You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
486 lines
16 KiB
486 lines
16 KiB
from __future__ import annotations
|
|
|
|
import functools
|
|
import sys
|
|
from typing import Optional, Tuple
|
|
|
|
import torch
|
|
from torch._C import _onnx as _C_onnx
|
|
from torch.onnx import (
|
|
_type_utils,
|
|
errors,
|
|
symbolic_helper,
|
|
symbolic_opset9 as opset9,
|
|
utils,
|
|
)
|
|
from torch.onnx._internal import _beartype, jit_utils, registration
|
|
|
|
|
|
# EDITING THIS FILE? READ THIS FIRST!
|
|
# see Note [Edit Symbolic Files] in README.md
|
|
|
|
# This file exports ONNX ops for opset 12
|
|
|
|
__all__ = [
|
|
"argmax",
|
|
"argmin",
|
|
"binary_cross_entropy_with_logits",
|
|
"celu",
|
|
"cross_entropy_loss",
|
|
"dropout",
|
|
"einsum",
|
|
"ge",
|
|
"le",
|
|
"native_dropout",
|
|
"nll_loss",
|
|
"nll_loss2d",
|
|
"nll_loss_nd",
|
|
"outer",
|
|
"pow",
|
|
"tensordot",
|
|
"unfold",
|
|
]
|
|
|
|
_onnx_symbolic = functools.partial(registration.onnx_symbolic, opset=12)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _einsum_helper(g: jit_utils.GraphContext, equation, tensors):
|
|
if not tensors:
|
|
raise RuntimeError("Einsum inputs are empty.")
|
|
# ONNX does not support bool for Einsum inputs.
|
|
if symbolic_helper._is_bool(tensors[0]):
|
|
tensors = [
|
|
g.op("Cast", tensor, to_i=_C_onnx.TensorProtoDataType.INT64)
|
|
for tensor in tensors
|
|
]
|
|
return g.op(
|
|
"Cast",
|
|
g.op("Einsum", *tensors, equation_s=equation),
|
|
to_i=_C_onnx.TensorProtoDataType.BOOL,
|
|
)
|
|
else:
|
|
return g.op("Einsum", *tensors, equation_s=equation)
|
|
|
|
|
|
@_onnx_symbolic("aten::einsum")
|
|
@symbolic_helper.parse_args("s", "v", "is")
|
|
@_beartype.beartype
|
|
def einsum(g: jit_utils.GraphContext, equation, tensor_list, path=None):
|
|
tensors = symbolic_helper._unpack_list(tensor_list)
|
|
return _einsum_helper(g, equation, tensors)
|
|
|
|
|
|
@_onnx_symbolic("aten::outer")
|
|
@symbolic_helper.parse_args("v", "v")
|
|
@_beartype.beartype
|
|
def outer(g: jit_utils.GraphContext, input, other):
|
|
# make sure to cast other to self's type
|
|
if _type_utils.JitScalarType.from_value(
|
|
other, _type_utils.JitScalarType.UNDEFINED
|
|
) != _type_utils.JitScalarType.from_value(input):
|
|
other = g.op(
|
|
"Cast",
|
|
other,
|
|
to_i=_type_utils.JitScalarType.from_value(input).onnx_type(),
|
|
)
|
|
return _einsum_helper(g, "i,j->ij", [input, other])
|
|
|
|
|
|
@_beartype.beartype
|
|
def _dropout_returns_masked_input_and_mask(
|
|
g: jit_utils.GraphContext, input: torch._C.Value, p: float, train: bool
|
|
) -> Tuple[torch._C.Value, Optional[torch._C.Value]]:
|
|
symbolic_helper.check_training_mode(train, "dropout")
|
|
# In eval mode, dropout is non-op. That is, if the node's
|
|
# train param is set to False, dropout just returns its inputs.
|
|
if not train:
|
|
return input, None
|
|
p = g.op("Constant", value_t=torch.tensor(p))
|
|
t = g.op("Constant", value_t=torch.tensor(train, dtype=torch.bool))
|
|
r, mask = g.op("Dropout", input, p, t, outputs=2)
|
|
return r, mask
|
|
|
|
|
|
@_onnx_symbolic("aten::dropout")
|
|
@symbolic_helper.parse_args("v", "f", "b")
|
|
@_beartype.beartype
|
|
def dropout(g: jit_utils.GraphContext, input, p, train):
|
|
masked, _ = _dropout_returns_masked_input_and_mask(g, input, p, train)
|
|
return masked
|
|
|
|
|
|
@_onnx_symbolic("aten::native_dropout")
|
|
@symbolic_helper.parse_args("v", "f", "b")
|
|
@_beartype.beartype
|
|
def native_dropout(g: jit_utils.GraphContext, input, p, train):
|
|
return _dropout_returns_masked_input_and_mask(g, input, p, train)
|
|
|
|
|
|
@_onnx_symbolic("aten::nll_loss")
|
|
@_beartype.beartype
|
|
def nll_loss(g: jit_utils.GraphContext, self, target, weight, reduction, ignore_index):
|
|
# none reduction : onnx::Constant[value={0}]
|
|
# mean reduction : onnx::Constant[value={1}]
|
|
# sum reduction : onnx::Constant[value={2}]
|
|
reduction = symbolic_helper._maybe_get_const(reduction, "i")
|
|
reduction_vals = ["none", "mean", "sum"]
|
|
reduction = reduction_vals[reduction]
|
|
|
|
# in onnx NegativeLogLikelihoodLoss specification, ignore_index is optional without default value.
|
|
# therefore we need to set ignore_index attribute even if it is not specified (e.g. ignore_index=-100).
|
|
ignore_index = symbolic_helper._maybe_get_const(ignore_index, "i")
|
|
if weight.node().mustBeNone():
|
|
nllloss = g.op(
|
|
"NegativeLogLikelihoodLoss",
|
|
self,
|
|
target,
|
|
reduction_s=reduction,
|
|
ignore_index_i=ignore_index,
|
|
)
|
|
else:
|
|
nllloss = g.op(
|
|
"NegativeLogLikelihoodLoss",
|
|
self,
|
|
target,
|
|
weight,
|
|
reduction_s=reduction,
|
|
ignore_index_i=ignore_index,
|
|
)
|
|
|
|
return nllloss
|
|
|
|
|
|
@_onnx_symbolic("aten::nll_loss2d")
|
|
@_beartype.beartype
|
|
def nll_loss2d(
|
|
g: jit_utils.GraphContext, self, target, weight, reduction, ignore_index
|
|
):
|
|
return nll_loss(g, self, target, weight, reduction, ignore_index)
|
|
|
|
|
|
@_onnx_symbolic("aten::nll_loss_nd")
|
|
@_beartype.beartype
|
|
def nll_loss_nd(
|
|
g: jit_utils.GraphContext, self, target, weight, reduction, ignore_index
|
|
):
|
|
return nll_loss(g, self, target, weight, reduction, ignore_index)
|
|
|
|
|
|
@_onnx_symbolic("aten::cross_entropy_loss")
|
|
@_beartype.beartype
|
|
def cross_entropy_loss(
|
|
g: jit_utils.GraphContext,
|
|
self,
|
|
target,
|
|
weight,
|
|
reduction,
|
|
ignore_index,
|
|
label_smoothing,
|
|
):
|
|
# none reduction : onnx::Constant[value={0}]
|
|
# mean reduction : onnx::Constant[value={1}]
|
|
# sum reduction : onnx::Constant[value={2}]
|
|
reduction = symbolic_helper._maybe_get_const(reduction, "i")
|
|
reduction_vals = ["none", "mean", "sum"]
|
|
reduction = reduction_vals[reduction]
|
|
|
|
label_smoothing = symbolic_helper._maybe_get_const(label_smoothing, "f")
|
|
if label_smoothing is not None and label_smoothing > 0.0:
|
|
raise errors.SymbolicValueError(
|
|
"Unsupported: ONNX does not support label_smoothing", self
|
|
)
|
|
|
|
# in onnx SoftmaxCrossEntropyLoss specification, ignore_index is optional without default value.
|
|
# therefore we need to set ignore_index attribute even if it is not specified (e.g. ignore_index=-100).
|
|
ignore_index = symbolic_helper._maybe_get_const(ignore_index, "i")
|
|
if weight.node().mustBeNone():
|
|
celoss = g.op(
|
|
"SoftmaxCrossEntropyLoss",
|
|
self,
|
|
target,
|
|
reduction_s=reduction,
|
|
ignore_index_i=ignore_index,
|
|
)
|
|
else:
|
|
celoss = g.op(
|
|
"SoftmaxCrossEntropyLoss",
|
|
self,
|
|
target,
|
|
weight,
|
|
reduction_s=reduction,
|
|
ignore_index_i=ignore_index,
|
|
)
|
|
|
|
return celoss
|
|
|
|
|
|
@_onnx_symbolic("aten::binary_cross_entropy_with_logits")
|
|
@symbolic_helper.parse_args("v", "v", "v", "v", "i")
|
|
@_beartype.beartype
|
|
def binary_cross_entropy_with_logits(
|
|
g: jit_utils.GraphContext, input, target, weight, pos_weight, reduction
|
|
):
|
|
p = g.op("Constant", value_t=torch.tensor([1]))
|
|
sig_x = opset9.sigmoid(g, input)
|
|
log_sig_x = opset9.log(g, sig_x)
|
|
sub_1_x = opset9.sub(g, p, sig_x)
|
|
sub_1_y = opset9.sub(g, p, target)
|
|
log_1_x = opset9.log(g, sub_1_x)
|
|
if pos_weight is None or symbolic_helper._is_none(pos_weight):
|
|
output = opset9.neg(
|
|
g,
|
|
opset9.add(
|
|
g, opset9.mul(g, target, log_sig_x), opset9.mul(g, sub_1_y, log_1_x)
|
|
),
|
|
)
|
|
else:
|
|
output = opset9.neg(
|
|
g,
|
|
opset9.add(
|
|
g,
|
|
opset9.mul(g, opset9.mul(g, target, log_sig_x), pos_weight),
|
|
opset9.mul(g, sub_1_y, log_1_x),
|
|
),
|
|
)
|
|
|
|
if weight is not None and not symbolic_helper._is_none(weight):
|
|
output = opset9.mul(g, weight, output)
|
|
|
|
reduction = symbolic_helper._maybe_get_const(reduction, "i")
|
|
if reduction == 0:
|
|
return output
|
|
elif reduction == 1:
|
|
return g.op("ReduceMean", output, keepdims_i=0)
|
|
elif reduction == 2:
|
|
return g.op("ReduceSum", output, keepdims_i=0)
|
|
else:
|
|
return symbolic_helper._onnx_unsupported(
|
|
"binary_cross_entropy_with_logits with reduction other than none, mean, or sum",
|
|
input,
|
|
)
|
|
|
|
|
|
@_onnx_symbolic("aten::celu")
|
|
@_beartype.beartype
|
|
def celu(g: jit_utils.GraphContext, self, alpha):
|
|
alpha = symbolic_helper._maybe_get_const(alpha, "f")
|
|
# if the input is of type double cast it to float
|
|
if (
|
|
_type_utils.JitScalarType.from_value(self, _type_utils.JitScalarType.UNDEFINED)
|
|
== _type_utils.JitScalarType.DOUBLE
|
|
):
|
|
self = g.op("Cast", self, to_i=_C_onnx.TensorProtoDataType.FLOAT)
|
|
out = g.op("Celu", self, alpha_f=alpha)
|
|
return g.op("Cast", out, to_i=_C_onnx.TensorProtoDataType.DOUBLE)
|
|
|
|
return g.op("Celu", self, alpha_f=alpha)
|
|
|
|
|
|
@_onnx_symbolic("aten::argmax")
|
|
@symbolic_helper.parse_args("v", "v", "b")
|
|
@_beartype.beartype
|
|
def argmax(
|
|
g: jit_utils.GraphContext,
|
|
input: torch._C.Value,
|
|
dim: torch._C.Value,
|
|
keepdim: bool,
|
|
):
|
|
return symbolic_helper._argmin_argmax_helper(g, input, dim, keepdim, "ArgMax")
|
|
|
|
|
|
@_onnx_symbolic("aten::argmin")
|
|
@symbolic_helper.parse_args("v", "v", "b")
|
|
@_beartype.beartype
|
|
def argmin(
|
|
g: jit_utils.GraphContext,
|
|
input: torch._C.Value,
|
|
dim: torch._C.Value,
|
|
keepdim: bool,
|
|
):
|
|
return symbolic_helper._argmin_argmax_helper(g, input, dim, keepdim, "ArgMin")
|
|
|
|
|
|
@_onnx_symbolic("aten::pow")
|
|
@_beartype.beartype
|
|
def pow(g: jit_utils.GraphContext, self, exponent):
|
|
return g.op("Pow", self, exponent)
|
|
|
|
|
|
@_onnx_symbolic("aten::ge")
|
|
@_beartype.beartype
|
|
def ge(g: jit_utils.GraphContext, input, other):
|
|
return g.op("GreaterOrEqual", input, other)
|
|
|
|
|
|
@_onnx_symbolic("aten::le")
|
|
@_beartype.beartype
|
|
def le(g: jit_utils.GraphContext, input, other):
|
|
return g.op("LessOrEqual", input, other)
|
|
|
|
|
|
@_onnx_symbolic("aten::unfold")
|
|
@symbolic_helper.parse_args("v", "i", "v", "v")
|
|
@_beartype.beartype
|
|
def unfold(g: jit_utils.GraphContext, input, dimension, size, step):
|
|
const_size = symbolic_helper._maybe_get_const(size, "i")
|
|
const_step = symbolic_helper._maybe_get_const(step, "i")
|
|
if not symbolic_helper._is_value(const_size) and not symbolic_helper._is_value(
|
|
const_step
|
|
):
|
|
return opset9.unfold(g, input, dimension, const_size, const_step)
|
|
if symbolic_helper.is_caffe2_aten_fallback():
|
|
return g.at("unfold", input, dimension_i=dimension, size_i=size, step_i=step)
|
|
|
|
sizedim = symbolic_helper._get_tensor_dim_size(input, dimension)
|
|
if sizedim is not None:
|
|
low_start = g.op("Constant", value_t=torch.tensor(0))
|
|
low_end = g.op("Constant", value_t=torch.tensor(sizedim))
|
|
hi_end = g.op("Constant", value_t=torch.tensor(sizedim + 1))
|
|
low_indices = g.op("Range", low_start, low_end, step)
|
|
hi_indices = g.op("Range", size, hi_end, step)
|
|
|
|
low_size = symbolic_helper._size_helper(
|
|
g, low_indices, g.op("Constant", value_t=torch.tensor(0))
|
|
)
|
|
hi_size = symbolic_helper._size_helper(
|
|
g, hi_indices, g.op("Constant", value_t=torch.tensor(0))
|
|
)
|
|
|
|
ndim = symbolic_helper._get_tensor_rank(input)
|
|
assert ndim is not None
|
|
perm = list(range(0, ndim))
|
|
perm.append(perm.pop(dimension))
|
|
|
|
unsqueeze_list = []
|
|
loop_condition = g.op("Constant", value_t=torch.tensor(1))
|
|
loop_condition = g.op(
|
|
"Cast", loop_condition, to_i=_C_onnx.TensorProtoDataType.BOOL
|
|
)
|
|
loop_len = g.op("Min", low_size, hi_size)
|
|
|
|
loop, (loop_context,), _ = jit_utils.add_op_with_blocks(
|
|
g, "Loop", loop_len, loop_condition, n_blocks=1
|
|
)
|
|
|
|
loop_block = loop_context.block
|
|
block_input_iter = utils._add_input_to_block(loop_block)
|
|
# FIXME(justinchuby): cond is unused?
|
|
cond = utils._add_input_to_block(loop_block)
|
|
|
|
starts = loop_context.op("Gather", low_indices, block_input_iter)
|
|
ends = loop_context.op("Gather", hi_indices, block_input_iter)
|
|
axes = loop_context.op("Constant", value_t=torch.tensor([2]))
|
|
starts = symbolic_helper._unsqueeze_helper(loop_context, starts, [0])
|
|
ends = symbolic_helper._unsqueeze_helper(loop_context, ends, [0])
|
|
stack = loop_context.op("Slice", input, starts, ends, axes)
|
|
|
|
unsqueeze = symbolic_helper._unsqueeze_helper(
|
|
loop_context, loop_context.op("Transpose", stack, perm_i=perm), [dimension]
|
|
)
|
|
unsqueeze_list.append(unsqueeze)
|
|
concat = loop_context.op("Concat", *unsqueeze_list, axis_i=0)
|
|
|
|
cond_out = loop_context.op(
|
|
"Cast", loop_condition, _C_onnx.TensorProtoDataType.BOOL
|
|
)
|
|
utils._add_output_to_block(loop_block, cond_out)
|
|
utils._add_output_to_block(loop_block, concat)
|
|
|
|
loop_output = loop.node().output()
|
|
perm = [0, 1, 2, 3, 4]
|
|
perm[0], perm[dimension + 1] = perm[dimension + 1], perm[0]
|
|
transpose = g.op("Transpose", loop_output, perm_i=perm)
|
|
squeeze = symbolic_helper._squeeze_helper(g, transpose, [0])
|
|
|
|
return squeeze
|
|
|
|
return symbolic_helper._unimplemented("Unfold", "input size not accessible")
|
|
|
|
|
|
@_onnx_symbolic("aten::tensordot")
|
|
@symbolic_helper.parse_args("v", "v", "is", "is", "v")
|
|
@_beartype.beartype
|
|
def tensordot(g: jit_utils.GraphContext, input_a, input_b, dims_a, dims_b, out=None):
|
|
if out is not None:
|
|
symbolic_helper._unimplemented(
|
|
"Tensordot", "Out parameter is not supported for tensordot."
|
|
)
|
|
|
|
dim_count_a = symbolic_helper._get_tensor_rank(input_a)
|
|
if dim_count_a is None:
|
|
raise errors.SymbolicValueError(
|
|
"Unsupported: ONNX export of tensordot for tensor(input_a) of unknown rank.",
|
|
input_a,
|
|
)
|
|
|
|
dim_count_b = symbolic_helper._get_tensor_rank(input_b)
|
|
if dim_count_b is None:
|
|
raise errors.SymbolicValueError(
|
|
"Unsupported: ONNX export of tensordot for tensor(input_b) of unknown rank.",
|
|
input_b,
|
|
)
|
|
|
|
dims_a = [
|
|
(dims_a[i] + dim_count_a) if (dims_a[i] < 0) else dims_a[i]
|
|
for i in range(len(dims_a))
|
|
]
|
|
dims_b = [
|
|
(dims_b[i] + dim_count_b) if (dims_b[i] < 0) else dims_b[i]
|
|
for i in range(len(dims_b))
|
|
]
|
|
|
|
left_dims_a = [i for i in range(dim_count_a) if (i not in dims_a)]
|
|
left_dims_b = [i for i in range(dim_count_b) if (i not in dims_b)]
|
|
|
|
new_input_a = opset9.permute(g, input_a, left_dims_a + dims_a)
|
|
new_input_b = opset9.permute(g, input_b, dims_b + left_dims_b)
|
|
|
|
input_shape = g.op("Shape", new_input_a)
|
|
left_sizes_a = symbolic_helper._slice_helper(
|
|
g, input_shape, axes=[0], starts=[0], ends=[len(left_dims_a)]
|
|
)
|
|
shape_sizes = [
|
|
left_sizes_a,
|
|
g.op("Constant", value_t=torch.tensor([-1], dtype=torch.long)),
|
|
]
|
|
output_a = opset9._reshape_from_tensor(g, new_input_a, shape_sizes)
|
|
|
|
input_shape = g.op("Shape", output_a)
|
|
slices = symbolic_helper._slice_helper(
|
|
g, input_shape, axes=[0], starts=[-1], ends=[sys.maxsize]
|
|
)
|
|
shape_sizes = [
|
|
g.op("Constant", value_t=torch.tensor([-1], dtype=torch.long)),
|
|
slices,
|
|
]
|
|
output_a = opset9._reshape_from_tensor(g, new_input_a, shape_sizes)
|
|
|
|
input_shape = g.op("Shape", new_input_b)
|
|
left_sizes_b = symbolic_helper._slice_helper(
|
|
g, input_shape, axes=[0], starts=[len(dims_b)], ends=[sys.maxsize]
|
|
)
|
|
slices = symbolic_helper._slice_helper(
|
|
g, input_shape, axes=[0], starts=[0], ends=[len(dims_b)]
|
|
)
|
|
shape_sizes = [
|
|
slices,
|
|
g.op("Constant", value_t=torch.tensor([-1], dtype=torch.long)),
|
|
]
|
|
output_b = opset9._reshape_from_tensor(g, new_input_b, shape_sizes)
|
|
|
|
input_shape = g.op("Shape", output_b)
|
|
slices = symbolic_helper._slice_helper(
|
|
g, input_shape, axes=[0], starts=[-1], ends=[sys.maxsize]
|
|
)
|
|
shape_sizes = [
|
|
g.op("Constant", value_t=torch.tensor([-1], dtype=torch.long)),
|
|
slices,
|
|
]
|
|
output_b = opset9._reshape_from_tensor(g, new_input_b, shape_sizes)
|
|
|
|
output = einsum(g, "ij,jk->ik", g.op("prim::ListConstruct", *[output_a, output_b]))
|
|
|
|
shape_sizes = [left_sizes_a, left_sizes_b]
|
|
return opset9._reshape_from_tensor(g, output, shape_sizes)
|