You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1551 lines
50 KiB

"""
Contains utility functions for working with nested python data structures.
A *pytree* is Python nested data structure. It is a tree in the sense that
nodes are Python collections (e.g., list, tuple, dict) and the leaves are
Python values. Furthermore, a pytree should not contain reference cycles.
pytrees are useful for working with nested collections of Tensors. For example,
one can use `tree_map` to map a function over all Tensors inside some nested
collection of Tensors and `tree_leaves` to get a flat list of all Tensors
inside some nested collection. pytrees are helpful for implementing nested
collection support for PyTorch APIs.
This pytree implementation is not very performant due to Python overhead
To improve the performance we can move parts of the implementation to C++.
"""
import dataclasses
import importlib
import json
import sys
import threading
import types
import warnings
from collections import defaultdict, deque, namedtuple, OrderedDict
from typing import (
Any,
Callable,
cast,
DefaultDict,
Deque,
Dict,
FrozenSet,
Generic,
Hashable,
Iterable,
List,
Mapping,
NamedTuple,
Optional,
OrderedDict as GenericOrderedDict,
overload,
Protocol,
Sequence,
Tuple,
Type,
TypeVar,
Union,
)
__all__ = [
"PyTree",
"Context",
"FlattenFunc",
"UnflattenFunc",
"DumpableContext",
"ToDumpableContextFn",
"FromDumpableContextFn",
"TreeSpec",
"LeafSpec",
"keystr",
"key_get",
"register_pytree_node",
"tree_flatten",
"tree_flatten_with_path",
"tree_unflatten",
"tree_leaves",
"tree_leaves_with_path",
"tree_structure",
"tree_map",
"tree_map_with_path",
"tree_map_",
"tree_map_only",
"tree_map_only_",
"tree_all",
"tree_any",
"tree_all_only",
"tree_any_only",
"treespec_dumps",
"treespec_loads",
"treespec_pprint",
]
T = TypeVar("T")
S = TypeVar("S")
U = TypeVar("U")
R = TypeVar("R")
DEFAULT_TREESPEC_SERIALIZATION_PROTOCOL = 1
NO_SERIALIZED_TYPE_NAME_FOUND = "NO_SERIALIZED_TYPE_NAME_FOUND"
class KeyEntry(Protocol):
def __hash__(self) -> int:
...
def __eq__(self, other: object) -> bool:
...
def __str__(self) -> str:
...
def get(self, parent: Any) -> Any:
...
Context = Any
PyTree = Any
FlattenFunc = Callable[[PyTree], Tuple[List[Any], Context]]
UnflattenFunc = Callable[[Iterable[Any], Context], PyTree]
DumpableContext = Any # Any json dumpable text
ToDumpableContextFn = Callable[[Context], DumpableContext]
FromDumpableContextFn = Callable[[DumpableContext], Context]
ToStrFunc = Callable[["TreeSpec", List[str]], str]
MaybeFromStrFunc = Callable[[str], Optional[Tuple[Any, Context, str]]]
KeyPath = Tuple[KeyEntry, ...]
FlattenWithKeysFunc = Callable[[PyTree], Tuple[List[Tuple[KeyEntry, Any]], Any]]
# A NodeDef holds two callables:
# - flatten_fn should take the collection and return a flat list of values.
# It can also return some context that is used in reconstructing the
# collection.
# - unflatten_fn should take a flat list of values and some context
# (returned by flatten_fn). It returns the collection by reconstructing
# it from the list and the context.
# - flatten_with_keys_fn, which is a callable that takes a
# pytree and returns a list of (keypath, value) pairs and a context.
class NodeDef(NamedTuple):
type: Type[Any]
flatten_fn: FlattenFunc
unflatten_fn: UnflattenFunc
flatten_with_keys_fn: Optional[FlattenWithKeysFunc]
_NODE_REGISTRY_LOCK = threading.Lock()
SUPPORTED_NODES: Dict[Type[Any], NodeDef] = {}
# _SerializeNodeDef holds the following:
# - typ: the type of the node (e.g., "Dict", "List", etc)
# - serialized_type_name: the fully qualified name of the type, e.g. "collections.OrderedDict"
# - to_dumpable_context takes a TreeSpec, and returns a serialized string format of the
# context, and the version number
# - from_dumpable_context takes in a string representation of the context, and the
# version, and returns the deserialized context
class _SerializeNodeDef(NamedTuple):
typ: Type[Any]
serialized_type_name: str
to_dumpable_context: Optional[ToDumpableContextFn]
from_dumpable_context: Optional[FromDumpableContextFn]
SUPPORTED_SERIALIZED_TYPES: Dict[Type[Any], _SerializeNodeDef] = {}
SERIALIZED_TYPE_TO_PYTHON_TYPE: Dict[str, Type[Any]] = {}
def register_pytree_node(
cls: Type[Any],
flatten_fn: FlattenFunc,
unflatten_fn: UnflattenFunc,
*,
serialized_type_name: Optional[str] = None,
to_dumpable_context: Optional[ToDumpableContextFn] = None,
from_dumpable_context: Optional[FromDumpableContextFn] = None,
flatten_with_keys_fn: Optional[FlattenWithKeysFunc] = None,
) -> None:
"""Register a container-like type as pytree node.
Args:
cls: the type to register
flatten_fn: A callable that takes a pytree and returns a flattened
representation of the pytree and additional context to represent the
flattened pytree.
unflatten_fn: A callable that takes a flattened version of the pytree,
additional context, and returns an unflattened pytree.
serialized_type_name: A keyword argument used to specify the fully qualified
name used when serializing the tree spec.
to_dumpable_context: An optional keyword argument to custom specify how
to convert the context of the pytree to a custom json dumpable
representation. This is used for json serialization, which is being
used in torch.export right now.
from_dumpable_context: An optional keyword argument to custom specify how
to convert the custom json dumpable representation of the context
back to the original context. This is used for json deserialization,
which is being used in torch.export right now.
flatten_with_keys_fn: An optional keyword argument to specify how to
access each pytree leaf's keypath when flattening and tree-mapping.
Like ``flatten_fn``, but in place of a List[leaf], it should return
a List[(keypath, leaf)].
"""
with _NODE_REGISTRY_LOCK:
if cls in SUPPORTED_NODES:
raise ValueError(f"{cls} is already registered as pytree node.")
_private_register_pytree_node(
cls,
flatten_fn,
unflatten_fn,
serialized_type_name=serialized_type_name,
to_dumpable_context=to_dumpable_context,
from_dumpable_context=from_dumpable_context,
flatten_with_keys_fn=flatten_with_keys_fn,
)
try:
from . import _cxx_pytree as cxx
except ImportError:
pass
else:
cxx._private_register_pytree_node(
cls,
flatten_fn,
unflatten_fn,
serialized_type_name=serialized_type_name,
to_dumpable_context=to_dumpable_context,
from_dumpable_context=from_dumpable_context,
)
def _register_pytree_node(
cls: Type[Any],
flatten_fn: FlattenFunc,
unflatten_fn: UnflattenFunc,
to_str_fn: Optional[ToStrFunc] = None, # deprecated
maybe_from_str_fn: Optional[MaybeFromStrFunc] = None, # deprecated
*,
serialized_type_name: Optional[str] = None,
to_dumpable_context: Optional[ToDumpableContextFn] = None,
from_dumpable_context: Optional[FromDumpableContextFn] = None,
flatten_with_keys_fn: Optional[FlattenWithKeysFunc] = None,
) -> None:
"""Register a container-like type as pytree node for the Python pytree only.
Args:
cls: the type to register
flatten_fn: A callable that takes a pytree and returns a flattened
representation of the pytree and additional context to represent the
flattened pytree.
unflatten_fn: A callable that takes a flattened version of the pytree,
additional context, and returns an unflattened pytree.
serialized_type_name: A keyword argument used to specify the fully qualified
name used when serializing the tree spec.
to_dumpable_context: An optional keyword argument to custom specify how
to convert the context of the pytree to a custom json dumpable
representation. This is used for json serialization, which is being
used in torch.export right now.
from_dumpable_context: An optional keyword argument to custom specify how
to convert the custom json dumpable representation of the context
back to the original context. This is used for json deserialization,
which is being used in torch.export right now.
flatten_with_keys_fn: An optional keyword argument to specify how to
access each pytree leaf's keypath when flattening and tree-mapping.
Like ``flatten_fn``, but in place of a List[leaf], it should return
a List[(keypath, leaf)].
"""
warnings.warn(
"torch.utils._pytree._register_pytree_node is deprecated. "
"Please use torch.utils._pytree.register_pytree_node instead.",
stacklevel=2,
)
if to_str_fn is not None or maybe_from_str_fn is not None:
warnings.warn(
"to_str_fn and maybe_from_str_fn is deprecated. "
"Please use to_dumpable_context and from_dumpable_context instead."
)
_private_register_pytree_node(
cls,
flatten_fn,
unflatten_fn,
serialized_type_name=serialized_type_name,
to_dumpable_context=to_dumpable_context,
from_dumpable_context=from_dumpable_context,
flatten_with_keys_fn=flatten_with_keys_fn,
)
def _private_register_pytree_node(
cls: Type[Any],
flatten_fn: FlattenFunc,
unflatten_fn: UnflattenFunc,
*,
serialized_type_name: Optional[str] = None,
to_dumpable_context: Optional[ToDumpableContextFn] = None,
from_dumpable_context: Optional[FromDumpableContextFn] = None,
flatten_with_keys_fn: Optional[FlattenWithKeysFunc] = None,
) -> None:
"""This is an internal function that is used to register a pytree node type
for the Python pytree only. End-users should use :func:`register_pytree_node`
instead.
"""
with _NODE_REGISTRY_LOCK:
if cls in SUPPORTED_NODES:
# TODO: change this warning to an error after OSS/internal stabilize
warnings.warn(
f"{cls} is already registered as pytree node. "
"Overwriting the previous registration.",
)
node_def = NodeDef(cls, flatten_fn, unflatten_fn, flatten_with_keys_fn)
SUPPORTED_NODES[cls] = node_def
if (to_dumpable_context is None) ^ (from_dumpable_context is None):
raise ValueError(
f"Both to_dumpable_context and from_dumpable_context for {cls} must "
"be None or registered."
)
if serialized_type_name is None:
serialized_type_name = NO_SERIALIZED_TYPE_NAME_FOUND
serialize_node_def = _SerializeNodeDef(
cls,
serialized_type_name,
to_dumpable_context,
from_dumpable_context,
)
SUPPORTED_SERIALIZED_TYPES[cls] = serialize_node_def
SERIALIZED_TYPE_TO_PYTHON_TYPE[serialized_type_name] = cls
@dataclasses.dataclass(frozen=True)
class SequenceKey(Generic[T]):
idx: int
def __str__(self) -> str:
return f"[{self.idx!r}]"
def get(self, sequence: Sequence[T]) -> T:
return sequence[self.idx]
K = TypeVar("K", bound=Hashable)
@dataclasses.dataclass(frozen=True)
class MappingKey(Generic[K, T]):
key: K
def __str__(self) -> str:
return f"[{self.key!r}]"
def get(self, mapping: Mapping[K, T]) -> T:
return mapping[self.key]
@dataclasses.dataclass(frozen=True)
class GetAttrKey:
name: str
def __str__(self) -> str:
return f".{self.name}"
def get(self, obj: Any) -> Any:
return getattr(obj, self.name)
def _tuple_flatten(d: Tuple[Any, ...]) -> Tuple[List[Any], Context]:
return list(d), None
def _tuple_flatten_with_keys(
d: Tuple[Any, ...]
) -> Tuple[List[Tuple[KeyEntry, Any]], Context]:
values, context = _tuple_flatten(d)
return [(SequenceKey(i), v) for i, v in enumerate(values)], context
def _tuple_unflatten(values: Iterable[Any], context: Context) -> Tuple[Any, ...]:
return tuple(values)
def _list_flatten(d: List[Any]) -> Tuple[List[Any], Context]:
return d, None
def _list_flatten_with_keys(d: List[Any]) -> Tuple[List[Tuple[KeyEntry, Any]], Context]:
values, context = _list_flatten(d)
return [(SequenceKey(i), v) for i, v in enumerate(values)], context
def _list_unflatten(values: Iterable[Any], context: Context) -> List[Any]:
return list(values)
def _dict_flatten(d: Dict[Any, Any]) -> Tuple[List[Any], Context]:
return list(d.values()), list(d.keys())
def _dict_flatten_with_keys(
d: Dict[Any, Any]
) -> Tuple[List[Tuple[KeyEntry, Any]], Context]:
values, context = _dict_flatten(d)
return [(MappingKey(k), v) for k, v in zip(context, values)], context
def _dict_unflatten(values: Iterable[Any], context: Context) -> Dict[Any, Any]:
return dict(zip(context, values))
def _namedtuple_flatten(d: NamedTuple) -> Tuple[List[Any], Context]:
return list(d), type(d)
def _namedtuple_flatten_with_keys(
d: NamedTuple,
) -> Tuple[List[Tuple[KeyEntry, Any]], Context]:
values, context = _namedtuple_flatten(d)
return (
[(GetAttrKey(field), v) for field, v in zip(context._fields, values)],
context,
)
def _namedtuple_unflatten(values: Iterable[Any], context: Context) -> NamedTuple:
return cast(NamedTuple, context(*values))
def _namedtuple_serialize(context: Context) -> DumpableContext:
json_namedtuple = {
"class_name": context.__name__,
"fields": context._fields,
}
return json_namedtuple
def _namedtuple_deserialize(dumpable_context: DumpableContext) -> Context:
class_name = dumpable_context["class_name"]
assert isinstance(class_name, str)
context = namedtuple(class_name, dumpable_context["fields"]) # type: ignore[misc]
return context
def _ordereddict_flatten(d: GenericOrderedDict[Any, Any]) -> Tuple[List[Any], Context]:
return list(d.values()), list(d.keys())
def _ordereddict_flatten_with_keys(
d: GenericOrderedDict[Any, Any]
) -> Tuple[List[Tuple[KeyEntry, Any]], Context]:
values, context = _ordereddict_flatten(d)
return [(MappingKey(k), v) for k, v in zip(context, values)], context
def _ordereddict_unflatten(
values: Iterable[Any],
context: Context,
) -> GenericOrderedDict[Any, Any]:
return OrderedDict((key, value) for key, value in zip(context, values))
_odict_flatten = _ordereddict_flatten
_odict_unflatten = _ordereddict_unflatten
def _defaultdict_flatten(d: DefaultDict[Any, Any]) -> Tuple[List[Any], Context]:
values, dict_context = _dict_flatten(d)
return values, [d.default_factory, dict_context]
def _defaultdict_flatten_with_keys(
d: DefaultDict[Any, Any]
) -> Tuple[List[Tuple[KeyEntry, Any]], Context]:
values, context = _defaultdict_flatten(d)
_, dict_context = context
return [(MappingKey(k), v) for k, v in zip(dict_context, values)], context
def _defaultdict_unflatten(
values: Iterable[Any],
context: Context,
) -> DefaultDict[Any, Any]:
default_factory, dict_context = context
return defaultdict(default_factory, _dict_unflatten(values, dict_context))
def _defaultdict_serialize(context: Context) -> DumpableContext:
default_factory, dict_context = context
json_defaultdict = {
"default_factory_module": default_factory.__module__,
"default_factory_name": default_factory.__qualname__,
"dict_context": dict_context,
}
return json_defaultdict
def _defaultdict_deserialize(dumpable_context: DumpableContext) -> Context:
assert isinstance(dumpable_context, dict)
assert set(dumpable_context) == {
"default_factory_module",
"default_factory_name",
"dict_context",
}
default_factory_module = dumpable_context["default_factory_module"]
default_factory_name = dumpable_context["default_factory_name"]
assert isinstance(default_factory_module, str)
assert isinstance(default_factory_name, str)
module = importlib.import_module(default_factory_module)
default_factory = getattr(module, default_factory_name)
dict_context = dumpable_context["dict_context"]
return [default_factory, dict_context]
def _deque_flatten(d: Deque[Any]) -> Tuple[List[Any], Context]:
return list(d), d.maxlen
def _deque_flatten_with_keys(
d: Deque[Any],
) -> Tuple[List[Tuple[KeyEntry, Any]], Context]:
values, context = _deque_flatten(d)
return [(SequenceKey(i), v) for i, v in enumerate(values)], context
def _deque_unflatten(values: Iterable[Any], context: Context) -> Deque[Any]:
return deque(values, maxlen=context)
_private_register_pytree_node(
tuple,
_tuple_flatten,
_tuple_unflatten,
serialized_type_name="builtins.tuple",
flatten_with_keys_fn=_tuple_flatten_with_keys,
)
_private_register_pytree_node(
list,
_list_flatten,
_list_unflatten,
serialized_type_name="builtins.list",
flatten_with_keys_fn=_list_flatten_with_keys,
)
_private_register_pytree_node(
dict,
_dict_flatten,
_dict_unflatten,
serialized_type_name="builtins.dict",
flatten_with_keys_fn=_dict_flatten_with_keys,
)
_private_register_pytree_node(
namedtuple, # type: ignore[arg-type]
_namedtuple_flatten,
_namedtuple_unflatten,
serialized_type_name="collections.namedtuple",
to_dumpable_context=_namedtuple_serialize,
from_dumpable_context=_namedtuple_deserialize,
flatten_with_keys_fn=_namedtuple_flatten_with_keys,
)
_private_register_pytree_node(
OrderedDict,
_ordereddict_flatten,
_ordereddict_unflatten,
serialized_type_name="collections.OrderedDict",
flatten_with_keys_fn=_ordereddict_flatten_with_keys,
)
_private_register_pytree_node(
defaultdict,
_defaultdict_flatten,
_defaultdict_unflatten,
serialized_type_name="collections.defaultdict",
to_dumpable_context=_defaultdict_serialize,
from_dumpable_context=_defaultdict_deserialize,
flatten_with_keys_fn=_defaultdict_flatten_with_keys,
)
_private_register_pytree_node(
deque,
_deque_flatten,
_deque_unflatten,
serialized_type_name="collections.deque",
flatten_with_keys_fn=_deque_flatten_with_keys,
)
STANDARD_DICT_TYPES: FrozenSet[type] = frozenset(
{dict, OrderedDict, defaultdict},
)
BUILTIN_TYPES: FrozenSet[type] = frozenset(
{tuple, list, dict, namedtuple, OrderedDict, defaultdict, deque}, # type: ignore[arg-type]
)
# h/t https://stackoverflow.com/questions/2166818/how-to-check-if-an-object-is-an-instance-of-a-namedtuple
def _is_namedtuple_instance(tree: Any) -> bool:
typ = type(tree)
bases = typ.__bases__
if len(bases) != 1 or bases[0] != tuple:
return False
fields = getattr(typ, "_fields", None)
if not isinstance(fields, tuple):
return False
return all(type(entry) == str for entry in fields)
def _get_node_type(tree: Any) -> Any:
if _is_namedtuple_instance(tree):
return namedtuple
return type(tree)
# A leaf is defined as anything that is not a Node.
def _is_leaf(tree: PyTree, is_leaf: Optional[Callable[[PyTree], bool]] = None) -> bool:
return (is_leaf is not None and is_leaf(tree)) or _get_node_type(
tree
) not in SUPPORTED_NODES
# A TreeSpec represents the structure of a pytree. It holds:
# "type": the type of root Node of the pytree
# context: some context that is useful in unflattening the pytree
# children_specs: specs for each child of the root Node
# num_leaves: the number of leaves
@dataclasses.dataclass
class TreeSpec:
type: Any
context: Context
children_specs: List["TreeSpec"]
num_nodes: int = dataclasses.field(init=False)
num_leaves: int = dataclasses.field(init=False)
num_children: int = dataclasses.field(init=False)
def __post_init__(self) -> None:
self.num_nodes = 1 + sum(spec.num_nodes for spec in self.children_specs)
self.num_leaves = sum(spec.num_leaves for spec in self.children_specs)
self.num_children = len(self.children_specs)
def __repr__(self, indent: int = 0) -> str:
repr_prefix: str = f"TreeSpec({self.type.__name__}, {self.context}, ["
children_specs_str: str = ""
if self.num_children > 0:
indent += 2
children_specs_str += self.children_specs[0].__repr__(indent)
children_specs_str += "," if self.num_children > 1 else ""
children_specs_str += ",".join(
[
"\n" + " " * indent + child.__repr__(indent)
for child in self.children_specs[1:]
]
)
repr_suffix: str = f"{children_specs_str}])"
return repr_prefix + repr_suffix
def is_leaf(self) -> bool:
return self.num_nodes == 1 and self.num_leaves == 1
def _flatten_up_to_helper(self, tree: PyTree, subtrees: List[PyTree]) -> None:
if self.is_leaf():
subtrees.append(tree)
return
node_type = _get_node_type(tree)
if self.type not in BUILTIN_TYPES:
# Always require custom node types to match exactly
if node_type != self.type:
raise ValueError(
f"Type mismatch; "
f"expected {self.type!r}, but got {node_type!r}.",
)
flatten_fn = SUPPORTED_NODES[node_type].flatten_fn
child_pytrees, context = flatten_fn(tree)
if len(child_pytrees) != self.num_children:
raise ValueError(
f"Node arity mismatch; "
f"expected {self.num_children}, but got {len(child_pytrees)}.",
)
if context != self.context:
raise ValueError(
f"Node context mismatch for custom node type {self.type!r}.",
)
else:
# For builtin dictionary types, we allow some flexibility
# Otherwise, we require exact matches
both_standard_dict = (
self.type in STANDARD_DICT_TYPES and node_type in STANDARD_DICT_TYPES
)
if node_type != self.type and not both_standard_dict:
raise ValueError(
f"Node type mismatch; "
f"expected {self.type!r}, but got {node_type!r}.",
)
if len(tree) != self.num_children:
raise ValueError(
f"Node arity mismatch; "
f"expected {self.num_children}, but got {len(tree)}.",
)
if both_standard_dict: # dictionary types are compatible with each other
dict_context = (
self.context
if self.type is not defaultdict
# ignore mismatch of `default_factory` for defaultdict
else self.context[1]
)
expected_keys = dict_context
got_key_set = set(tree)
expected_key_set = set(expected_keys)
if got_key_set != expected_key_set:
missing_keys = expected_key_set.difference(got_key_set)
extra_keys = got_key_set.difference(expected_key_set)
message = ""
if missing_keys:
message += f"; missing key(s): {missing_keys}"
if extra_keys:
message += f"; extra key(s): {extra_keys}"
raise ValueError(f"Node keys mismatch{message}.")
child_pytrees = [tree[key] for key in expected_keys]
else:
flatten_fn = SUPPORTED_NODES[node_type].flatten_fn
child_pytrees, context = flatten_fn(tree)
if (
context != self.context
and self.type is not deque # ignore mismatch of `maxlen` for deque
):
raise ValueError(
f"Node context mismatch for node type {self.type!r}; "
f"expected {self.context!r}, but got {context!r}.", # namedtuple type mismatch
)
for child_pytree, child_spec in zip(child_pytrees, self.children_specs):
child_spec._flatten_up_to_helper(child_pytree, subtrees)
def flatten_up_to(self, tree: PyTree) -> List[PyTree]:
subtrees: List[PyTree] = []
self._flatten_up_to_helper(tree, subtrees)
return subtrees
def unflatten(self, leaves: Iterable[Any]) -> PyTree:
if not isinstance(leaves, (list, tuple)):
leaves = list(leaves)
if len(leaves) != self.num_leaves:
raise ValueError(
f"treespec.unflatten(leaves): `leaves` has length {len(leaves)} "
f"but the spec refers to a pytree that holds {self.num_leaves} "
f"items ({self}).",
)
if self.is_leaf():
return leaves[0]
unflatten_fn = SUPPORTED_NODES[self.type].unflatten_fn
# Recursively unflatten the children
start = 0
end = 0
child_pytrees = []
for child_spec in self.children_specs:
end += child_spec.num_leaves
child_pytrees.append(child_spec.unflatten(leaves[start:end]))
start = end
return unflatten_fn(child_pytrees, self.context)
class LeafSpec(TreeSpec):
def __init__(self) -> None:
super().__init__(None, None, [])
def __post_init__(self) -> None:
self.num_nodes = 1
self.num_leaves = 1
self.num_children = 0
def __repr__(self, indent: int = 0) -> str:
return "*"
# All leaves are equivalent, so represent with a single object to save on
# object construction time
_LEAF_SPEC = LeafSpec()
def _tree_flatten_helper(
tree: PyTree,
leaves: List[Any],
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> TreeSpec:
if _is_leaf(tree, is_leaf=is_leaf):
leaves.append(tree)
return _LEAF_SPEC
node_type = _get_node_type(tree)
flatten_fn = SUPPORTED_NODES[node_type].flatten_fn
child_pytrees, context = flatten_fn(tree)
# Recursively flatten the children
children_specs = [
_tree_flatten_helper(child, leaves, is_leaf=is_leaf) for child in child_pytrees
]
return TreeSpec(node_type, context, children_specs)
def tree_flatten(
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> Tuple[List[Any], TreeSpec]:
"""Flattens a pytree into a list of values and a TreeSpec that can be used
to reconstruct the pytree.
"""
leaves: List[Any] = []
spec = _tree_flatten_helper(tree, leaves, is_leaf=is_leaf)
return leaves, spec
def tree_unflatten(leaves: Iterable[Any], treespec: TreeSpec) -> PyTree:
"""Given a list of values and a TreeSpec, builds a pytree.
This is the inverse operation of `tree_flatten`.
"""
if not isinstance(treespec, TreeSpec):
raise TypeError(
f"tree_unflatten(leaves, treespec): Expected `treespec` to be "
f"instance of TreeSpec but got item of type {type(treespec)}.",
)
return treespec.unflatten(leaves)
def _tree_leaves_helper(
tree: PyTree,
leaves: List[Any],
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> None:
if _is_leaf(tree, is_leaf=is_leaf):
leaves.append(tree)
return
node_type = _get_node_type(tree)
flatten_fn = SUPPORTED_NODES[node_type].flatten_fn
child_pytrees, _ = flatten_fn(tree)
# Recursively flatten the children
for child in child_pytrees:
_tree_leaves_helper(child, leaves, is_leaf=is_leaf)
def tree_leaves(
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> List[Any]:
"""Get a list of leaves of a pytree."""
leaves: List[Any] = []
_tree_leaves_helper(tree, leaves, is_leaf=is_leaf)
return leaves
def tree_structure(
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> TreeSpec:
"""Get the TreeSpec for a pytree."""
return tree_flatten(tree, is_leaf=is_leaf)[1]
def tree_map(
func: Callable[..., Any],
tree: PyTree,
*rests: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
"""Map a multi-input function over pytree args to produce a new pytree.
See also :func:`tree_map_`.
>>> tree_map(lambda x: x + 1, {'x': 7, 'y': (42, 64)})
{'x': 8, 'y': (43, 65)}
>>> tree_map(lambda x: x is None, {'x': 7, 'y': (42, 64), 'z': None})
{'x': False, 'y': (False, False), 'z': True}
If multiple inputs are given, the structure of the tree is taken from the first input;
subsequent inputs need only have ``tree`` as a prefix:
>>> tree_map(lambda x, y: [x] + y, [5, 6], [[7, 9], [1, 2]])
[[5, 7, 9], [6, 1, 2]]
Args:
func (callable): A function that takes ``1 + len(rests)`` arguments, to be applied at the
corresponding leaves of the pytrees.
tree (pytree): A pytree to be mapped over, with each leaf providing the first positional
argument to function ``func``.
rests (tuple of pytree): A tuple of pytrees, each of which has the same structure as
``tree`` or has ``tree`` as a prefix.
is_leaf (callable, optional): An extra leaf predicate function that will be called at each
flattening step. The function should have a single argument with signature
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
leaf or not. If the function is not specified, the default pytree registry will be used.
Returns:
A new pytree with the same structure as ``tree`` but with the value at each leaf given by
``func(x, *xs)`` where ``x`` is the value at the corresponding leaf in ``tree`` and ``xs``
is the tuple of values at corresponding nodes in ``rests``.
"""
leaves, treespec = tree_flatten(tree, is_leaf=is_leaf)
flat_args = [leaves] + [treespec.flatten_up_to(r) for r in rests]
return treespec.unflatten(map(func, *flat_args))
def tree_map_(
func: Callable[..., Any],
tree: PyTree,
*rests: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
"""Like :func:`tree_map`, but do an inplace call on each leaf and return the original tree.
See also :func:`tree_map`.
Args:
func (callable): A function that takes ``1 + len(rests)`` arguments, to be applied at the
corresponding leaves of the pytrees.
tree (pytree): A pytree to be mapped over, with each leaf providing the first positional
argument to function ``func``.
rests (tuple of pytree): A tuple of pytrees, each of which has the same structure as
``tree`` or has ``tree`` as a prefix.
is_leaf (callable, optional): An extra leaf predicate function that will be called at each
flattening step. The function should have a single argument with signature
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
leaf or not. If the function is not specified, the default pytree registry will be used.
Returns:
The original ``tree`` with the value at each leaf is given by the side-effect of function
``func(x, *xs)`` (not the return value) where ``x`` is the value at the corresponding leaf
in ``tree`` and ``xs`` is the tuple of values at values at corresponding nodes in ``rests``.
"""
leaves, treespec = tree_flatten(tree, is_leaf=is_leaf)
flat_args = [leaves] + [treespec.flatten_up_to(r) for r in rests]
tuple(map(func, *flat_args)) # consume and exhaust the iterable
return tree
Type2 = Tuple[Type[T], Type[S]]
Type3 = Tuple[Type[T], Type[S], Type[U]]
if sys.version_info >= (3, 10):
TypeAny = Union[Type[Any], Tuple[Type[Any], ...], types.UnionType]
else:
TypeAny = Union[Type[Any], Tuple[Type[Any], ...]]
Fn2 = Callable[[Union[T, S]], R]
Fn3 = Callable[[Union[T, S, U]], R]
Fn = Callable[[T], R]
FnAny = Callable[[Any], R]
MapOnlyFn = Callable[[T], Callable[[Any], Any]]
# These specializations help with type inference on the lambda passed to this
# function
@overload
def map_only(__type_or_types_or_pred: Type2[T, S]) -> MapOnlyFn[Fn2[T, S, Any]]:
...
@overload
def map_only(__type_or_types_or_pred: Type3[T, S, U]) -> MapOnlyFn[Fn3[T, S, U, Any]]:
...
@overload
def map_only(__type_or_types_or_pred: Type[T]) -> MapOnlyFn[Fn[T, Any]]:
...
# This specialization is needed for the implementations below that call
@overload
def map_only(__type_or_types_or_pred: TypeAny) -> MapOnlyFn[FnAny[Any]]:
...
@overload
def map_only(__type_or_types_or_pred: Callable[[Any], bool]) -> MapOnlyFn[FnAny[Any]]:
...
def map_only(
__type_or_types_or_pred: Union[TypeAny, Callable[[Any], bool]]
) -> MapOnlyFn[FnAny[Any]]:
"""
Suppose you are writing a tree_map over tensors, leaving everything
else unchanged. Ordinarily you would have to write:
def go(t):
if isinstance(t, Tensor):
return ...
else:
return t
With this function, you only need to write:
@map_only(Tensor)
def go(t):
return ...
You can also directly use 'tree_map_only'
"""
if isinstance(__type_or_types_or_pred, (type, tuple)) or (
sys.version_info >= (3, 10)
and isinstance(__type_or_types_or_pred, types.UnionType)
):
def pred(x: Any) -> bool:
return isinstance(x, __type_or_types_or_pred) # type: ignore[arg-type]
elif callable(__type_or_types_or_pred):
pred = __type_or_types_or_pred # type: ignore[assignment]
else:
raise TypeError("Argument must be a type, a tuple of types, or a callable.")
def wrapper(func: Callable[[T], Any]) -> Callable[[Any], Any]:
# @functools.wraps(func) # torch dynamo doesn't support this yet
def wrapped(x: T) -> Any:
if pred(x):
return func(x)
return x
return wrapped
return wrapper
@overload
def tree_map_only(
__type_or_types_or_pred: Type[T],
func: Fn[T, Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
@overload
def tree_map_only(
__type_or_types_or_pred: Type2[T, S],
func: Fn2[T, S, Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
@overload
def tree_map_only(
__type_or_types_or_pred: Type3[T, S, U],
func: Fn3[T, S, U, Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
@overload
def tree_map_only(
__type_or_types_or_pred: Callable[[Any], bool],
func: FnAny[Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
def tree_map_only(
__type_or_types_or_pred: Union[TypeAny, Callable[[Any], bool]],
func: FnAny[Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
return tree_map(map_only(__type_or_types_or_pred)(func), tree, is_leaf=is_leaf)
@overload
def tree_map_only_(
__type_or_types_or_pred: Type[T],
func: Fn[T, Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
@overload
def tree_map_only_(
__type_or_types_or_pred: Type2[T, S],
func: Fn2[T, S, Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
@overload
def tree_map_only_(
__type_or_types_or_pred: Type3[T, S, U],
func: Fn3[T, S, U, Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
@overload
def tree_map_only_(
__type_or_types_or_pred: Callable[[Any], bool],
func: FnAny[Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
def tree_map_only_(
__type_or_types_or_pred: Union[TypeAny, Callable[[Any], bool]],
func: FnAny[Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
return tree_map_(map_only(__type_or_types_or_pred)(func), tree, is_leaf=is_leaf)
def tree_all(
pred: Callable[[Any], bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
flat_args = tree_leaves(tree, is_leaf=is_leaf)
return all(map(pred, flat_args))
def tree_any(
pred: Callable[[Any], bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
flat_args = tree_leaves(tree, is_leaf=is_leaf)
return any(map(pred, flat_args))
@overload
def tree_all_only(
__type_or_types: Type[T],
pred: Fn[T, bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
...
@overload
def tree_all_only(
__type_or_types: Type2[T, S],
pred: Fn2[T, S, bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
...
@overload
def tree_all_only(
__type_or_types: Type3[T, S, U],
pred: Fn3[T, S, U, bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
...
def tree_all_only(
__type_or_types: TypeAny,
pred: FnAny[bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
flat_args = tree_leaves(tree, is_leaf=is_leaf)
return all(pred(x) for x in flat_args if isinstance(x, __type_or_types))
@overload
def tree_any_only(
__type_or_types: Type[T],
pred: Fn[T, bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
...
@overload
def tree_any_only(
__type_or_types: Type2[T, S],
pred: Fn2[T, S, bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
...
@overload
def tree_any_only(
__type_or_types: Type3[T, S, U],
pred: Fn3[T, S, U, bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
...
def tree_any_only(
__type_or_types: TypeAny,
pred: FnAny[bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
flat_args = tree_leaves(tree, is_leaf=is_leaf)
return any(pred(x) for x in flat_args if isinstance(x, __type_or_types))
# Broadcasts a pytree to the provided TreeSpec and returns the flattened
# values. If this is not possible, then this function returns None.
#
# For example, given pytree=0 and spec=TreeSpec(list, None, [LeafSpec(), LeafSpec()]),
# would return [0, 0]. This is useful for part of the vmap implementation:
# a user can pass in vmap(fn, in_dims)(*inputs). `in_dims` should be
# broadcastable to the tree structure of `inputs` and we use
# _broadcast_to_and_flatten to check this.
def _broadcast_to_and_flatten(
tree: PyTree,
treespec: TreeSpec,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> Optional[List[Any]]:
assert isinstance(treespec, TreeSpec)
if _is_leaf(tree, is_leaf=is_leaf):
return [tree] * treespec.num_leaves
if treespec.is_leaf():
return None
node_type = _get_node_type(tree)
if node_type != treespec.type:
return None
flatten_fn = SUPPORTED_NODES[node_type].flatten_fn
child_pytrees, ctx = flatten_fn(tree)
# Check if the Node is different from the spec
if len(child_pytrees) != treespec.num_children or ctx != treespec.context:
return None
# Recursively flatten the children
result: List[Any] = []
for child, child_spec in zip(child_pytrees, treespec.children_specs):
flat = _broadcast_to_and_flatten(child, child_spec, is_leaf=is_leaf)
if flat is not None:
result += flat
else:
return None
return result
@dataclasses.dataclass
class _TreeSpecSchema:
"""
_TreeSpecSchema is the schema used to serialize the TreeSpec
It contains the following fields:
- type: A string name of the type. null for the case of a LeafSpec.
- context: Any format which is json dumpable
- children_spec: A list of children serialized specs.
"""
type: Optional[str]
context: DumpableContext
children_spec: List["_TreeSpecSchema"]
class _ProtocolFn(NamedTuple):
treespec_to_json: Callable[[TreeSpec], DumpableContext]
json_to_treespec: Callable[[DumpableContext], TreeSpec]
_SUPPORTED_PROTOCOLS: Dict[int, _ProtocolFn] = {}
def _treespec_to_json(treespec: TreeSpec) -> _TreeSpecSchema:
if treespec.is_leaf():
return _TreeSpecSchema(None, None, [])
if treespec.type not in SUPPORTED_SERIALIZED_TYPES:
raise NotImplementedError(
f"Serializing {treespec.type} in pytree is not registered.",
)
serialize_node_def = SUPPORTED_SERIALIZED_TYPES[treespec.type]
serialized_type_name = serialize_node_def.serialized_type_name
if serialized_type_name == NO_SERIALIZED_TYPE_NAME_FOUND:
raise NotImplementedError(
f"No registered serialization name for {treespec.type} found. "
"Please update your _register_pytree_node call with a `serialized_type_name` kwarg."
)
if serialize_node_def.to_dumpable_context is None:
try:
serialized_context = json.dumps(treespec.context)
except TypeError as e:
raise TypeError(
"Unable to serialize context. "
"Please make the context json dump-able, or register a "
"custom serializer using _register_pytree_node."
) from e
else:
serialized_context = serialize_node_def.to_dumpable_context(treespec.context)
child_schemas = [_treespec_to_json(child) for child in treespec.children_specs]
return _TreeSpecSchema(serialized_type_name, serialized_context, child_schemas)
def _json_to_treespec(json_schema: DumpableContext) -> TreeSpec:
if (
json_schema["type"] is None
and json_schema["context"] is None
and len(json_schema["children_spec"]) == 0
):
return _LEAF_SPEC
if json_schema["type"] not in SERIALIZED_TYPE_TO_PYTHON_TYPE:
raise NotImplementedError(
f'Deserializing {json_schema["type"]} in pytree is not registered.',
)
typ = SERIALIZED_TYPE_TO_PYTHON_TYPE[json_schema["type"]]
serialize_node_def = SUPPORTED_SERIALIZED_TYPES[typ]
if serialize_node_def.from_dumpable_context is None:
try:
context = json.loads(json_schema["context"])
except TypeError as ex:
raise TypeError(
"Unable to deserialize context. "
"Please make the context json load-able, or register a "
"custom serializer using _register_pytree_node.",
) from ex
else:
context = serialize_node_def.from_dumpable_context(json_schema["context"])
children_specs = []
for child_string in json_schema["children_spec"]:
children_specs.append(_json_to_treespec(child_string))
return TreeSpec(typ, context, children_specs)
_SUPPORTED_PROTOCOLS[1] = _ProtocolFn(_treespec_to_json, _json_to_treespec)
def treespec_dumps(treespec: TreeSpec, protocol: Optional[int] = None) -> str:
if not isinstance(treespec, TreeSpec):
raise TypeError(
f"treespec_dumps(treespec, protocol): Expected `treespec` to be instance of "
f"TreeSpec but got item of type {type(treespec)}.",
)
if protocol is None:
protocol = DEFAULT_TREESPEC_SERIALIZATION_PROTOCOL
if protocol in _SUPPORTED_PROTOCOLS:
json_spec = _SUPPORTED_PROTOCOLS[protocol].treespec_to_json(treespec)
else:
raise ValueError(
f"Unknown protocol {protocol}. "
f"Available protocols: {list(_SUPPORTED_PROTOCOLS.keys())}",
)
str_spec = json.dumps((protocol, dataclasses.asdict(json_spec)))
return str_spec
def treespec_loads(serialized: str) -> TreeSpec:
protocol, json_schema = json.loads(serialized)
if protocol in _SUPPORTED_PROTOCOLS:
return _SUPPORTED_PROTOCOLS[protocol].json_to_treespec(json_schema)
raise ValueError(
f"Unknown protocol {protocol}. "
f"Available protocols: {list(_SUPPORTED_PROTOCOLS.keys())}",
)
class _DummyLeaf:
def __repr__(self) -> str:
return "*"
def treespec_pprint(treespec: TreeSpec) -> str:
dummy_tree = tree_unflatten(
[_DummyLeaf() for _ in range(treespec.num_leaves)],
treespec,
)
return repr(dummy_tree)
# TODO(angelayi): remove this function after OSS/internal stabilize
def pytree_to_str(treespec: TreeSpec) -> str:
warnings.warn("pytree_to_str is deprecated. Please use treespec_dumps")
return treespec_dumps(treespec)
# TODO(angelayi): remove this function after OSS/internal stabilize
def str_to_pytree(json: str) -> TreeSpec:
warnings.warn("str_to_pytree is deprecated. Please use treespec_loads")
return treespec_loads(json)
def arg_tree_leaves(*args: PyTree, **kwargs: PyTree) -> List[Any]:
"""Get a flat list of arguments to this function
A slightly faster version of tree_leaves((args, kwargs))
"""
leaves: List[Any] = []
for a in args:
_tree_leaves_helper(a, leaves)
for a in kwargs.values():
_tree_leaves_helper(a, leaves)
return leaves
def tree_flatten_with_path(
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> Tuple[List[Tuple[KeyPath, Any]], TreeSpec]:
"""Flattens a pytree like :func:`tree_flatten`, but also returns each leaf's key path.
Args:
tree: a pytree to flatten. If it contains a custom type, that type must be
registered with an appropriate `tree_flatten_with_path_fn` when registered
with :func:`register_pytree_node`.
is_leaf: An extra leaf predicate function that will be called at each
flattening step. The function should have a single argument with signature
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
leaf or not. If the function is not specified, the default pytree registry will be used.
Returns:
A tuple where the first element is a list of (key path, leaf) pairs, and the
second element is a :class:`TreeSpec` representing the structure of the flattened
tree.
"""
_, treespec = tree_flatten(tree, is_leaf)
return list(_generate_key_paths((), tree, is_leaf)), treespec
def tree_leaves_with_path(
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> List[Tuple[KeyPath, Any]]:
"""Gets the leaves of a pytree like ``tree_leaves`` and returns each leaf's key path.
Args:
tree: a pytree. If it contains a custom type, that type must be
registered with an appropriate `tree_flatten_with_path_fn` when registered
with :func:`register_pytree_node`.
is_leaf: An extra leaf predicate function that will be called at each
flattening step. The function should have a single argument with signature
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
leaf or not. If the function is not specified, the default pytree registry will be used.
Returns:
A list of (key path, leaf) pairs.
"""
return list(_generate_key_paths((), tree, is_leaf))
def _generate_key_paths(
key_path: KeyPath,
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> Iterable[Tuple[KeyPath, Any]]:
if is_leaf and is_leaf(tree):
yield key_path, tree
return
node_type = _get_node_type(tree)
handler = SUPPORTED_NODES.get(node_type)
if not handler:
# This is a leaf
yield key_path, tree
return
flatten_with_keys = handler.flatten_with_keys_fn
if flatten_with_keys:
key_children, _ = flatten_with_keys(tree)
for k, c in key_children:
yield from _generate_key_paths((*key_path, k), c, is_leaf)
else:
# We registered this pytree but didn't add a flatten_with_keys_fn, complain.
raise ValueError(
f"Did not find a flatten_with_keys_fn for type: {node_type}. "
"Please pass a flatten_with_keys_fn argument to register_pytree_node."
)
def tree_map_with_path(
func: Callable[..., Any],
tree: PyTree,
*rests: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
"""Like :func:`tree_map`, but the provided callable takes an additional key path argument.
Args:
func: A function that takes ``2 + len(rests)`` arguments, to be applied at the
corresponding leaves of the pytrees. The first positional argument
to ``func`` is the key path of the leaf in question. The second
positional argument is the value of the leaf.
tree: A pytree to be mapped over, with each leaf providing the first positional
argument to function ``func``.
rests: A tuple of pytrees, each of which has the same structure as
``tree`` or has ``tree`` as a prefix.
is_leaf: An extra leaf predicate function that will be called at each
flattening step. The function should have a single argument with signature
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
leaf or not. If the function is not specified, the default pytree registry will be used.
Returns
A new pytree with the same structure as ``tree`` but with the value at each leaf given by
``func(keypath, x, *xs)`` where ``keypath`` is the key path at the
corresponding leaf in ``tree``, ``x`` is the value at that leaf, and
``xs`` is the tuple of values at corresponding nodes in ``rests``.
"""
keypath_leaves, treespec = tree_flatten_with_path(tree, is_leaf)
keypath_leaves = list(zip(*keypath_leaves))
all_keypath_leaves = keypath_leaves + [treespec.flatten_up_to(r) for r in rests]
return treespec.unflatten(func(*xs) for xs in zip(*all_keypath_leaves))
def keystr(kp: KeyPath) -> str:
"""Given a key path, return a pretty-printed representation."""
return "".join([str(k) for k in kp])
def key_get(obj: Any, kp: KeyPath) -> Any:
"""Given an object and a key path, return the value at the key path."""
for k in kp:
obj = k.get(obj)
return obj