You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
100 lines
3.2 KiB
100 lines
3.2 KiB
from numbers import Number
|
|
|
|
import torch
|
|
from torch import nan
|
|
from torch.distributions import constraints
|
|
from torch.distributions.distribution import Distribution
|
|
from torch.distributions.utils import broadcast_all
|
|
|
|
__all__ = ["Uniform"]
|
|
|
|
|
|
class Uniform(Distribution):
|
|
r"""
|
|
Generates uniformly distributed random samples from the half-open interval
|
|
``[low, high)``.
|
|
|
|
Example::
|
|
|
|
>>> m = Uniform(torch.tensor([0.0]), torch.tensor([5.0]))
|
|
>>> m.sample() # uniformly distributed in the range [0.0, 5.0)
|
|
>>> # xdoctest: +SKIP
|
|
tensor([ 2.3418])
|
|
|
|
Args:
|
|
low (float or Tensor): lower range (inclusive).
|
|
high (float or Tensor): upper range (exclusive).
|
|
"""
|
|
# TODO allow (loc,scale) parameterization to allow independent constraints.
|
|
arg_constraints = {
|
|
"low": constraints.dependent(is_discrete=False, event_dim=0),
|
|
"high": constraints.dependent(is_discrete=False, event_dim=0),
|
|
}
|
|
has_rsample = True
|
|
|
|
@property
|
|
def mean(self):
|
|
return (self.high + self.low) / 2
|
|
|
|
@property
|
|
def mode(self):
|
|
return nan * self.high
|
|
|
|
@property
|
|
def stddev(self):
|
|
return (self.high - self.low) / 12**0.5
|
|
|
|
@property
|
|
def variance(self):
|
|
return (self.high - self.low).pow(2) / 12
|
|
|
|
def __init__(self, low, high, validate_args=None):
|
|
self.low, self.high = broadcast_all(low, high)
|
|
|
|
if isinstance(low, Number) and isinstance(high, Number):
|
|
batch_shape = torch.Size()
|
|
else:
|
|
batch_shape = self.low.size()
|
|
super().__init__(batch_shape, validate_args=validate_args)
|
|
|
|
if self._validate_args and not torch.lt(self.low, self.high).all():
|
|
raise ValueError("Uniform is not defined when low>= high")
|
|
|
|
def expand(self, batch_shape, _instance=None):
|
|
new = self._get_checked_instance(Uniform, _instance)
|
|
batch_shape = torch.Size(batch_shape)
|
|
new.low = self.low.expand(batch_shape)
|
|
new.high = self.high.expand(batch_shape)
|
|
super(Uniform, new).__init__(batch_shape, validate_args=False)
|
|
new._validate_args = self._validate_args
|
|
return new
|
|
|
|
@constraints.dependent_property(is_discrete=False, event_dim=0)
|
|
def support(self):
|
|
return constraints.interval(self.low, self.high)
|
|
|
|
def rsample(self, sample_shape=torch.Size()):
|
|
shape = self._extended_shape(sample_shape)
|
|
rand = torch.rand(shape, dtype=self.low.dtype, device=self.low.device)
|
|
return self.low + rand * (self.high - self.low)
|
|
|
|
def log_prob(self, value):
|
|
if self._validate_args:
|
|
self._validate_sample(value)
|
|
lb = self.low.le(value).type_as(self.low)
|
|
ub = self.high.gt(value).type_as(self.low)
|
|
return torch.log(lb.mul(ub)) - torch.log(self.high - self.low)
|
|
|
|
def cdf(self, value):
|
|
if self._validate_args:
|
|
self._validate_sample(value)
|
|
result = (value - self.low) / (self.high - self.low)
|
|
return result.clamp(min=0, max=1)
|
|
|
|
def icdf(self, value):
|
|
result = value * (self.high - self.low) + self.low
|
|
return result
|
|
|
|
def entropy(self):
|
|
return torch.log(self.high - self.low)
|