containing all values supported by a discrete
|
|
distribution. The result will enumerate over dimension 0, so the shape
|
|
of the result will be `(cardinality,) + batch_shape + event_shape`
|
|
(where `event_shape = ()` for univariate distributions).
|
|
|
|
Note that this enumerates over all batched tensors in lock-step
|
|
`[[0, 0], [1, 1], ...]`. With `expand=False`, enumeration happens
|
|
along dim 0, but with the remaining batch dimensions being
|
|
singleton dimensions, `[[0], [1], ..`.
|
|
|
|
To iterate over the full Cartesian product use
|
|
`itertools.product(m.enumerate_support())`.
|
|
|
|
Args:
|
|
expand (bool): whether to expand the support over the
|
|
batch dims to match the distribution's `batch_shape`.
|
|
|
|
Returns:
|
|
Tensor iterating over dimension 0.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def entropy(self) -> torch.Tensor:
|
|
"""
|
|
Returns entropy of distribution, batched over batch_shape.
|
|
|
|
Returns:
|
|
Tensor of shape batch_shape.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def perplexity(self) -> torch.Tensor:
|
|
"""
|
|
Returns perplexity of distribution, batched over batch_shape.
|
|
|
|
Returns:
|
|
Tensor of shape batch_shape.
|
|
"""
|
|
return torch.exp(self.entropy())
|
|
|
|
def _extended_shape(self, sample_shape: _size = torch.Size()) -> Tuple[int, ...]:
|
|
"""
|
|
Returns the size of the sample returned by the distribution, given
|
|
a `sample_shape`. Note, that the batch and event shapes of a distribution
|
|
instance are fixed at the time of construction. If this is empty, the
|
|
returned shape is upcast to (1,).
|
|
|
|
Args:
|
|
sample_shape (torch.Size): the size of the sample to be drawn.
|
|
"""
|
|
if not isinstance(sample_shape, torch.Size):
|
|
sample_shape = torch.Size(sample_shape)
|
|
return torch.Size(sample_shape + self._batch_shape + self._event_shape)
|
|
|
|
def _validate_sample(self, value: torch.Tensor) -> None:
|
|
"""
|
|
Argument validation for distribution methods such as `log_prob`,
|
|
`cdf` and `icdf`. The rightmost dimensions of a value to be
|
|
scored via these methods must agree with the distribution's batch
|
|
and event shapes.
|
|
|
|
Args:
|
|
value (Tensor): the tensor whose log probability is to be
|
|
computed by the `log_prob` method.
|
|
Raises
|
|
ValueError: when the rightmost dimensions of `value` do not match the
|
|
distribution's batch and event shapes.
|
|
"""
|
|
if not isinstance(value, torch.Tensor):
|
|
raise ValueError("The value argument to log_prob must be a Tensor")
|
|
|
|
event_dim_start = len(value.size()) - len(self._event_shape)
|
|
if value.size()[event_dim_start:] != self._event_shape:
|
|
raise ValueError(
|
|
f"The right-most size of value must match event_shape: {value.size()} vs {self._event_shape}."
|
|
)
|
|
|
|
actual_shape = value.size()
|
|
expected_shape = self._batch_shape + self._event_shape
|
|
for i, j in zip(reversed(actual_shape), reversed(expected_shape)):
|
|
if i != 1 and j != 1 and i != j:
|
|
raise ValueError(
|
|
f"Value is not broadcastable with batch_shape+event_shape: {actual_shape} vs {expected_shape}."
|
|
)
|
|
try:
|
|
support = self.support
|
|
except NotImplementedError:
|
|
warnings.warn(
|
|
f"{self.__class__} does not define `support` to enable "
|
|
+ "sample validation. Please initialize the distribution with "
|
|
+ "`validate_args=False` to turn off validation."
|
|
)
|
|
return
|
|
assert support is not None
|
|
valid = support.check(value)
|
|
if not valid.all():
|
|
raise ValueError(
|
|
"Expected value argument "
|
|
f"({type(value).__name__} of shape {tuple(value.shape)}) "
|
|
f"to be within the support ({repr(support)}) "
|
|
f"of the distribution {repr(self)}, "
|
|
f"but found invalid values:\n{value}"
|
|
)
|
|
|
|
def _get_checked_instance(self, cls, _instance=None):
|
|
if _instance is None and type(self).__init__ != cls.__init__:
|
|
raise NotImplementedError(
|
|
f"Subclass {self.__class__.__name__} of {cls.__name__} that defines a custom __init__ method "
|
|
"must also define a custom .expand() method."
|
|
)
|
|
return self.__new__(type(self)) if _instance is None else _instance
|
|
|
|
def __repr__(self) -> str:
|
|
param_names = [k for k, _ in self.arg_constraints.items() if k in self.__dict__]
|
|
args_string = ", ".join(
|
|
[
|
|
f"{p}: {self.__dict__[p] if self.__dict__[p].numel() == 1 else self.__dict__[p].size()}"
|
|
for p in param_names
|
|
]
|
|
)
|
|
return self.__class__.__name__ + "(" + args_string + ")"
|