You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
87 lines
3.5 KiB
87 lines
3.5 KiB
from pathlib import Path
|
|
from typing import Any, Callable, Optional, Tuple, Union
|
|
|
|
import PIL.Image
|
|
|
|
from .folder import make_dataset
|
|
from .utils import download_and_extract_archive, verify_str_arg
|
|
from .vision import VisionDataset
|
|
|
|
|
|
class RenderedSST2(VisionDataset):
|
|
"""`The Rendered SST2 Dataset <https://github.com/openai/CLIP/blob/main/data/rendered-sst2.md>`_.
|
|
|
|
Rendered SST2 is an image classification dataset used to evaluate the models capability on optical
|
|
character recognition. This dataset was generated by rendering sentences in the Standford Sentiment
|
|
Treebank v2 dataset.
|
|
|
|
This dataset contains two classes (positive and negative) and is divided in three splits: a train
|
|
split containing 6920 images (3610 positive and 3310 negative), a validation split containing 872 images
|
|
(444 positive and 428 negative), and a test split containing 1821 images (909 positive and 912 negative).
|
|
|
|
Args:
|
|
root (str or ``pathlib.Path``): Root directory of the dataset.
|
|
split (string, optional): The dataset split, supports ``"train"`` (default), `"val"` and ``"test"``.
|
|
transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed
|
|
version. E.g, ``transforms.RandomCrop``.
|
|
target_transform (callable, optional): A function/transform that takes in the target and transforms it.
|
|
download (bool, optional): If True, downloads the dataset from the internet and
|
|
puts it in root directory. If dataset is already downloaded, it is not
|
|
downloaded again. Default is False.
|
|
"""
|
|
|
|
_URL = "https://openaipublic.azureedge.net/clip/data/rendered-sst2.tgz"
|
|
_MD5 = "2384d08e9dcfa4bd55b324e610496ee5"
|
|
|
|
def __init__(
|
|
self,
|
|
root: Union[str, Path],
|
|
split: str = "train",
|
|
transform: Optional[Callable] = None,
|
|
target_transform: Optional[Callable] = None,
|
|
download: bool = False,
|
|
) -> None:
|
|
super().__init__(root, transform=transform, target_transform=target_transform)
|
|
self._split = verify_str_arg(split, "split", ("train", "val", "test"))
|
|
self._split_to_folder = {"train": "train", "val": "valid", "test": "test"}
|
|
self._base_folder = Path(self.root) / "rendered-sst2"
|
|
self.classes = ["negative", "positive"]
|
|
self.class_to_idx = {"negative": 0, "positive": 1}
|
|
|
|
if download:
|
|
self._download()
|
|
|
|
if not self._check_exists():
|
|
raise RuntimeError("Dataset not found. You can use download=True to download it")
|
|
|
|
self._samples = make_dataset(str(self._base_folder / self._split_to_folder[self._split]), extensions=("png",))
|
|
|
|
def __len__(self) -> int:
|
|
return len(self._samples)
|
|
|
|
def __getitem__(self, idx: int) -> Tuple[Any, Any]:
|
|
image_file, label = self._samples[idx]
|
|
image = PIL.Image.open(image_file).convert("RGB")
|
|
|
|
if self.transform:
|
|
image = self.transform(image)
|
|
|
|
if self.target_transform:
|
|
label = self.target_transform(label)
|
|
|
|
return image, label
|
|
|
|
def extra_repr(self) -> str:
|
|
return f"split={self._split}"
|
|
|
|
def _check_exists(self) -> bool:
|
|
for class_label in set(self.classes):
|
|
if not (self._base_folder / self._split_to_folder[self._split] / class_label).is_dir():
|
|
return False
|
|
return True
|
|
|
|
def _download(self) -> None:
|
|
if self._check_exists():
|
|
return
|
|
download_and_extract_archive(self._URL, download_root=self.root, md5=self._MD5)
|