You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
116 lines
4.5 KiB
116 lines
4.5 KiB
from __future__ import annotations
|
|
|
|
import os
|
|
from pathlib import Path
|
|
from typing import Any, Callable, Optional, Tuple, Union
|
|
|
|
import PIL.Image
|
|
|
|
from .utils import download_and_extract_archive, verify_str_arg
|
|
from .vision import VisionDataset
|
|
|
|
|
|
class FGVCAircraft(VisionDataset):
|
|
"""`FGVC Aircraft <https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/>`_ Dataset.
|
|
|
|
The dataset contains 10,000 images of aircraft, with 100 images for each of 100
|
|
different aircraft model variants, most of which are airplanes.
|
|
Aircraft models are organized in a three-levels hierarchy. The three levels, from
|
|
finer to coarser, are:
|
|
|
|
- ``variant``, e.g. Boeing 737-700. A variant collapses all the models that are visually
|
|
indistinguishable into one class. The dataset comprises 100 different variants.
|
|
- ``family``, e.g. Boeing 737. The dataset comprises 70 different families.
|
|
- ``manufacturer``, e.g. Boeing. The dataset comprises 30 different manufacturers.
|
|
|
|
Args:
|
|
root (str or ``pathlib.Path``): Root directory of the FGVC Aircraft dataset.
|
|
split (string, optional): The dataset split, supports ``train``, ``val``,
|
|
``trainval`` and ``test``.
|
|
annotation_level (str, optional): The annotation level, supports ``variant``,
|
|
``family`` and ``manufacturer``.
|
|
transform (callable, optional): A function/transform that takes in a PIL image
|
|
and returns a transformed version. E.g, ``transforms.RandomCrop``
|
|
target_transform (callable, optional): A function/transform that takes in the
|
|
target and transforms it.
|
|
download (bool, optional): If True, downloads the dataset from the internet and
|
|
puts it in root directory. If dataset is already downloaded, it is not
|
|
downloaded again.
|
|
"""
|
|
|
|
_URL = "https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/archives/fgvc-aircraft-2013b.tar.gz"
|
|
|
|
def __init__(
|
|
self,
|
|
root: Union[str, Path],
|
|
split: str = "trainval",
|
|
annotation_level: str = "variant",
|
|
transform: Optional[Callable] = None,
|
|
target_transform: Optional[Callable] = None,
|
|
download: bool = False,
|
|
) -> None:
|
|
super().__init__(root, transform=transform, target_transform=target_transform)
|
|
self._split = verify_str_arg(split, "split", ("train", "val", "trainval", "test"))
|
|
self._annotation_level = verify_str_arg(
|
|
annotation_level, "annotation_level", ("variant", "family", "manufacturer")
|
|
)
|
|
|
|
self._data_path = os.path.join(self.root, "fgvc-aircraft-2013b")
|
|
if download:
|
|
self._download()
|
|
|
|
if not self._check_exists():
|
|
raise RuntimeError("Dataset not found. You can use download=True to download it")
|
|
|
|
annotation_file = os.path.join(
|
|
self._data_path,
|
|
"data",
|
|
{
|
|
"variant": "variants.txt",
|
|
"family": "families.txt",
|
|
"manufacturer": "manufacturers.txt",
|
|
}[self._annotation_level],
|
|
)
|
|
with open(annotation_file, "r") as f:
|
|
self.classes = [line.strip() for line in f]
|
|
|
|
self.class_to_idx = dict(zip(self.classes, range(len(self.classes))))
|
|
|
|
image_data_folder = os.path.join(self._data_path, "data", "images")
|
|
labels_file = os.path.join(self._data_path, "data", f"images_{self._annotation_level}_{self._split}.txt")
|
|
|
|
self._image_files = []
|
|
self._labels = []
|
|
|
|
with open(labels_file, "r") as f:
|
|
for line in f:
|
|
image_name, label_name = line.strip().split(" ", 1)
|
|
self._image_files.append(os.path.join(image_data_folder, f"{image_name}.jpg"))
|
|
self._labels.append(self.class_to_idx[label_name])
|
|
|
|
def __len__(self) -> int:
|
|
return len(self._image_files)
|
|
|
|
def __getitem__(self, idx: int) -> Tuple[Any, Any]:
|
|
image_file, label = self._image_files[idx], self._labels[idx]
|
|
image = PIL.Image.open(image_file).convert("RGB")
|
|
|
|
if self.transform:
|
|
image = self.transform(image)
|
|
|
|
if self.target_transform:
|
|
label = self.target_transform(label)
|
|
|
|
return image, label
|
|
|
|
def _download(self) -> None:
|
|
"""
|
|
Download the FGVC Aircraft dataset archive and extract it under root.
|
|
"""
|
|
if self._check_exists():
|
|
return
|
|
download_and_extract_archive(self._URL, self.root)
|
|
|
|
def _check_exists(self) -> bool:
|
|
return os.path.exists(self._data_path) and os.path.isdir(self._data_path)
|