You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
10202 lines
277 KiB
10202 lines
277 KiB
"""
|
|
Extended docstrings for functions.py
|
|
"""
|
|
|
|
|
|
pi = r"""
|
|
`\pi`, roughly equal to 3.141592654, represents the area of the unit
|
|
circle, the half-period of trigonometric functions, and many other
|
|
things in mathematics.
|
|
|
|
Mpmath can evaluate `\pi` to arbitrary precision::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 50; mp.pretty = True
|
|
>>> +pi
|
|
3.1415926535897932384626433832795028841971693993751
|
|
|
|
This shows digits 99991-100000 of `\pi` (the last digit is actually
|
|
a 4 when the decimal expansion is truncated, but here the nearest
|
|
rounding is used)::
|
|
|
|
>>> mp.dps = 100000
|
|
>>> str(pi)[-10:]
|
|
'5549362465'
|
|
|
|
**Possible issues**
|
|
|
|
:data:`pi` always rounds to the nearest floating-point
|
|
number when used. This means that exact mathematical identities
|
|
involving `\pi` will generally not be preserved in floating-point
|
|
arithmetic. In particular, multiples of :data:`pi` (except for
|
|
the trivial case ``0*pi``) are *not* the exact roots of
|
|
:func:`~mpmath.sin`, but differ roughly by the current epsilon::
|
|
|
|
>>> mp.dps = 15
|
|
>>> sin(pi)
|
|
1.22464679914735e-16
|
|
|
|
One solution is to use the :func:`~mpmath.sinpi` function instead::
|
|
|
|
>>> sinpi(1)
|
|
0.0
|
|
|
|
See the documentation of trigonometric functions for additional
|
|
details.
|
|
|
|
**References**
|
|
|
|
* [BorweinBorwein]_
|
|
|
|
"""
|
|
|
|
degree = r"""
|
|
Represents one degree of angle, `1^{\circ} = \pi/180`, or
|
|
about 0.01745329. This constant may be evaluated to arbitrary
|
|
precision::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 50; mp.pretty = True
|
|
>>> +degree
|
|
0.017453292519943295769236907684886127134428718885417
|
|
|
|
The :data:`degree` object is convenient for conversion
|
|
to radians::
|
|
|
|
>>> sin(30 * degree)
|
|
0.5
|
|
>>> asin(0.5) / degree
|
|
30.0
|
|
"""
|
|
|
|
e = r"""
|
|
The transcendental number `e` = 2.718281828... is the base of the
|
|
natural logarithm (:func:`~mpmath.ln`) and of the exponential function
|
|
(:func:`~mpmath.exp`).
|
|
|
|
Mpmath can be evaluate `e` to arbitrary precision::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 50; mp.pretty = True
|
|
>>> +e
|
|
2.7182818284590452353602874713526624977572470937
|
|
|
|
This shows digits 99991-100000 of `e` (the last digit is actually
|
|
a 5 when the decimal expansion is truncated, but here the nearest
|
|
rounding is used)::
|
|
|
|
>>> mp.dps = 100000
|
|
>>> str(e)[-10:]
|
|
'2100427166'
|
|
|
|
**Possible issues**
|
|
|
|
:data:`e` always rounds to the nearest floating-point number
|
|
when used, and mathematical identities involving `e` may not
|
|
hold in floating-point arithmetic. For example, ``ln(e)``
|
|
might not evaluate exactly to 1.
|
|
|
|
In particular, don't use ``e**x`` to compute the exponential
|
|
function. Use ``exp(x)`` instead; this is both faster and more
|
|
accurate.
|
|
"""
|
|
|
|
phi = r"""
|
|
Represents the golden ratio `\phi = (1+\sqrt 5)/2`,
|
|
approximately equal to 1.6180339887. To high precision,
|
|
its value is::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 50; mp.pretty = True
|
|
>>> +phi
|
|
1.6180339887498948482045868343656381177203091798058
|
|
|
|
Formulas for the golden ratio include the following::
|
|
|
|
>>> (1+sqrt(5))/2
|
|
1.6180339887498948482045868343656381177203091798058
|
|
>>> findroot(lambda x: x**2-x-1, 1)
|
|
1.6180339887498948482045868343656381177203091798058
|
|
>>> limit(lambda n: fib(n+1)/fib(n), inf)
|
|
1.6180339887498948482045868343656381177203091798058
|
|
"""
|
|
|
|
euler = r"""
|
|
Euler's constant or the Euler-Mascheroni constant `\gamma`
|
|
= 0.57721566... is a number of central importance to
|
|
number theory and special functions. It is defined as the limit
|
|
|
|
.. math ::
|
|
|
|
\gamma = \lim_{n\to\infty} H_n - \log n
|
|
|
|
where `H_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}` is a harmonic
|
|
number (see :func:`~mpmath.harmonic`).
|
|
|
|
Evaluation of `\gamma` is supported at arbitrary precision::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 50; mp.pretty = True
|
|
>>> +euler
|
|
0.57721566490153286060651209008240243104215933593992
|
|
|
|
We can also compute `\gamma` directly from the definition,
|
|
although this is less efficient::
|
|
|
|
>>> limit(lambda n: harmonic(n)-log(n), inf)
|
|
0.57721566490153286060651209008240243104215933593992
|
|
|
|
This shows digits 9991-10000 of `\gamma` (the last digit is actually
|
|
a 5 when the decimal expansion is truncated, but here the nearest
|
|
rounding is used)::
|
|
|
|
>>> mp.dps = 10000
|
|
>>> str(euler)[-10:]
|
|
'4679858166'
|
|
|
|
Integrals, series, and representations for `\gamma` in terms of
|
|
special functions include the following (there are many others)::
|
|
|
|
>>> mp.dps = 25
|
|
>>> -quad(lambda x: exp(-x)*log(x), [0,inf])
|
|
0.5772156649015328606065121
|
|
>>> quad(lambda x,y: (x-1)/(1-x*y)/log(x*y), [0,1], [0,1])
|
|
0.5772156649015328606065121
|
|
>>> nsum(lambda k: 1/k-log(1+1/k), [1,inf])
|
|
0.5772156649015328606065121
|
|
>>> nsum(lambda k: (-1)**k*zeta(k)/k, [2,inf])
|
|
0.5772156649015328606065121
|
|
>>> -diff(gamma, 1)
|
|
0.5772156649015328606065121
|
|
>>> limit(lambda x: 1/x-gamma(x), 0)
|
|
0.5772156649015328606065121
|
|
>>> limit(lambda x: zeta(x)-1/(x-1), 1)
|
|
0.5772156649015328606065121
|
|
>>> (log(2*pi*nprod(lambda n:
|
|
... exp(-2+2/n)*(1+2/n)**n, [1,inf]))-3)/2
|
|
0.5772156649015328606065121
|
|
|
|
For generalizations of the identities `\gamma = -\Gamma'(1)`
|
|
and `\gamma = \lim_{x\to1} \zeta(x)-1/(x-1)`, see
|
|
:func:`~mpmath.psi` and :func:`~mpmath.stieltjes` respectively.
|
|
|
|
**References**
|
|
|
|
* [BorweinBailey]_
|
|
|
|
"""
|
|
|
|
catalan = r"""
|
|
Catalan's constant `K` = 0.91596559... is given by the infinite
|
|
series
|
|
|
|
.. math ::
|
|
|
|
K = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2}.
|
|
|
|
Mpmath can evaluate it to arbitrary precision::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 50; mp.pretty = True
|
|
>>> +catalan
|
|
0.91596559417721901505460351493238411077414937428167
|
|
|
|
One can also compute `K` directly from the definition, although
|
|
this is significantly less efficient::
|
|
|
|
>>> nsum(lambda k: (-1)**k/(2*k+1)**2, [0, inf])
|
|
0.91596559417721901505460351493238411077414937428167
|
|
|
|
This shows digits 9991-10000 of `K` (the last digit is actually
|
|
a 3 when the decimal expansion is truncated, but here the nearest
|
|
rounding is used)::
|
|
|
|
>>> mp.dps = 10000
|
|
>>> str(catalan)[-10:]
|
|
'9537871504'
|
|
|
|
Catalan's constant has numerous integral representations::
|
|
|
|
>>> mp.dps = 50
|
|
>>> quad(lambda x: -log(x)/(1+x**2), [0, 1])
|
|
0.91596559417721901505460351493238411077414937428167
|
|
>>> quad(lambda x: atan(x)/x, [0, 1])
|
|
0.91596559417721901505460351493238411077414937428167
|
|
>>> quad(lambda x: ellipk(x**2)/2, [0, 1])
|
|
0.91596559417721901505460351493238411077414937428167
|
|
>>> quad(lambda x,y: 1/(1+(x*y)**2), [0, 1], [0, 1])
|
|
0.91596559417721901505460351493238411077414937428167
|
|
|
|
As well as series representations::
|
|
|
|
>>> pi*log(sqrt(3)+2)/8 + 3*nsum(lambda n:
|
|
... (fac(n)/(2*n+1))**2/fac(2*n), [0, inf])/8
|
|
0.91596559417721901505460351493238411077414937428167
|
|
>>> 1-nsum(lambda n: n*zeta(2*n+1)/16**n, [1,inf])
|
|
0.91596559417721901505460351493238411077414937428167
|
|
"""
|
|
|
|
khinchin = r"""
|
|
Khinchin's constant `K` = 2.68542... is a number that
|
|
appears in the theory of continued fractions. Mpmath can evaluate
|
|
it to arbitrary precision::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 50; mp.pretty = True
|
|
>>> +khinchin
|
|
2.6854520010653064453097148354817956938203822939945
|
|
|
|
An integral representation is::
|
|
|
|
>>> I = quad(lambda x: log((1-x**2)/sincpi(x))/x/(1+x), [0, 1])
|
|
>>> 2*exp(1/log(2)*I)
|
|
2.6854520010653064453097148354817956938203822939945
|
|
|
|
The computation of ``khinchin`` is based on an efficient
|
|
implementation of the following series::
|
|
|
|
>>> f = lambda n: (zeta(2*n)-1)/n*sum((-1)**(k+1)/mpf(k)
|
|
... for k in range(1,2*int(n)))
|
|
>>> exp(nsum(f, [1,inf])/log(2))
|
|
2.6854520010653064453097148354817956938203822939945
|
|
"""
|
|
|
|
glaisher = r"""
|
|
Glaisher's constant `A`, also known as the Glaisher-Kinkelin
|
|
constant, is a number approximately equal to 1.282427129 that
|
|
sometimes appears in formulas related to gamma and zeta functions.
|
|
It is also related to the Barnes G-function (see :func:`~mpmath.barnesg`).
|
|
|
|
The constant is defined as `A = \exp(1/12-\zeta'(-1))` where
|
|
`\zeta'(s)` denotes the derivative of the Riemann zeta function
|
|
(see :func:`~mpmath.zeta`).
|
|
|
|
Mpmath can evaluate Glaisher's constant to arbitrary precision:
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 50; mp.pretty = True
|
|
>>> +glaisher
|
|
1.282427129100622636875342568869791727767688927325
|
|
|
|
We can verify that the value computed by :data:`glaisher` is
|
|
correct using mpmath's facilities for numerical
|
|
differentiation and arbitrary evaluation of the zeta function:
|
|
|
|
>>> exp(mpf(1)/12 - diff(zeta, -1))
|
|
1.282427129100622636875342568869791727767688927325
|
|
|
|
Here is an example of an integral that can be evaluated in
|
|
terms of Glaisher's constant:
|
|
|
|
>>> mp.dps = 15
|
|
>>> quad(lambda x: log(gamma(x)), [1, 1.5])
|
|
-0.0428537406502909
|
|
>>> -0.5 - 7*log(2)/24 + log(pi)/4 + 3*log(glaisher)/2
|
|
-0.042853740650291
|
|
|
|
Mpmath computes Glaisher's constant by applying Euler-Maclaurin
|
|
summation to a slowly convergent series. The implementation is
|
|
reasonably efficient up to about 10,000 digits. See the source
|
|
code for additional details.
|
|
|
|
References:
|
|
http://mathworld.wolfram.com/Glaisher-KinkelinConstant.html
|
|
"""
|
|
|
|
apery = r"""
|
|
Represents Apery's constant, which is the irrational number
|
|
approximately equal to 1.2020569 given by
|
|
|
|
.. math ::
|
|
|
|
\zeta(3) = \sum_{k=1}^\infty\frac{1}{k^3}.
|
|
|
|
The calculation is based on an efficient hypergeometric
|
|
series. To 50 decimal places, the value is given by::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 50; mp.pretty = True
|
|
>>> +apery
|
|
1.2020569031595942853997381615114499907649862923405
|
|
|
|
Other ways to evaluate Apery's constant using mpmath
|
|
include::
|
|
|
|
>>> zeta(3)
|
|
1.2020569031595942853997381615114499907649862923405
|
|
>>> -psi(2,1)/2
|
|
1.2020569031595942853997381615114499907649862923405
|
|
>>> 8*nsum(lambda k: 1/(2*k+1)**3, [0,inf])/7
|
|
1.2020569031595942853997381615114499907649862923405
|
|
>>> f = lambda k: 2/k**3/(exp(2*pi*k)-1)
|
|
>>> 7*pi**3/180 - nsum(f, [1,inf])
|
|
1.2020569031595942853997381615114499907649862923405
|
|
|
|
This shows digits 9991-10000 of Apery's constant::
|
|
|
|
>>> mp.dps = 10000
|
|
>>> str(apery)[-10:]
|
|
'3189504235'
|
|
"""
|
|
|
|
mertens = r"""
|
|
Represents the Mertens or Meissel-Mertens constant, which is the
|
|
prime number analog of Euler's constant:
|
|
|
|
.. math ::
|
|
|
|
B_1 = \lim_{N\to\infty}
|
|
\left(\sum_{p_k \le N} \frac{1}{p_k} - \log \log N \right)
|
|
|
|
Here `p_k` denotes the `k`-th prime number. Other names for this
|
|
constant include the Hadamard-de la Vallee-Poussin constant or
|
|
the prime reciprocal constant.
|
|
|
|
The following gives the Mertens constant to 50 digits::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 50; mp.pretty = True
|
|
>>> +mertens
|
|
0.2614972128476427837554268386086958590515666482612
|
|
|
|
References:
|
|
http://mathworld.wolfram.com/MertensConstant.html
|
|
"""
|
|
|
|
twinprime = r"""
|
|
Represents the twin prime constant, which is the factor `C_2`
|
|
featuring in the Hardy-Littlewood conjecture for the growth of the
|
|
twin prime counting function,
|
|
|
|
.. math ::
|
|
|
|
\pi_2(n) \sim 2 C_2 \frac{n}{\log^2 n}.
|
|
|
|
It is given by the product over primes
|
|
|
|
.. math ::
|
|
|
|
C_2 = \prod_{p\ge3} \frac{p(p-2)}{(p-1)^2} \approx 0.66016
|
|
|
|
Computing `C_2` to 50 digits::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 50; mp.pretty = True
|
|
>>> +twinprime
|
|
0.66016181584686957392781211001455577843262336028473
|
|
|
|
References:
|
|
http://mathworld.wolfram.com/TwinPrimesConstant.html
|
|
"""
|
|
|
|
ln = r"""
|
|
Computes the natural logarithm of `x`, `\ln x`.
|
|
See :func:`~mpmath.log` for additional documentation."""
|
|
|
|
sqrt = r"""
|
|
``sqrt(x)`` gives the principal square root of `x`, `\sqrt x`.
|
|
For positive real numbers, the principal root is simply the
|
|
positive square root. For arbitrary complex numbers, the principal
|
|
square root is defined to satisfy `\sqrt x = \exp(\log(x)/2)`.
|
|
The function thus has a branch cut along the negative half real axis.
|
|
|
|
For all mpmath numbers ``x``, calling ``sqrt(x)`` is equivalent to
|
|
performing ``x**0.5``.
|
|
|
|
**Examples**
|
|
|
|
Basic examples and limits::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> sqrt(10)
|
|
3.16227766016838
|
|
>>> sqrt(100)
|
|
10.0
|
|
>>> sqrt(-4)
|
|
(0.0 + 2.0j)
|
|
>>> sqrt(1+1j)
|
|
(1.09868411346781 + 0.455089860562227j)
|
|
>>> sqrt(inf)
|
|
+inf
|
|
|
|
Square root evaluation is fast at huge precision::
|
|
|
|
>>> mp.dps = 50000
|
|
>>> a = sqrt(3)
|
|
>>> str(a)[-10:]
|
|
'9329332815'
|
|
|
|
:func:`mpmath.iv.sqrt` supports interval arguments::
|
|
|
|
>>> iv.dps = 15; iv.pretty = True
|
|
>>> iv.sqrt([16,100])
|
|
[4.0, 10.0]
|
|
>>> iv.sqrt(2)
|
|
[1.4142135623730949234, 1.4142135623730951455]
|
|
>>> iv.sqrt(2) ** 2
|
|
[1.9999999999999995559, 2.0000000000000004441]
|
|
|
|
"""
|
|
|
|
cbrt = r"""
|
|
``cbrt(x)`` computes the cube root of `x`, `x^{1/3}`. This
|
|
function is faster and more accurate than raising to a floating-point
|
|
fraction::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = False
|
|
>>> 125**(mpf(1)/3)
|
|
mpf('4.9999999999999991')
|
|
>>> cbrt(125)
|
|
mpf('5.0')
|
|
|
|
Every nonzero complex number has three cube roots. This function
|
|
returns the cube root defined by `\exp(\log(x)/3)` where the
|
|
principal branch of the natural logarithm is used. Note that this
|
|
does not give a real cube root for negative real numbers::
|
|
|
|
>>> mp.pretty = True
|
|
>>> cbrt(-1)
|
|
(0.5 + 0.866025403784439j)
|
|
"""
|
|
|
|
exp = r"""
|
|
Computes the exponential function,
|
|
|
|
.. math ::
|
|
|
|
\exp(x) = e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}.
|
|
|
|
For complex numbers, the exponential function also satisfies
|
|
|
|
.. math ::
|
|
|
|
\exp(x+yi) = e^x (\cos y + i \sin y).
|
|
|
|
**Basic examples**
|
|
|
|
Some values of the exponential function::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> exp(0)
|
|
1.0
|
|
>>> exp(1)
|
|
2.718281828459045235360287
|
|
>>> exp(-1)
|
|
0.3678794411714423215955238
|
|
>>> exp(inf)
|
|
+inf
|
|
>>> exp(-inf)
|
|
0.0
|
|
|
|
Arguments can be arbitrarily large::
|
|
|
|
>>> exp(10000)
|
|
8.806818225662921587261496e+4342
|
|
>>> exp(-10000)
|
|
1.135483865314736098540939e-4343
|
|
|
|
Evaluation is supported for interval arguments via
|
|
:func:`mpmath.iv.exp`::
|
|
|
|
>>> iv.dps = 25; iv.pretty = True
|
|
>>> iv.exp([-inf,0])
|
|
[0.0, 1.0]
|
|
>>> iv.exp([0,1])
|
|
[1.0, 2.71828182845904523536028749558]
|
|
|
|
The exponential function can be evaluated efficiently to arbitrary
|
|
precision::
|
|
|
|
>>> mp.dps = 10000
|
|
>>> exp(pi) #doctest: +ELLIPSIS
|
|
23.140692632779269005729...8984304016040616
|
|
|
|
**Functional properties**
|
|
|
|
Numerical verification of Euler's identity for the complex
|
|
exponential function::
|
|
|
|
>>> mp.dps = 15
|
|
>>> exp(j*pi)+1
|
|
(0.0 + 1.22464679914735e-16j)
|
|
>>> chop(exp(j*pi)+1)
|
|
0.0
|
|
|
|
This recovers the coefficients (reciprocal factorials) in the
|
|
Maclaurin series expansion of exp::
|
|
|
|
>>> nprint(taylor(exp, 0, 5))
|
|
[1.0, 1.0, 0.5, 0.166667, 0.0416667, 0.00833333]
|
|
|
|
The exponential function is its own derivative and antiderivative::
|
|
|
|
>>> exp(pi)
|
|
23.1406926327793
|
|
>>> diff(exp, pi)
|
|
23.1406926327793
|
|
>>> quad(exp, [-inf, pi])
|
|
23.1406926327793
|
|
|
|
The exponential function can be evaluated using various methods,
|
|
including direct summation of the series, limits, and solving
|
|
the defining differential equation::
|
|
|
|
>>> nsum(lambda k: pi**k/fac(k), [0,inf])
|
|
23.1406926327793
|
|
>>> limit(lambda k: (1+pi/k)**k, inf)
|
|
23.1406926327793
|
|
>>> odefun(lambda t, x: x, 0, 1)(pi)
|
|
23.1406926327793
|
|
"""
|
|
|
|
cosh = r"""
|
|
Computes the hyperbolic cosine of `x`,
|
|
`\cosh(x) = (e^x + e^{-x})/2`. Values and limits include::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> cosh(0)
|
|
1.0
|
|
>>> cosh(1)
|
|
1.543080634815243778477906
|
|
>>> cosh(-inf), cosh(+inf)
|
|
(+inf, +inf)
|
|
|
|
The hyperbolic cosine is an even, convex function with
|
|
a global minimum at `x = 0`, having a Maclaurin series
|
|
that starts::
|
|
|
|
>>> nprint(chop(taylor(cosh, 0, 5)))
|
|
[1.0, 0.0, 0.5, 0.0, 0.0416667, 0.0]
|
|
|
|
Generalized to complex numbers, the hyperbolic cosine is
|
|
equivalent to a cosine with the argument rotated
|
|
in the imaginary direction, or `\cosh x = \cos ix`::
|
|
|
|
>>> cosh(2+3j)
|
|
(-3.724545504915322565473971 + 0.5118225699873846088344638j)
|
|
>>> cos(3-2j)
|
|
(-3.724545504915322565473971 + 0.5118225699873846088344638j)
|
|
"""
|
|
|
|
sinh = r"""
|
|
Computes the hyperbolic sine of `x`,
|
|
`\sinh(x) = (e^x - e^{-x})/2`. Values and limits include::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> sinh(0)
|
|
0.0
|
|
>>> sinh(1)
|
|
1.175201193643801456882382
|
|
>>> sinh(-inf), sinh(+inf)
|
|
(-inf, +inf)
|
|
|
|
The hyperbolic sine is an odd function, with a Maclaurin
|
|
series that starts::
|
|
|
|
>>> nprint(chop(taylor(sinh, 0, 5)))
|
|
[0.0, 1.0, 0.0, 0.166667, 0.0, 0.00833333]
|
|
|
|
Generalized to complex numbers, the hyperbolic sine is
|
|
essentially a sine with a rotation `i` applied to
|
|
the argument; more precisely, `\sinh x = -i \sin ix`::
|
|
|
|
>>> sinh(2+3j)
|
|
(-3.590564589985779952012565 + 0.5309210862485198052670401j)
|
|
>>> j*sin(3-2j)
|
|
(-3.590564589985779952012565 + 0.5309210862485198052670401j)
|
|
"""
|
|
|
|
tanh = r"""
|
|
Computes the hyperbolic tangent of `x`,
|
|
`\tanh(x) = \sinh(x)/\cosh(x)`. Values and limits include::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> tanh(0)
|
|
0.0
|
|
>>> tanh(1)
|
|
0.7615941559557648881194583
|
|
>>> tanh(-inf), tanh(inf)
|
|
(-1.0, 1.0)
|
|
|
|
The hyperbolic tangent is an odd, sigmoidal function, similar
|
|
to the inverse tangent and error function. Its Maclaurin
|
|
series is::
|
|
|
|
>>> nprint(chop(taylor(tanh, 0, 5)))
|
|
[0.0, 1.0, 0.0, -0.333333, 0.0, 0.133333]
|
|
|
|
Generalized to complex numbers, the hyperbolic tangent is
|
|
essentially a tangent with a rotation `i` applied to
|
|
the argument; more precisely, `\tanh x = -i \tan ix`::
|
|
|
|
>>> tanh(2+3j)
|
|
(0.9653858790221331242784803 - 0.009884375038322493720314034j)
|
|
>>> j*tan(3-2j)
|
|
(0.9653858790221331242784803 - 0.009884375038322493720314034j)
|
|
"""
|
|
|
|
cos = r"""
|
|
Computes the cosine of `x`, `\cos(x)`.
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> cos(pi/3)
|
|
0.5
|
|
>>> cos(100000001)
|
|
-0.9802850113244713353133243
|
|
>>> cos(2+3j)
|
|
(-4.189625690968807230132555 - 9.109227893755336597979197j)
|
|
>>> cos(inf)
|
|
nan
|
|
>>> nprint(chop(taylor(cos, 0, 6)))
|
|
[1.0, 0.0, -0.5, 0.0, 0.0416667, 0.0, -0.00138889]
|
|
|
|
Intervals are supported via :func:`mpmath.iv.cos`::
|
|
|
|
>>> iv.dps = 25; iv.pretty = True
|
|
>>> iv.cos([0,1])
|
|
[0.540302305868139717400936602301, 1.0]
|
|
>>> iv.cos([0,2])
|
|
[-0.41614683654714238699756823214, 1.0]
|
|
"""
|
|
|
|
sin = r"""
|
|
Computes the sine of `x`, `\sin(x)`.
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> sin(pi/3)
|
|
0.8660254037844386467637232
|
|
>>> sin(100000001)
|
|
0.1975887055794968911438743
|
|
>>> sin(2+3j)
|
|
(9.1544991469114295734673 - 4.168906959966564350754813j)
|
|
>>> sin(inf)
|
|
nan
|
|
>>> nprint(chop(taylor(sin, 0, 6)))
|
|
[0.0, 1.0, 0.0, -0.166667, 0.0, 0.00833333, 0.0]
|
|
|
|
Intervals are supported via :func:`mpmath.iv.sin`::
|
|
|
|
>>> iv.dps = 25; iv.pretty = True
|
|
>>> iv.sin([0,1])
|
|
[0.0, 0.841470984807896506652502331201]
|
|
>>> iv.sin([0,2])
|
|
[0.0, 1.0]
|
|
"""
|
|
|
|
tan = r"""
|
|
Computes the tangent of `x`, `\tan(x) = \frac{\sin(x)}{\cos(x)}`.
|
|
The tangent function is singular at `x = (n+1/2)\pi`, but
|
|
``tan(x)`` always returns a finite result since `(n+1/2)\pi`
|
|
cannot be represented exactly using floating-point arithmetic.
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> tan(pi/3)
|
|
1.732050807568877293527446
|
|
>>> tan(100000001)
|
|
-0.2015625081449864533091058
|
|
>>> tan(2+3j)
|
|
(-0.003764025641504248292751221 + 1.003238627353609801446359j)
|
|
>>> tan(inf)
|
|
nan
|
|
>>> nprint(chop(taylor(tan, 0, 6)))
|
|
[0.0, 1.0, 0.0, 0.333333, 0.0, 0.133333, 0.0]
|
|
|
|
Intervals are supported via :func:`mpmath.iv.tan`::
|
|
|
|
>>> iv.dps = 25; iv.pretty = True
|
|
>>> iv.tan([0,1])
|
|
[0.0, 1.55740772465490223050697482944]
|
|
>>> iv.tan([0,2]) # Interval includes a singularity
|
|
[-inf, +inf]
|
|
"""
|
|
|
|
sec = r"""
|
|
Computes the secant of `x`, `\mathrm{sec}(x) = \frac{1}{\cos(x)}`.
|
|
The secant function is singular at `x = (n+1/2)\pi`, but
|
|
``sec(x)`` always returns a finite result since `(n+1/2)\pi`
|
|
cannot be represented exactly using floating-point arithmetic.
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> sec(pi/3)
|
|
2.0
|
|
>>> sec(10000001)
|
|
-1.184723164360392819100265
|
|
>>> sec(2+3j)
|
|
(-0.04167496441114427004834991 + 0.0906111371962375965296612j)
|
|
>>> sec(inf)
|
|
nan
|
|
>>> nprint(chop(taylor(sec, 0, 6)))
|
|
[1.0, 0.0, 0.5, 0.0, 0.208333, 0.0, 0.0847222]
|
|
|
|
Intervals are supported via :func:`mpmath.iv.sec`::
|
|
|
|
>>> iv.dps = 25; iv.pretty = True
|
|
>>> iv.sec([0,1])
|
|
[1.0, 1.85081571768092561791175326276]
|
|
>>> iv.sec([0,2]) # Interval includes a singularity
|
|
[-inf, +inf]
|
|
"""
|
|
|
|
csc = r"""
|
|
Computes the cosecant of `x`, `\mathrm{csc}(x) = \frac{1}{\sin(x)}`.
|
|
This cosecant function is singular at `x = n \pi`, but with the
|
|
exception of the point `x = 0`, ``csc(x)`` returns a finite result
|
|
since `n \pi` cannot be represented exactly using floating-point
|
|
arithmetic.
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> csc(pi/3)
|
|
1.154700538379251529018298
|
|
>>> csc(10000001)
|
|
-1.864910497503629858938891
|
|
>>> csc(2+3j)
|
|
(0.09047320975320743980579048 + 0.04120098628857412646300981j)
|
|
>>> csc(inf)
|
|
nan
|
|
|
|
Intervals are supported via :func:`mpmath.iv.csc`::
|
|
|
|
>>> iv.dps = 25; iv.pretty = True
|
|
>>> iv.csc([0,1]) # Interval includes a singularity
|
|
[1.18839510577812121626159943988, +inf]
|
|
>>> iv.csc([0,2])
|
|
[1.0, +inf]
|
|
"""
|
|
|
|
cot = r"""
|
|
Computes the cotangent of `x`,
|
|
`\mathrm{cot}(x) = \frac{1}{\tan(x)} = \frac{\cos(x)}{\sin(x)}`.
|
|
This cotangent function is singular at `x = n \pi`, but with the
|
|
exception of the point `x = 0`, ``cot(x)`` returns a finite result
|
|
since `n \pi` cannot be represented exactly using floating-point
|
|
arithmetic.
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> cot(pi/3)
|
|
0.5773502691896257645091488
|
|
>>> cot(10000001)
|
|
1.574131876209625656003562
|
|
>>> cot(2+3j)
|
|
(-0.003739710376336956660117409 - 0.9967577965693583104609688j)
|
|
>>> cot(inf)
|
|
nan
|
|
|
|
Intervals are supported via :func:`mpmath.iv.cot`::
|
|
|
|
>>> iv.dps = 25; iv.pretty = True
|
|
>>> iv.cot([0,1]) # Interval includes a singularity
|
|
[0.642092615934330703006419974862, +inf]
|
|
>>> iv.cot([1,2])
|
|
[-inf, +inf]
|
|
"""
|
|
|
|
acos = r"""
|
|
Computes the inverse cosine or arccosine of `x`, `\cos^{-1}(x)`.
|
|
Since `-1 \le \cos(x) \le 1` for real `x`, the inverse
|
|
cosine is real-valued only for `-1 \le x \le 1`. On this interval,
|
|
:func:`~mpmath.acos` is defined to be a monotonically decreasing
|
|
function assuming values between `+\pi` and `0`.
|
|
|
|
Basic values are::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> acos(-1)
|
|
3.141592653589793238462643
|
|
>>> acos(0)
|
|
1.570796326794896619231322
|
|
>>> acos(1)
|
|
0.0
|
|
>>> nprint(chop(taylor(acos, 0, 6)))
|
|
[1.5708, -1.0, 0.0, -0.166667, 0.0, -0.075, 0.0]
|
|
|
|
:func:`~mpmath.acos` is defined so as to be a proper inverse function of
|
|
`\cos(\theta)` for `0 \le \theta < \pi`.
|
|
We have `\cos(\cos^{-1}(x)) = x` for all `x`, but
|
|
`\cos^{-1}(\cos(x)) = x` only for `0 \le \Re[x] < \pi`::
|
|
|
|
>>> for x in [1, 10, -1, 2+3j, 10+3j]:
|
|
... print("%s %s" % (cos(acos(x)), acos(cos(x))))
|
|
...
|
|
1.0 1.0
|
|
(10.0 + 0.0j) 2.566370614359172953850574
|
|
-1.0 1.0
|
|
(2.0 + 3.0j) (2.0 + 3.0j)
|
|
(10.0 + 3.0j) (2.566370614359172953850574 - 3.0j)
|
|
|
|
The inverse cosine has two branch points: `x = \pm 1`. :func:`~mpmath.acos`
|
|
places the branch cuts along the line segments `(-\infty, -1)` and
|
|
`(+1, +\infty)`. In general,
|
|
|
|
.. math ::
|
|
|
|
\cos^{-1}(x) = \frac{\pi}{2} + i \log\left(ix + \sqrt{1-x^2} \right)
|
|
|
|
where the principal-branch log and square root are implied.
|
|
"""
|
|
|
|
asin = r"""
|
|
Computes the inverse sine or arcsine of `x`, `\sin^{-1}(x)`.
|
|
Since `-1 \le \sin(x) \le 1` for real `x`, the inverse
|
|
sine is real-valued only for `-1 \le x \le 1`.
|
|
On this interval, it is defined to be a monotonically increasing
|
|
function assuming values between `-\pi/2` and `\pi/2`.
|
|
|
|
Basic values are::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> asin(-1)
|
|
-1.570796326794896619231322
|
|
>>> asin(0)
|
|
0.0
|
|
>>> asin(1)
|
|
1.570796326794896619231322
|
|
>>> nprint(chop(taylor(asin, 0, 6)))
|
|
[0.0, 1.0, 0.0, 0.166667, 0.0, 0.075, 0.0]
|
|
|
|
:func:`~mpmath.asin` is defined so as to be a proper inverse function of
|
|
`\sin(\theta)` for `-\pi/2 < \theta < \pi/2`.
|
|
We have `\sin(\sin^{-1}(x)) = x` for all `x`, but
|
|
`\sin^{-1}(\sin(x)) = x` only for `-\pi/2 < \Re[x] < \pi/2`::
|
|
|
|
>>> for x in [1, 10, -1, 1+3j, -2+3j]:
|
|
... print("%s %s" % (chop(sin(asin(x))), asin(sin(x))))
|
|
...
|
|
1.0 1.0
|
|
10.0 -0.5752220392306202846120698
|
|
-1.0 -1.0
|
|
(1.0 + 3.0j) (1.0 + 3.0j)
|
|
(-2.0 + 3.0j) (-1.141592653589793238462643 - 3.0j)
|
|
|
|
The inverse sine has two branch points: `x = \pm 1`. :func:`~mpmath.asin`
|
|
places the branch cuts along the line segments `(-\infty, -1)` and
|
|
`(+1, +\infty)`. In general,
|
|
|
|
.. math ::
|
|
|
|
\sin^{-1}(x) = -i \log\left(ix + \sqrt{1-x^2} \right)
|
|
|
|
where the principal-branch log and square root are implied.
|
|
"""
|
|
|
|
atan = r"""
|
|
Computes the inverse tangent or arctangent of `x`, `\tan^{-1}(x)`.
|
|
This is a real-valued function for all real `x`, with range
|
|
`(-\pi/2, \pi/2)`.
|
|
|
|
Basic values are::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> atan(-inf)
|
|
-1.570796326794896619231322
|
|
>>> atan(-1)
|
|
-0.7853981633974483096156609
|
|
>>> atan(0)
|
|
0.0
|
|
>>> atan(1)
|
|
0.7853981633974483096156609
|
|
>>> atan(inf)
|
|
1.570796326794896619231322
|
|
>>> nprint(chop(taylor(atan, 0, 6)))
|
|
[0.0, 1.0, 0.0, -0.333333, 0.0, 0.2, 0.0]
|
|
|
|
The inverse tangent is often used to compute angles. However,
|
|
the atan2 function is often better for this as it preserves sign
|
|
(see :func:`~mpmath.atan2`).
|
|
|
|
:func:`~mpmath.atan` is defined so as to be a proper inverse function of
|
|
`\tan(\theta)` for `-\pi/2 < \theta < \pi/2`.
|
|
We have `\tan(\tan^{-1}(x)) = x` for all `x`, but
|
|
`\tan^{-1}(\tan(x)) = x` only for `-\pi/2 < \Re[x] < \pi/2`::
|
|
|
|
>>> mp.dps = 25
|
|
>>> for x in [1, 10, -1, 1+3j, -2+3j]:
|
|
... print("%s %s" % (tan(atan(x)), atan(tan(x))))
|
|
...
|
|
1.0 1.0
|
|
10.0 0.5752220392306202846120698
|
|
-1.0 -1.0
|
|
(1.0 + 3.0j) (1.000000000000000000000001 + 3.0j)
|
|
(-2.0 + 3.0j) (1.141592653589793238462644 + 3.0j)
|
|
|
|
The inverse tangent has two branch points: `x = \pm i`. :func:`~mpmath.atan`
|
|
places the branch cuts along the line segments `(-i \infty, -i)` and
|
|
`(+i, +i \infty)`. In general,
|
|
|
|
.. math ::
|
|
|
|
\tan^{-1}(x) = \frac{i}{2}\left(\log(1-ix)-\log(1+ix)\right)
|
|
|
|
where the principal-branch log is implied.
|
|
"""
|
|
|
|
acot = r"""Computes the inverse cotangent of `x`,
|
|
`\mathrm{cot}^{-1}(x) = \tan^{-1}(1/x)`."""
|
|
|
|
asec = r"""Computes the inverse secant of `x`,
|
|
`\mathrm{sec}^{-1}(x) = \cos^{-1}(1/x)`."""
|
|
|
|
acsc = r"""Computes the inverse cosecant of `x`,
|
|
`\mathrm{csc}^{-1}(x) = \sin^{-1}(1/x)`."""
|
|
|
|
coth = r"""Computes the hyperbolic cotangent of `x`,
|
|
`\mathrm{coth}(x) = \frac{\cosh(x)}{\sinh(x)}`.
|
|
"""
|
|
|
|
sech = r"""Computes the hyperbolic secant of `x`,
|
|
`\mathrm{sech}(x) = \frac{1}{\cosh(x)}`.
|
|
"""
|
|
|
|
csch = r"""Computes the hyperbolic cosecant of `x`,
|
|
`\mathrm{csch}(x) = \frac{1}{\sinh(x)}`.
|
|
"""
|
|
|
|
acosh = r"""Computes the inverse hyperbolic cosine of `x`,
|
|
`\mathrm{cosh}^{-1}(x) = \log(x+\sqrt{x+1}\sqrt{x-1})`.
|
|
"""
|
|
|
|
asinh = r"""Computes the inverse hyperbolic sine of `x`,
|
|
`\mathrm{sinh}^{-1}(x) = \log(x+\sqrt{1+x^2})`.
|
|
"""
|
|
|
|
atanh = r"""Computes the inverse hyperbolic tangent of `x`,
|
|
`\mathrm{tanh}^{-1}(x) = \frac{1}{2}\left(\log(1+x)-\log(1-x)\right)`.
|
|
"""
|
|
|
|
acoth = r"""Computes the inverse hyperbolic cotangent of `x`,
|
|
`\mathrm{coth}^{-1}(x) = \tanh^{-1}(1/x)`."""
|
|
|
|
asech = r"""Computes the inverse hyperbolic secant of `x`,
|
|
`\mathrm{sech}^{-1}(x) = \cosh^{-1}(1/x)`."""
|
|
|
|
acsch = r"""Computes the inverse hyperbolic cosecant of `x`,
|
|
`\mathrm{csch}^{-1}(x) = \sinh^{-1}(1/x)`."""
|
|
|
|
|
|
|
|
sinpi = r"""
|
|
Computes `\sin(\pi x)`, more accurately than the expression
|
|
``sin(pi*x)``::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> sinpi(10**10), sin(pi*(10**10))
|
|
(0.0, -2.23936276195592e-6)
|
|
>>> sinpi(10**10+0.5), sin(pi*(10**10+0.5))
|
|
(1.0, 0.999999999998721)
|
|
"""
|
|
|
|
cospi = r"""
|
|
Computes `\cos(\pi x)`, more accurately than the expression
|
|
``cos(pi*x)``::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> cospi(10**10), cos(pi*(10**10))
|
|
(1.0, 0.999999999997493)
|
|
>>> cospi(10**10+0.5), cos(pi*(10**10+0.5))
|
|
(0.0, 1.59960492420134e-6)
|
|
"""
|
|
|
|
sinc = r"""
|
|
``sinc(x)`` computes the unnormalized sinc function, defined as
|
|
|
|
.. math ::
|
|
|
|
\mathrm{sinc}(x) = \begin{cases}
|
|
\sin(x)/x, & \mbox{if } x \ne 0 \\
|
|
1, & \mbox{if } x = 0.
|
|
\end{cases}
|
|
|
|
See :func:`~mpmath.sincpi` for the normalized sinc function.
|
|
|
|
Simple values and limits include::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> sinc(0)
|
|
1.0
|
|
>>> sinc(1)
|
|
0.841470984807897
|
|
>>> sinc(inf)
|
|
0.0
|
|
|
|
The integral of the sinc function is the sine integral Si::
|
|
|
|
>>> quad(sinc, [0, 1])
|
|
0.946083070367183
|
|
>>> si(1)
|
|
0.946083070367183
|
|
"""
|
|
|
|
sincpi = r"""
|
|
``sincpi(x)`` computes the normalized sinc function, defined as
|
|
|
|
.. math ::
|
|
|
|
\mathrm{sinc}_{\pi}(x) = \begin{cases}
|
|
\sin(\pi x)/(\pi x), & \mbox{if } x \ne 0 \\
|
|
1, & \mbox{if } x = 0.
|
|
\end{cases}
|
|
|
|
Equivalently, we have
|
|
`\mathrm{sinc}_{\pi}(x) = \mathrm{sinc}(\pi x)`.
|
|
|
|
The normalization entails that the function integrates
|
|
to unity over the entire real line::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> quadosc(sincpi, [-inf, inf], period=2.0)
|
|
1.0
|
|
|
|
Like, :func:`~mpmath.sinpi`, :func:`~mpmath.sincpi` is evaluated accurately
|
|
at its roots::
|
|
|
|
>>> sincpi(10)
|
|
0.0
|
|
"""
|
|
|
|
expj = r"""
|
|
Convenience function for computing `e^{ix}`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> expj(0)
|
|
(1.0 + 0.0j)
|
|
>>> expj(-1)
|
|
(0.5403023058681397174009366 - 0.8414709848078965066525023j)
|
|
>>> expj(j)
|
|
(0.3678794411714423215955238 + 0.0j)
|
|
>>> expj(1+j)
|
|
(0.1987661103464129406288032 + 0.3095598756531121984439128j)
|
|
"""
|
|
|
|
expjpi = r"""
|
|
Convenience function for computing `e^{i \pi x}`.
|
|
Evaluation is accurate near zeros (see also :func:`~mpmath.cospi`,
|
|
:func:`~mpmath.sinpi`)::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> expjpi(0)
|
|
(1.0 + 0.0j)
|
|
>>> expjpi(1)
|
|
(-1.0 + 0.0j)
|
|
>>> expjpi(0.5)
|
|
(0.0 + 1.0j)
|
|
>>> expjpi(-1)
|
|
(-1.0 + 0.0j)
|
|
>>> expjpi(j)
|
|
(0.04321391826377224977441774 + 0.0j)
|
|
>>> expjpi(1+j)
|
|
(-0.04321391826377224977441774 + 0.0j)
|
|
"""
|
|
|
|
floor = r"""
|
|
Computes the floor of `x`, `\lfloor x \rfloor`, defined as
|
|
the largest integer less than or equal to `x`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.pretty = False
|
|
>>> floor(3.5)
|
|
mpf('3.0')
|
|
|
|
.. note ::
|
|
|
|
:func:`~mpmath.floor`, :func:`~mpmath.ceil` and :func:`~mpmath.nint` return a
|
|
floating-point number, not a Python ``int``. If `\lfloor x \rfloor` is
|
|
too large to be represented exactly at the present working precision,
|
|
the result will be rounded, not necessarily in the direction
|
|
implied by the mathematical definition of the function.
|
|
|
|
To avoid rounding, use *prec=0*::
|
|
|
|
>>> mp.dps = 15
|
|
>>> print(int(floor(10**30+1)))
|
|
1000000000000000019884624838656
|
|
>>> print(int(floor(10**30+1, prec=0)))
|
|
1000000000000000000000000000001
|
|
|
|
The floor function is defined for complex numbers and
|
|
acts on the real and imaginary parts separately::
|
|
|
|
>>> floor(3.25+4.75j)
|
|
mpc(real='3.0', imag='4.0')
|
|
"""
|
|
|
|
ceil = r"""
|
|
Computes the ceiling of `x`, `\lceil x \rceil`, defined as
|
|
the smallest integer greater than or equal to `x`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.pretty = False
|
|
>>> ceil(3.5)
|
|
mpf('4.0')
|
|
|
|
The ceiling function is defined for complex numbers and
|
|
acts on the real and imaginary parts separately::
|
|
|
|
>>> ceil(3.25+4.75j)
|
|
mpc(real='4.0', imag='5.0')
|
|
|
|
See notes about rounding for :func:`~mpmath.floor`.
|
|
"""
|
|
|
|
nint = r"""
|
|
Evaluates the nearest integer function, `\mathrm{nint}(x)`.
|
|
This gives the nearest integer to `x`; on a tie, it
|
|
gives the nearest even integer::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.pretty = False
|
|
>>> nint(3.2)
|
|
mpf('3.0')
|
|
>>> nint(3.8)
|
|
mpf('4.0')
|
|
>>> nint(3.5)
|
|
mpf('4.0')
|
|
>>> nint(4.5)
|
|
mpf('4.0')
|
|
|
|
The nearest integer function is defined for complex numbers and
|
|
acts on the real and imaginary parts separately::
|
|
|
|
>>> nint(3.25+4.75j)
|
|
mpc(real='3.0', imag='5.0')
|
|
|
|
See notes about rounding for :func:`~mpmath.floor`.
|
|
"""
|
|
|
|
frac = r"""
|
|
Gives the fractional part of `x`, defined as
|
|
`\mathrm{frac}(x) = x - \lfloor x \rfloor` (see :func:`~mpmath.floor`).
|
|
In effect, this computes `x` modulo 1, or `x+n` where
|
|
`n \in \mathbb{Z}` is such that `x+n \in [0,1)`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.pretty = False
|
|
>>> frac(1.25)
|
|
mpf('0.25')
|
|
>>> frac(3)
|
|
mpf('0.0')
|
|
>>> frac(-1.25)
|
|
mpf('0.75')
|
|
|
|
For a complex number, the fractional part function applies to
|
|
the real and imaginary parts separately::
|
|
|
|
>>> frac(2.25+3.75j)
|
|
mpc(real='0.25', imag='0.75')
|
|
|
|
Plotted, the fractional part function gives a sawtooth
|
|
wave. The Fourier series coefficients have a simple
|
|
form::
|
|
|
|
>>> mp.dps = 15
|
|
>>> nprint(fourier(lambda x: frac(x)-0.5, [0,1], 4))
|
|
([0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.31831, -0.159155, -0.106103, -0.0795775])
|
|
>>> nprint([-1/(pi*k) for k in range(1,5)])
|
|
[-0.31831, -0.159155, -0.106103, -0.0795775]
|
|
|
|
.. note::
|
|
|
|
The fractional part is sometimes defined as a symmetric
|
|
function, i.e. returning `-\mathrm{frac}(-x)` if `x < 0`.
|
|
This convention is used, for instance, by Mathematica's
|
|
``FractionalPart``.
|
|
|
|
"""
|
|
|
|
sign = r"""
|
|
Returns the sign of `x`, defined as `\mathrm{sign}(x) = x / |x|`
|
|
(with the special case `\mathrm{sign}(0) = 0`)::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = False
|
|
>>> sign(10)
|
|
mpf('1.0')
|
|
>>> sign(-10)
|
|
mpf('-1.0')
|
|
>>> sign(0)
|
|
mpf('0.0')
|
|
|
|
Note that the sign function is also defined for complex numbers,
|
|
for which it gives the projection onto the unit circle::
|
|
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> sign(1+j)
|
|
(0.707106781186547 + 0.707106781186547j)
|
|
|
|
"""
|
|
|
|
arg = r"""
|
|
Computes the complex argument (phase) of `x`, defined as the
|
|
signed angle between the positive real axis and `x` in the
|
|
complex plane::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> arg(3)
|
|
0.0
|
|
>>> arg(3+3j)
|
|
0.785398163397448
|
|
>>> arg(3j)
|
|
1.5707963267949
|
|
>>> arg(-3)
|
|
3.14159265358979
|
|
>>> arg(-3j)
|
|
-1.5707963267949
|
|
|
|
The angle is defined to satisfy `-\pi < \arg(x) \le \pi` and
|
|
with the sign convention that a nonnegative imaginary part
|
|
results in a nonnegative argument.
|
|
|
|
The value returned by :func:`~mpmath.arg` is an ``mpf`` instance.
|
|
"""
|
|
|
|
fabs = r"""
|
|
Returns the absolute value of `x`, `|x|`. Unlike :func:`abs`,
|
|
:func:`~mpmath.fabs` converts non-mpmath numbers (such as ``int``)
|
|
into mpmath numbers::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = False
|
|
>>> fabs(3)
|
|
mpf('3.0')
|
|
>>> fabs(-3)
|
|
mpf('3.0')
|
|
>>> fabs(3+4j)
|
|
mpf('5.0')
|
|
"""
|
|
|
|
re = r"""
|
|
Returns the real part of `x`, `\Re(x)`. :func:`~mpmath.re`
|
|
converts a non-mpmath number to an mpmath number::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = False
|
|
>>> re(3)
|
|
mpf('3.0')
|
|
>>> re(-1+4j)
|
|
mpf('-1.0')
|
|
"""
|
|
|
|
im = r"""
|
|
Returns the imaginary part of `x`, `\Im(x)`. :func:`~mpmath.im`
|
|
converts a non-mpmath number to an mpmath number::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = False
|
|
>>> im(3)
|
|
mpf('0.0')
|
|
>>> im(-1+4j)
|
|
mpf('4.0')
|
|
"""
|
|
|
|
conj = r"""
|
|
Returns the complex conjugate of `x`, `\overline{x}`. Unlike
|
|
``x.conjugate()``, :func:`~mpmath.im` converts `x` to a mpmath number::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = False
|
|
>>> conj(3)
|
|
mpf('3.0')
|
|
>>> conj(-1+4j)
|
|
mpc(real='-1.0', imag='-4.0')
|
|
"""
|
|
|
|
polar = r"""
|
|
Returns the polar representation of the complex number `z`
|
|
as a pair `(r, \phi)` such that `z = r e^{i \phi}`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> polar(-2)
|
|
(2.0, 3.14159265358979)
|
|
>>> polar(3-4j)
|
|
(5.0, -0.927295218001612)
|
|
"""
|
|
|
|
rect = r"""
|
|
Returns the complex number represented by polar
|
|
coordinates `(r, \phi)`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> chop(rect(2, pi))
|
|
-2.0
|
|
>>> rect(sqrt(2), -pi/4)
|
|
(1.0 - 1.0j)
|
|
"""
|
|
|
|
expm1 = r"""
|
|
Computes `e^x - 1`, accurately for small `x`.
|
|
|
|
Unlike the expression ``exp(x) - 1``, ``expm1(x)`` does not suffer from
|
|
potentially catastrophic cancellation::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> exp(1e-10)-1; print(expm1(1e-10))
|
|
1.00000008274037e-10
|
|
1.00000000005e-10
|
|
>>> exp(1e-20)-1; print(expm1(1e-20))
|
|
0.0
|
|
1.0e-20
|
|
>>> 1/(exp(1e-20)-1)
|
|
Traceback (most recent call last):
|
|
...
|
|
ZeroDivisionError
|
|
>>> 1/expm1(1e-20)
|
|
1.0e+20
|
|
|
|
Evaluation works for extremely tiny values::
|
|
|
|
>>> expm1(0)
|
|
0.0
|
|
>>> expm1('1e-10000000')
|
|
1.0e-10000000
|
|
|
|
"""
|
|
|
|
log1p = r"""
|
|
Computes `\log(1+x)`, accurately for small `x`.
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> log(1+1e-10); print(mp.log1p(1e-10))
|
|
1.00000008269037e-10
|
|
9.9999999995e-11
|
|
>>> mp.log1p(1e-100j)
|
|
(5.0e-201 + 1.0e-100j)
|
|
>>> mp.log1p(0)
|
|
0.0
|
|
|
|
"""
|
|
|
|
|
|
powm1 = r"""
|
|
Computes `x^y - 1`, accurately when `x^y` is very close to 1.
|
|
|
|
This avoids potentially catastrophic cancellation::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> power(0.99999995, 1e-10) - 1
|
|
0.0
|
|
>>> powm1(0.99999995, 1e-10)
|
|
-5.00000012791934e-18
|
|
|
|
Powers exactly equal to 1, and only those powers, yield 0 exactly::
|
|
|
|
>>> powm1(-j, 4)
|
|
(0.0 + 0.0j)
|
|
>>> powm1(3, 0)
|
|
0.0
|
|
>>> powm1(fadd(-1, 1e-100, exact=True), 4)
|
|
-4.0e-100
|
|
|
|
Evaluation works for extremely tiny `y`::
|
|
|
|
>>> powm1(2, '1e-100000')
|
|
6.93147180559945e-100001
|
|
>>> powm1(j, '1e-1000')
|
|
(-1.23370055013617e-2000 + 1.5707963267949e-1000j)
|
|
|
|
"""
|
|
|
|
root = r"""
|
|
``root(z, n, k=0)`` computes an `n`-th root of `z`, i.e. returns a number
|
|
`r` that (up to possible approximation error) satisfies `r^n = z`.
|
|
(``nthroot`` is available as an alias for ``root``.)
|
|
|
|
Every complex number `z \ne 0` has `n` distinct `n`-th roots, which are
|
|
equidistant points on a circle with radius `|z|^{1/n}`, centered around the
|
|
origin. A specific root may be selected using the optional index
|
|
`k`. The roots are indexed counterclockwise, starting with `k = 0` for the root
|
|
closest to the positive real half-axis.
|
|
|
|
The `k = 0` root is the so-called principal `n`-th root, often denoted by
|
|
`\sqrt[n]{z}` or `z^{1/n}`, and also given by `\exp(\log(z) / n)`. If `z` is
|
|
a positive real number, the principal root is just the unique positive
|
|
`n`-th root of `z`. Under some circumstances, non-principal real roots exist:
|
|
for positive real `z`, `n` even, there is a negative root given by `k = n/2`;
|
|
for negative real `z`, `n` odd, there is a negative root given by `k = (n-1)/2`.
|
|
|
|
To obtain all roots with a simple expression, use
|
|
``[root(z,n,k) for k in range(n)]``.
|
|
|
|
An important special case, ``root(1, n, k)`` returns the `k`-th `n`-th root of
|
|
unity, `\zeta_k = e^{2 \pi i k / n}`. Alternatively, :func:`~mpmath.unitroots`
|
|
provides a slightly more convenient way to obtain the roots of unity,
|
|
including the option to compute only the primitive roots of unity.
|
|
|
|
Both `k` and `n` should be integers; `k` outside of ``range(n)`` will be
|
|
reduced modulo `n`. If `n` is negative, `x^{-1/n} = 1/x^{1/n}` (or
|
|
the equivalent reciprocal for a non-principal root with `k \ne 0`) is computed.
|
|
|
|
:func:`~mpmath.root` is implemented to use Newton's method for small
|
|
`n`. At high precision, this makes `x^{1/n}` not much more
|
|
expensive than the regular exponentiation, `x^n`. For very large
|
|
`n`, :func:`~mpmath.nthroot` falls back to use the exponential function.
|
|
|
|
**Examples**
|
|
|
|
:func:`~mpmath.nthroot`/:func:`~mpmath.root` is faster and more accurate than raising to a
|
|
floating-point fraction::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = False
|
|
>>> 16807 ** (mpf(1)/5)
|
|
mpf('7.0000000000000009')
|
|
>>> root(16807, 5)
|
|
mpf('7.0')
|
|
>>> nthroot(16807, 5) # Alias
|
|
mpf('7.0')
|
|
|
|
A high-precision root::
|
|
|
|
>>> mp.dps = 50; mp.pretty = True
|
|
>>> nthroot(10, 5)
|
|
1.584893192461113485202101373391507013269442133825
|
|
>>> nthroot(10, 5) ** 5
|
|
10.0
|
|
|
|
Computing principal and non-principal square and cube roots::
|
|
|
|
>>> mp.dps = 15
|
|
>>> root(10, 2)
|
|
3.16227766016838
|
|
>>> root(10, 2, 1)
|
|
-3.16227766016838
|
|
>>> root(-10, 3)
|
|
(1.07721734501594 + 1.86579517236206j)
|
|
>>> root(-10, 3, 1)
|
|
-2.15443469003188
|
|
>>> root(-10, 3, 2)
|
|
(1.07721734501594 - 1.86579517236206j)
|
|
|
|
All the 7th roots of a complex number::
|
|
|
|
>>> for r in [root(3+4j, 7, k) for k in range(7)]:
|
|
... print("%s %s" % (r, r**7))
|
|
...
|
|
(1.24747270589553 + 0.166227124177353j) (3.0 + 4.0j)
|
|
(0.647824911301003 + 1.07895435170559j) (3.0 + 4.0j)
|
|
(-0.439648254723098 + 1.17920694574172j) (3.0 + 4.0j)
|
|
(-1.19605731775069 + 0.391492658196305j) (3.0 + 4.0j)
|
|
(-1.05181082538903 - 0.691023585965793j) (3.0 + 4.0j)
|
|
(-0.115529328478668 - 1.25318497558335j) (3.0 + 4.0j)
|
|
(0.907748109144957 - 0.871672518271819j) (3.0 + 4.0j)
|
|
|
|
Cube roots of unity::
|
|
|
|
>>> for k in range(3): print(root(1, 3, k))
|
|
...
|
|
1.0
|
|
(-0.5 + 0.866025403784439j)
|
|
(-0.5 - 0.866025403784439j)
|
|
|
|
Some exact high order roots::
|
|
|
|
>>> root(75**210, 105)
|
|
5625.0
|
|
>>> root(1, 128, 96)
|
|
(0.0 - 1.0j)
|
|
>>> root(4**128, 128, 96)
|
|
(0.0 - 4.0j)
|
|
|
|
"""
|
|
|
|
unitroots = r"""
|
|
``unitroots(n)`` returns `\zeta_0, \zeta_1, \ldots, \zeta_{n-1}`,
|
|
all the distinct `n`-th roots of unity, as a list. If the option
|
|
*primitive=True* is passed, only the primitive roots are returned.
|
|
|
|
Every `n`-th root of unity satisfies `(\zeta_k)^n = 1`. There are `n` distinct
|
|
roots for each `n` (`\zeta_k` and `\zeta_j` are the same when
|
|
`k = j \pmod n`), which form a regular polygon with vertices on the unit
|
|
circle. They are ordered counterclockwise with increasing `k`, starting
|
|
with `\zeta_0 = 1`.
|
|
|
|
**Examples**
|
|
|
|
The roots of unity up to `n = 4`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> nprint(unitroots(1))
|
|
[1.0]
|
|
>>> nprint(unitroots(2))
|
|
[1.0, -1.0]
|
|
>>> nprint(unitroots(3))
|
|
[1.0, (-0.5 + 0.866025j), (-0.5 - 0.866025j)]
|
|
>>> nprint(unitroots(4))
|
|
[1.0, (0.0 + 1.0j), -1.0, (0.0 - 1.0j)]
|
|
|
|
Roots of unity form a geometric series that sums to 0::
|
|
|
|
>>> mp.dps = 50
|
|
>>> chop(fsum(unitroots(25)))
|
|
0.0
|
|
|
|
Primitive roots up to `n = 4`::
|
|
|
|
>>> mp.dps = 15
|
|
>>> nprint(unitroots(1, primitive=True))
|
|
[1.0]
|
|
>>> nprint(unitroots(2, primitive=True))
|
|
[-1.0]
|
|
>>> nprint(unitroots(3, primitive=True))
|
|
[(-0.5 + 0.866025j), (-0.5 - 0.866025j)]
|
|
>>> nprint(unitroots(4, primitive=True))
|
|
[(0.0 + 1.0j), (0.0 - 1.0j)]
|
|
|
|
There are only four primitive 12th roots::
|
|
|
|
>>> nprint(unitroots(12, primitive=True))
|
|
[(0.866025 + 0.5j), (-0.866025 + 0.5j), (-0.866025 - 0.5j), (0.866025 - 0.5j)]
|
|
|
|
The `n`-th roots of unity form a group, the cyclic group of order `n`.
|
|
Any primitive root `r` is a generator for this group, meaning that
|
|
`r^0, r^1, \ldots, r^{n-1}` gives the whole set of unit roots (in
|
|
some permuted order)::
|
|
|
|
>>> for r in unitroots(6): print(r)
|
|
...
|
|
1.0
|
|
(0.5 + 0.866025403784439j)
|
|
(-0.5 + 0.866025403784439j)
|
|
-1.0
|
|
(-0.5 - 0.866025403784439j)
|
|
(0.5 - 0.866025403784439j)
|
|
>>> r = unitroots(6, primitive=True)[1]
|
|
>>> for k in range(6): print(chop(r**k))
|
|
...
|
|
1.0
|
|
(0.5 - 0.866025403784439j)
|
|
(-0.5 - 0.866025403784439j)
|
|
-1.0
|
|
(-0.5 + 0.866025403784438j)
|
|
(0.5 + 0.866025403784438j)
|
|
|
|
The number of primitive roots equals the Euler totient function `\phi(n)`::
|
|
|
|
>>> [len(unitroots(n, primitive=True)) for n in range(1,20)]
|
|
[1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18]
|
|
|
|
"""
|
|
|
|
|
|
log = r"""
|
|
Computes the base-`b` logarithm of `x`, `\log_b(x)`. If `b` is
|
|
unspecified, :func:`~mpmath.log` computes the natural (base `e`) logarithm
|
|
and is equivalent to :func:`~mpmath.ln`. In general, the base `b` logarithm
|
|
is defined in terms of the natural logarithm as
|
|
`\log_b(x) = \ln(x)/\ln(b)`.
|
|
|
|
By convention, we take `\log(0) = -\infty`.
|
|
|
|
The natural logarithm is real if `x > 0` and complex if `x < 0` or if
|
|
`x` is complex. The principal branch of the complex logarithm is
|
|
used, meaning that `\Im(\ln(x)) = -\pi < \arg(x) \le \pi`.
|
|
|
|
**Examples**
|
|
|
|
Some basic values and limits::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> log(1)
|
|
0.0
|
|
>>> log(2)
|
|
0.693147180559945
|
|
>>> log(1000,10)
|
|
3.0
|
|
>>> log(4, 16)
|
|
0.5
|
|
>>> log(j)
|
|
(0.0 + 1.5707963267949j)
|
|
>>> log(-1)
|
|
(0.0 + 3.14159265358979j)
|
|
>>> log(0)
|
|
-inf
|
|
>>> log(inf)
|
|
+inf
|
|
|
|
The natural logarithm is the antiderivative of `1/x`::
|
|
|
|
>>> quad(lambda x: 1/x, [1, 5])
|
|
1.6094379124341
|
|
>>> log(5)
|
|
1.6094379124341
|
|
>>> diff(log, 10)
|
|
0.1
|
|
|
|
The Taylor series expansion of the natural logarithm around
|
|
`x = 1` has coefficients `(-1)^{n+1}/n`::
|
|
|
|
>>> nprint(taylor(log, 1, 7))
|
|
[0.0, 1.0, -0.5, 0.333333, -0.25, 0.2, -0.166667, 0.142857]
|
|
|
|
:func:`~mpmath.log` supports arbitrary precision evaluation::
|
|
|
|
>>> mp.dps = 50
|
|
>>> log(pi)
|
|
1.1447298858494001741434273513530587116472948129153
|
|
>>> log(pi, pi**3)
|
|
0.33333333333333333333333333333333333333333333333333
|
|
>>> mp.dps = 25
|
|
>>> log(3+4j)
|
|
(1.609437912434100374600759 + 0.9272952180016122324285125j)
|
|
"""
|
|
|
|
log10 = r"""
|
|
Computes the base-10 logarithm of `x`, `\log_{10}(x)`. ``log10(x)``
|
|
is equivalent to ``log(x, 10)``.
|
|
"""
|
|
|
|
fmod = r"""
|
|
Converts `x` and `y` to mpmath numbers and returns `x \mod y`.
|
|
For mpmath numbers, this is equivalent to ``x % y``.
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> fmod(100, pi)
|
|
2.61062773871641
|
|
|
|
You can use :func:`~mpmath.fmod` to compute fractional parts of numbers::
|
|
|
|
>>> fmod(10.25, 1)
|
|
0.25
|
|
|
|
"""
|
|
|
|
radians = r"""
|
|
Converts the degree angle `x` to radians::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> radians(60)
|
|
1.0471975511966
|
|
"""
|
|
|
|
degrees = r"""
|
|
Converts the radian angle `x` to a degree angle::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> degrees(pi/3)
|
|
60.0
|
|
"""
|
|
|
|
atan2 = r"""
|
|
Computes the two-argument arctangent, `\mathrm{atan2}(y, x)`,
|
|
giving the signed angle between the positive `x`-axis and the
|
|
point `(x, y)` in the 2D plane. This function is defined for
|
|
real `x` and `y` only.
|
|
|
|
The two-argument arctangent essentially computes
|
|
`\mathrm{atan}(y/x)`, but accounts for the signs of both
|
|
`x` and `y` to give the angle for the correct quadrant. The
|
|
following examples illustrate the difference::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> atan2(1,1), atan(1/1.)
|
|
(0.785398163397448, 0.785398163397448)
|
|
>>> atan2(1,-1), atan(1/-1.)
|
|
(2.35619449019234, -0.785398163397448)
|
|
>>> atan2(-1,1), atan(-1/1.)
|
|
(-0.785398163397448, -0.785398163397448)
|
|
>>> atan2(-1,-1), atan(-1/-1.)
|
|
(-2.35619449019234, 0.785398163397448)
|
|
|
|
The angle convention is the same as that used for the complex
|
|
argument; see :func:`~mpmath.arg`.
|
|
"""
|
|
|
|
fibonacci = r"""
|
|
``fibonacci(n)`` computes the `n`-th Fibonacci number, `F(n)`. The
|
|
Fibonacci numbers are defined by the recurrence `F(n) = F(n-1) + F(n-2)`
|
|
with the initial values `F(0) = 0`, `F(1) = 1`. :func:`~mpmath.fibonacci`
|
|
extends this definition to arbitrary real and complex arguments
|
|
using the formula
|
|
|
|
.. math ::
|
|
|
|
F(z) = \frac{\phi^z - \cos(\pi z) \phi^{-z}}{\sqrt 5}
|
|
|
|
where `\phi` is the golden ratio. :func:`~mpmath.fibonacci` also uses this
|
|
continuous formula to compute `F(n)` for extremely large `n`, where
|
|
calculating the exact integer would be wasteful.
|
|
|
|
For convenience, :func:`~mpmath.fib` is available as an alias for
|
|
:func:`~mpmath.fibonacci`.
|
|
|
|
**Basic examples**
|
|
|
|
Some small Fibonacci numbers are::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> for i in range(10):
|
|
... print(fibonacci(i))
|
|
...
|
|
0.0
|
|
1.0
|
|
1.0
|
|
2.0
|
|
3.0
|
|
5.0
|
|
8.0
|
|
13.0
|
|
21.0
|
|
34.0
|
|
>>> fibonacci(50)
|
|
12586269025.0
|
|
|
|
The recurrence for `F(n)` extends backwards to negative `n`::
|
|
|
|
>>> for i in range(10):
|
|
... print(fibonacci(-i))
|
|
...
|
|
0.0
|
|
1.0
|
|
-1.0
|
|
2.0
|
|
-3.0
|
|
5.0
|
|
-8.0
|
|
13.0
|
|
-21.0
|
|
34.0
|
|
|
|
Large Fibonacci numbers will be computed approximately unless
|
|
the precision is set high enough::
|
|
|
|
>>> fib(200)
|
|
2.8057117299251e+41
|
|
>>> mp.dps = 45
|
|
>>> fib(200)
|
|
280571172992510140037611932413038677189525.0
|
|
|
|
:func:`~mpmath.fibonacci` can compute approximate Fibonacci numbers
|
|
of stupendous size::
|
|
|
|
>>> mp.dps = 15
|
|
>>> fibonacci(10**25)
|
|
3.49052338550226e+2089876402499787337692720
|
|
|
|
**Real and complex arguments**
|
|
|
|
The extended Fibonacci function is an analytic function. The
|
|
property `F(z) = F(z-1) + F(z-2)` holds for arbitrary `z`::
|
|
|
|
>>> mp.dps = 15
|
|
>>> fib(pi)
|
|
2.1170270579161
|
|
>>> fib(pi-1) + fib(pi-2)
|
|
2.1170270579161
|
|
>>> fib(3+4j)
|
|
(-5248.51130728372 - 14195.962288353j)
|
|
>>> fib(2+4j) + fib(1+4j)
|
|
(-5248.51130728372 - 14195.962288353j)
|
|
|
|
The Fibonacci function has infinitely many roots on the
|
|
negative half-real axis. The first root is at 0, the second is
|
|
close to -0.18, and then there are infinitely many roots that
|
|
asymptotically approach `-n+1/2`::
|
|
|
|
>>> findroot(fib, -0.2)
|
|
-0.183802359692956
|
|
>>> findroot(fib, -2)
|
|
-1.57077646820395
|
|
>>> findroot(fib, -17)
|
|
-16.4999999596115
|
|
>>> findroot(fib, -24)
|
|
-23.5000000000479
|
|
|
|
**Mathematical relationships**
|
|
|
|
For large `n`, `F(n+1)/F(n)` approaches the golden ratio::
|
|
|
|
>>> mp.dps = 50
|
|
>>> fibonacci(101)/fibonacci(100)
|
|
1.6180339887498948482045868343656381177203127439638
|
|
>>> +phi
|
|
1.6180339887498948482045868343656381177203091798058
|
|
|
|
The sum of reciprocal Fibonacci numbers converges to an irrational
|
|
number for which no closed form expression is known::
|
|
|
|
>>> mp.dps = 15
|
|
>>> nsum(lambda n: 1/fib(n), [1, inf])
|
|
3.35988566624318
|
|
|
|
Amazingly, however, the sum of odd-index reciprocal Fibonacci
|
|
numbers can be expressed in terms of a Jacobi theta function::
|
|
|
|
>>> nsum(lambda n: 1/fib(2*n+1), [0, inf])
|
|
1.82451515740692
|
|
>>> sqrt(5)*jtheta(2,0,(3-sqrt(5))/2)**2/4
|
|
1.82451515740692
|
|
|
|
Some related sums can be done in closed form::
|
|
|
|
>>> nsum(lambda k: 1/(1+fib(2*k+1)), [0, inf])
|
|
1.11803398874989
|
|
>>> phi - 0.5
|
|
1.11803398874989
|
|
>>> f = lambda k:(-1)**(k+1) / sum(fib(n)**2 for n in range(1,int(k+1)))
|
|
>>> nsum(f, [1, inf])
|
|
0.618033988749895
|
|
>>> phi-1
|
|
0.618033988749895
|
|
|
|
**References**
|
|
|
|
1. http://mathworld.wolfram.com/FibonacciNumber.html
|
|
"""
|
|
|
|
altzeta = r"""
|
|
Gives the Dirichlet eta function, `\eta(s)`, also known as the
|
|
alternating zeta function. This function is defined in analogy
|
|
with the Riemann zeta function as providing the sum of the
|
|
alternating series
|
|
|
|
.. math ::
|
|
|
|
\eta(s) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k^s}
|
|
= 1-\frac{1}{2^s}+\frac{1}{3^s}-\frac{1}{4^s}+\ldots
|
|
|
|
The eta function, unlike the Riemann zeta function, is an entire
|
|
function, having a finite value for all complex `s`. The special case
|
|
`\eta(1) = \log(2)` gives the value of the alternating harmonic series.
|
|
|
|
The alternating zeta function may expressed using the Riemann zeta function
|
|
as `\eta(s) = (1 - 2^{1-s}) \zeta(s)`. It can also be expressed
|
|
in terms of the Hurwitz zeta function, for example using
|
|
:func:`~mpmath.dirichlet` (see documentation for that function).
|
|
|
|
**Examples**
|
|
|
|
Some special values are::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> altzeta(1)
|
|
0.693147180559945
|
|
>>> altzeta(0)
|
|
0.5
|
|
>>> altzeta(-1)
|
|
0.25
|
|
>>> altzeta(-2)
|
|
0.0
|
|
|
|
An example of a sum that can be computed more accurately and
|
|
efficiently via :func:`~mpmath.altzeta` than via numerical summation::
|
|
|
|
>>> sum(-(-1)**n / mpf(n)**2.5 for n in range(1, 100))
|
|
0.867204951503984
|
|
>>> altzeta(2.5)
|
|
0.867199889012184
|
|
|
|
At positive even integers, the Dirichlet eta function
|
|
evaluates to a rational multiple of a power of `\pi`::
|
|
|
|
>>> altzeta(2)
|
|
0.822467033424113
|
|
>>> pi**2/12
|
|
0.822467033424113
|
|
|
|
Like the Riemann zeta function, `\eta(s)`, approaches 1
|
|
as `s` approaches positive infinity, although it does
|
|
so from below rather than from above::
|
|
|
|
>>> altzeta(30)
|
|
0.999999999068682
|
|
>>> altzeta(inf)
|
|
1.0
|
|
>>> mp.pretty = False
|
|
>>> altzeta(1000, rounding='d')
|
|
mpf('0.99999999999999989')
|
|
>>> altzeta(1000, rounding='u')
|
|
mpf('1.0')
|
|
|
|
**References**
|
|
|
|
1. http://mathworld.wolfram.com/DirichletEtaFunction.html
|
|
|
|
2. http://en.wikipedia.org/wiki/Dirichlet_eta_function
|
|
"""
|
|
|
|
factorial = r"""
|
|
Computes the factorial, `x!`. For integers `n \ge 0`, we have
|
|
`n! = 1 \cdot 2 \cdots (n-1) \cdot n` and more generally the factorial
|
|
is defined for real or complex `x` by `x! = \Gamma(x+1)`.
|
|
|
|
**Examples**
|
|
|
|
Basic values and limits::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> for k in range(6):
|
|
... print("%s %s" % (k, fac(k)))
|
|
...
|
|
0 1.0
|
|
1 1.0
|
|
2 2.0
|
|
3 6.0
|
|
4 24.0
|
|
5 120.0
|
|
>>> fac(inf)
|
|
+inf
|
|
>>> fac(0.5), sqrt(pi)/2
|
|
(0.886226925452758, 0.886226925452758)
|
|
|
|
For large positive `x`, `x!` can be approximated by
|
|
Stirling's formula::
|
|
|
|
>>> x = 10**10
|
|
>>> fac(x)
|
|
2.32579620567308e+95657055186
|
|
>>> sqrt(2*pi*x)*(x/e)**x
|
|
2.32579597597705e+95657055186
|
|
|
|
:func:`~mpmath.fac` supports evaluation for astronomically large values::
|
|
|
|
>>> fac(10**30)
|
|
6.22311232304258e+29565705518096748172348871081098
|
|
|
|
Reciprocal factorials appear in the Taylor series of the
|
|
exponential function (among many other contexts)::
|
|
|
|
>>> nsum(lambda k: 1/fac(k), [0, inf]), exp(1)
|
|
(2.71828182845905, 2.71828182845905)
|
|
>>> nsum(lambda k: pi**k/fac(k), [0, inf]), exp(pi)
|
|
(23.1406926327793, 23.1406926327793)
|
|
|
|
"""
|
|
|
|
gamma = r"""
|
|
Computes the gamma function, `\Gamma(x)`. The gamma function is a
|
|
shifted version of the ordinary factorial, satisfying
|
|
`\Gamma(n) = (n-1)!` for integers `n > 0`. More generally, it
|
|
is defined by
|
|
|
|
.. math ::
|
|
|
|
\Gamma(x) = \int_0^{\infty} t^{x-1} e^{-t}\, dt
|
|
|
|
for any real or complex `x` with `\Re(x) > 0` and for `\Re(x) < 0`
|
|
by analytic continuation.
|
|
|
|
**Examples**
|
|
|
|
Basic values and limits::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> for k in range(1, 6):
|
|
... print("%s %s" % (k, gamma(k)))
|
|
...
|
|
1 1.0
|
|
2 1.0
|
|
3 2.0
|
|
4 6.0
|
|
5 24.0
|
|
>>> gamma(inf)
|
|
+inf
|
|
>>> gamma(0)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: gamma function pole
|
|
|
|
The gamma function of a half-integer is a rational multiple of
|
|
`\sqrt{\pi}`::
|
|
|
|
>>> gamma(0.5), sqrt(pi)
|
|
(1.77245385090552, 1.77245385090552)
|
|
>>> gamma(1.5), sqrt(pi)/2
|
|
(0.886226925452758, 0.886226925452758)
|
|
|
|
We can check the integral definition::
|
|
|
|
>>> gamma(3.5)
|
|
3.32335097044784
|
|
>>> quad(lambda t: t**2.5*exp(-t), [0,inf])
|
|
3.32335097044784
|
|
|
|
:func:`~mpmath.gamma` supports arbitrary-precision evaluation and
|
|
complex arguments::
|
|
|
|
>>> mp.dps = 50
|
|
>>> gamma(sqrt(3))
|
|
0.91510229697308632046045539308226554038315280564184
|
|
>>> mp.dps = 25
|
|
>>> gamma(2j)
|
|
(0.009902440080927490985955066 - 0.07595200133501806872408048j)
|
|
|
|
Arguments can also be large. Note that the gamma function grows
|
|
very quickly::
|
|
|
|
>>> mp.dps = 15
|
|
>>> gamma(10**20)
|
|
1.9328495143101e+1956570551809674817225
|
|
|
|
**References**
|
|
|
|
* [Spouge]_
|
|
|
|
"""
|
|
|
|
psi = r"""
|
|
Gives the polygamma function of order `m` of `z`, `\psi^{(m)}(z)`.
|
|
Special cases are known as the *digamma function* (`\psi^{(0)}(z)`),
|
|
the *trigamma function* (`\psi^{(1)}(z)`), etc. The polygamma
|
|
functions are defined as the logarithmic derivatives of the gamma
|
|
function:
|
|
|
|
.. math ::
|
|
|
|
\psi^{(m)}(z) = \left(\frac{d}{dz}\right)^{m+1} \log \Gamma(z)
|
|
|
|
In particular, `\psi^{(0)}(z) = \Gamma'(z)/\Gamma(z)`. In the
|
|
present implementation of :func:`~mpmath.psi`, the order `m` must be a
|
|
nonnegative integer, while the argument `z` may be an arbitrary
|
|
complex number (with exception for the polygamma function's poles
|
|
at `z = 0, -1, -2, \ldots`).
|
|
|
|
**Examples**
|
|
|
|
For various rational arguments, the polygamma function reduces to
|
|
a combination of standard mathematical constants::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> psi(0, 1), -euler
|
|
(-0.5772156649015328606065121, -0.5772156649015328606065121)
|
|
>>> psi(1, '1/4'), pi**2+8*catalan
|
|
(17.19732915450711073927132, 17.19732915450711073927132)
|
|
>>> psi(2, '1/2'), -14*apery
|
|
(-16.82879664423431999559633, -16.82879664423431999559633)
|
|
|
|
The polygamma functions are derivatives of each other::
|
|
|
|
>>> diff(lambda x: psi(3, x), pi), psi(4, pi)
|
|
(-0.1105749312578862734526952, -0.1105749312578862734526952)
|
|
>>> quad(lambda x: psi(4, x), [2, 3]), psi(3,3)-psi(3,2)
|
|
(-0.375, -0.375)
|
|
|
|
The digamma function diverges logarithmically as `z \to \infty`,
|
|
while higher orders tend to zero::
|
|
|
|
>>> psi(0,inf), psi(1,inf), psi(2,inf)
|
|
(+inf, 0.0, 0.0)
|
|
|
|
Evaluation for a complex argument::
|
|
|
|
>>> psi(2, -1-2j)
|
|
(0.03902435405364952654838445 + 0.1574325240413029954685366j)
|
|
|
|
Evaluation is supported for large orders `m` and/or large
|
|
arguments `z`::
|
|
|
|
>>> psi(3, 10**100)
|
|
2.0e-300
|
|
>>> psi(250, 10**30+10**20*j)
|
|
(-1.293142504363642687204865e-7010 + 3.232856260909107391513108e-7018j)
|
|
|
|
**Application to infinite series**
|
|
|
|
Any infinite series where the summand is a rational function of
|
|
the index `k` can be evaluated in closed form in terms of polygamma
|
|
functions of the roots and poles of the summand::
|
|
|
|
>>> a = sqrt(2)
|
|
>>> b = sqrt(3)
|
|
>>> nsum(lambda k: 1/((k+a)**2*(k+b)), [0, inf])
|
|
0.4049668927517857061917531
|
|
>>> (psi(0,a)-psi(0,b)-a*psi(1,a)+b*psi(1,a))/(a-b)**2
|
|
0.4049668927517857061917531
|
|
|
|
This follows from the series representation (`m > 0`)
|
|
|
|
.. math ::
|
|
|
|
\psi^{(m)}(z) = (-1)^{m+1} m! \sum_{k=0}^{\infty}
|
|
\frac{1}{(z+k)^{m+1}}.
|
|
|
|
Since the roots of a polynomial may be complex, it is sometimes
|
|
necessary to use the complex polygamma function to evaluate
|
|
an entirely real-valued sum::
|
|
|
|
>>> nsum(lambda k: 1/(k**2-2*k+3), [0, inf])
|
|
1.694361433907061256154665
|
|
>>> nprint(polyroots([1,-2,3]))
|
|
[(1.0 - 1.41421j), (1.0 + 1.41421j)]
|
|
>>> r1 = 1-sqrt(2)*j
|
|
>>> r2 = r1.conjugate()
|
|
>>> (psi(0,-r2)-psi(0,-r1))/(r1-r2)
|
|
(1.694361433907061256154665 + 0.0j)
|
|
|
|
"""
|
|
|
|
digamma = r"""
|
|
Shortcut for ``psi(0,z)``.
|
|
"""
|
|
|
|
harmonic = r"""
|
|
If `n` is an integer, ``harmonic(n)`` gives a floating-point
|
|
approximation of the `n`-th harmonic number `H(n)`, defined as
|
|
|
|
.. math ::
|
|
|
|
H(n) = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}
|
|
|
|
The first few harmonic numbers are::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> for n in range(8):
|
|
... print("%s %s" % (n, harmonic(n)))
|
|
...
|
|
0 0.0
|
|
1 1.0
|
|
2 1.5
|
|
3 1.83333333333333
|
|
4 2.08333333333333
|
|
5 2.28333333333333
|
|
6 2.45
|
|
7 2.59285714285714
|
|
|
|
The infinite harmonic series `1 + 1/2 + 1/3 + \ldots` diverges::
|
|
|
|
>>> harmonic(inf)
|
|
+inf
|
|
|
|
:func:`~mpmath.harmonic` is evaluated using the digamma function rather
|
|
than by summing the harmonic series term by term. It can therefore
|
|
be computed quickly for arbitrarily large `n`, and even for
|
|
nonintegral arguments::
|
|
|
|
>>> harmonic(10**100)
|
|
230.835724964306
|
|
>>> harmonic(0.5)
|
|
0.613705638880109
|
|
>>> harmonic(3+4j)
|
|
(2.24757548223494 + 0.850502209186044j)
|
|
|
|
:func:`~mpmath.harmonic` supports arbitrary precision evaluation::
|
|
|
|
>>> mp.dps = 50
|
|
>>> harmonic(11)
|
|
3.0198773448773448773448773448773448773448773448773
|
|
>>> harmonic(pi)
|
|
1.8727388590273302654363491032336134987519132374152
|
|
|
|
The harmonic series diverges, but at a glacial pace. It is possible
|
|
to calculate the exact number of terms required before the sum
|
|
exceeds a given amount, say 100::
|
|
|
|
>>> mp.dps = 50
|
|
>>> v = 10**findroot(lambda x: harmonic(10**x) - 100, 10)
|
|
>>> v
|
|
15092688622113788323693563264538101449859496.864101
|
|
>>> v = int(ceil(v))
|
|
>>> print(v)
|
|
15092688622113788323693563264538101449859497
|
|
>>> harmonic(v-1)
|
|
99.999999999999999999999999999999999999999999942747
|
|
>>> harmonic(v)
|
|
100.000000000000000000000000000000000000000000009
|
|
|
|
"""
|
|
|
|
bernoulli = r"""
|
|
Computes the nth Bernoulli number, `B_n`, for any integer `n \ge 0`.
|
|
|
|
The Bernoulli numbers are rational numbers, but this function
|
|
returns a floating-point approximation. To obtain an exact
|
|
fraction, use :func:`~mpmath.bernfrac` instead.
|
|
|
|
**Examples**
|
|
|
|
Numerical values of the first few Bernoulli numbers::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> for n in range(15):
|
|
... print("%s %s" % (n, bernoulli(n)))
|
|
...
|
|
0 1.0
|
|
1 -0.5
|
|
2 0.166666666666667
|
|
3 0.0
|
|
4 -0.0333333333333333
|
|
5 0.0
|
|
6 0.0238095238095238
|
|
7 0.0
|
|
8 -0.0333333333333333
|
|
9 0.0
|
|
10 0.0757575757575758
|
|
11 0.0
|
|
12 -0.253113553113553
|
|
13 0.0
|
|
14 1.16666666666667
|
|
|
|
Bernoulli numbers can be approximated with arbitrary precision::
|
|
|
|
>>> mp.dps = 50
|
|
>>> bernoulli(100)
|
|
-2.8382249570693706959264156336481764738284680928013e+78
|
|
|
|
Arbitrarily large `n` are supported::
|
|
|
|
>>> mp.dps = 15
|
|
>>> bernoulli(10**20 + 2)
|
|
3.09136296657021e+1876752564973863312327
|
|
|
|
The Bernoulli numbers are related to the Riemann zeta function
|
|
at integer arguments::
|
|
|
|
>>> -bernoulli(8) * (2*pi)**8 / (2*fac(8))
|
|
1.00407735619794
|
|
>>> zeta(8)
|
|
1.00407735619794
|
|
|
|
**Algorithm**
|
|
|
|
For small `n` (`n < 3000`) :func:`~mpmath.bernoulli` uses a recurrence
|
|
formula due to Ramanujan. All results in this range are cached,
|
|
so sequential computation of small Bernoulli numbers is
|
|
guaranteed to be fast.
|
|
|
|
For larger `n`, `B_n` is evaluated in terms of the Riemann zeta
|
|
function.
|
|
"""
|
|
|
|
stieltjes = r"""
|
|
For a nonnegative integer `n`, ``stieltjes(n)`` computes the
|
|
`n`-th Stieltjes constant `\gamma_n`, defined as the
|
|
`n`-th coefficient in the Laurent series expansion of the
|
|
Riemann zeta function around the pole at `s = 1`. That is,
|
|
we have:
|
|
|
|
.. math ::
|
|
|
|
\zeta(s) = \frac{1}{s-1} \sum_{n=0}^{\infty}
|
|
\frac{(-1)^n}{n!} \gamma_n (s-1)^n
|
|
|
|
More generally, ``stieltjes(n, a)`` gives the corresponding
|
|
coefficient `\gamma_n(a)` for the Hurwitz zeta function
|
|
`\zeta(s,a)` (with `\gamma_n = \gamma_n(1)`).
|
|
|
|
**Examples**
|
|
|
|
The zeroth Stieltjes constant is just Euler's constant `\gamma`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> stieltjes(0)
|
|
0.577215664901533
|
|
|
|
Some more values are::
|
|
|
|
>>> stieltjes(1)
|
|
-0.0728158454836767
|
|
>>> stieltjes(10)
|
|
0.000205332814909065
|
|
>>> stieltjes(30)
|
|
0.00355772885557316
|
|
>>> stieltjes(1000)
|
|
-1.57095384420474e+486
|
|
>>> stieltjes(2000)
|
|
2.680424678918e+1109
|
|
>>> stieltjes(1, 2.5)
|
|
-0.23747539175716
|
|
|
|
An alternative way to compute `\gamma_1`::
|
|
|
|
>>> diff(extradps(15)(lambda x: 1/(x-1) - zeta(x)), 1)
|
|
-0.0728158454836767
|
|
|
|
:func:`~mpmath.stieltjes` supports arbitrary precision evaluation::
|
|
|
|
>>> mp.dps = 50
|
|
>>> stieltjes(2)
|
|
-0.0096903631928723184845303860352125293590658061013408
|
|
|
|
**Algorithm**
|
|
|
|
:func:`~mpmath.stieltjes` numerically evaluates the integral in
|
|
the following representation due to Ainsworth, Howell and
|
|
Coffey [1], [2]:
|
|
|
|
.. math ::
|
|
|
|
\gamma_n(a) = \frac{\log^n a}{2a} - \frac{\log^{n+1}(a)}{n+1} +
|
|
\frac{2}{a} \Re \int_0^{\infty}
|
|
\frac{(x/a-i)\log^n(a-ix)}{(1+x^2/a^2)(e^{2\pi x}-1)} dx.
|
|
|
|
For some reference values with `a = 1`, see e.g. [4].
|
|
|
|
**References**
|
|
|
|
1. O. R. Ainsworth & L. W. Howell, "An integral representation of
|
|
the generalized Euler-Mascheroni constants", NASA Technical
|
|
Paper 2456 (1985),
|
|
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19850014994_1985014994.pdf
|
|
|
|
2. M. W. Coffey, "The Stieltjes constants, their relation to the
|
|
`\eta_j` coefficients, and representation of the Hurwitz
|
|
zeta function", arXiv:0706.0343v1 http://arxiv.org/abs/0706.0343
|
|
|
|
3. http://mathworld.wolfram.com/StieltjesConstants.html
|
|
|
|
4. http://pi.lacim.uqam.ca/piDATA/stieltjesgamma.txt
|
|
|
|
"""
|
|
|
|
gammaprod = r"""
|
|
Given iterables `a` and `b`, ``gammaprod(a, b)`` computes the
|
|
product / quotient of gamma functions:
|
|
|
|
.. math ::
|
|
|
|
\frac{\Gamma(a_0) \Gamma(a_1) \cdots \Gamma(a_p)}
|
|
{\Gamma(b_0) \Gamma(b_1) \cdots \Gamma(b_q)}
|
|
|
|
Unlike direct calls to :func:`~mpmath.gamma`, :func:`~mpmath.gammaprod` considers
|
|
the entire product as a limit and evaluates this limit properly if
|
|
any of the numerator or denominator arguments are nonpositive
|
|
integers such that poles of the gamma function are encountered.
|
|
That is, :func:`~mpmath.gammaprod` evaluates
|
|
|
|
.. math ::
|
|
|
|
\lim_{\epsilon \to 0}
|
|
\frac{\Gamma(a_0+\epsilon) \Gamma(a_1+\epsilon) \cdots
|
|
\Gamma(a_p+\epsilon)}
|
|
{\Gamma(b_0+\epsilon) \Gamma(b_1+\epsilon) \cdots
|
|
\Gamma(b_q+\epsilon)}
|
|
|
|
In particular:
|
|
|
|
* If there are equally many poles in the numerator and the
|
|
denominator, the limit is a rational number times the remaining,
|
|
regular part of the product.
|
|
|
|
* If there are more poles in the numerator, :func:`~mpmath.gammaprod`
|
|
returns ``+inf``.
|
|
|
|
* If there are more poles in the denominator, :func:`~mpmath.gammaprod`
|
|
returns 0.
|
|
|
|
**Examples**
|
|
|
|
The reciprocal gamma function `1/\Gamma(x)` evaluated at `x = 0`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15
|
|
>>> gammaprod([], [0])
|
|
0.0
|
|
|
|
A limit::
|
|
|
|
>>> gammaprod([-4], [-3])
|
|
-0.25
|
|
>>> limit(lambda x: gamma(x-1)/gamma(x), -3, direction=1)
|
|
-0.25
|
|
>>> limit(lambda x: gamma(x-1)/gamma(x), -3, direction=-1)
|
|
-0.25
|
|
|
|
"""
|
|
|
|
beta = r"""
|
|
Computes the beta function,
|
|
`B(x,y) = \Gamma(x) \Gamma(y) / \Gamma(x+y)`.
|
|
The beta function is also commonly defined by the integral
|
|
representation
|
|
|
|
.. math ::
|
|
|
|
B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} \, dt
|
|
|
|
**Examples**
|
|
|
|
For integer and half-integer arguments where all three gamma
|
|
functions are finite, the beta function becomes either rational
|
|
number or a rational multiple of `\pi`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> beta(5, 2)
|
|
0.0333333333333333
|
|
>>> beta(1.5, 2)
|
|
0.266666666666667
|
|
>>> 16*beta(2.5, 1.5)
|
|
3.14159265358979
|
|
|
|
Where appropriate, :func:`~mpmath.beta` evaluates limits. A pole
|
|
of the beta function is taken to result in ``+inf``::
|
|
|
|
>>> beta(-0.5, 0.5)
|
|
0.0
|
|
>>> beta(-3, 3)
|
|
-0.333333333333333
|
|
>>> beta(-2, 3)
|
|
+inf
|
|
>>> beta(inf, 1)
|
|
0.0
|
|
>>> beta(inf, 0)
|
|
nan
|
|
|
|
:func:`~mpmath.beta` supports complex numbers and arbitrary precision
|
|
evaluation::
|
|
|
|
>>> beta(1, 2+j)
|
|
(0.4 - 0.2j)
|
|
>>> mp.dps = 25
|
|
>>> beta(j,0.5)
|
|
(1.079424249270925780135675 - 1.410032405664160838288752j)
|
|
>>> mp.dps = 50
|
|
>>> beta(pi, e)
|
|
0.037890298781212201348153837138927165984170287886464
|
|
|
|
Various integrals can be computed by means of the
|
|
beta function::
|
|
|
|
>>> mp.dps = 15
|
|
>>> quad(lambda t: t**2.5*(1-t)**2, [0, 1])
|
|
0.0230880230880231
|
|
>>> beta(3.5, 3)
|
|
0.0230880230880231
|
|
>>> quad(lambda t: sin(t)**4 * sqrt(cos(t)), [0, pi/2])
|
|
0.319504062596158
|
|
>>> beta(2.5, 0.75)/2
|
|
0.319504062596158
|
|
|
|
"""
|
|
|
|
betainc = r"""
|
|
``betainc(a, b, x1=0, x2=1, regularized=False)`` gives the generalized
|
|
incomplete beta function,
|
|
|
|
.. math ::
|
|
|
|
I_{x_1}^{x_2}(a,b) = \int_{x_1}^{x_2} t^{a-1} (1-t)^{b-1} dt.
|
|
|
|
When `x_1 = 0, x_2 = 1`, this reduces to the ordinary (complete)
|
|
beta function `B(a,b)`; see :func:`~mpmath.beta`.
|
|
|
|
With the keyword argument ``regularized=True``, :func:`~mpmath.betainc`
|
|
computes the regularized incomplete beta function
|
|
`I_{x_1}^{x_2}(a,b) / B(a,b)`. This is the cumulative distribution of the
|
|
beta distribution with parameters `a`, `b`.
|
|
|
|
.. note :
|
|
|
|
Implementations of the incomplete beta function in some other
|
|
software uses a different argument order. For example, Mathematica uses the
|
|
reversed argument order ``Beta[x1,x2,a,b]``. For the equivalent of SciPy's
|
|
three-argument incomplete beta integral (implicitly with `x1 = 0`), use
|
|
``betainc(a,b,0,x2,regularized=True)``.
|
|
|
|
**Examples**
|
|
|
|
Verifying that :func:`~mpmath.betainc` computes the integral in the
|
|
definition::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> x,y,a,b = 3, 4, 0, 6
|
|
>>> betainc(x, y, a, b)
|
|
-4010.4
|
|
>>> quad(lambda t: t**(x-1) * (1-t)**(y-1), [a, b])
|
|
-4010.4
|
|
|
|
The arguments may be arbitrary complex numbers::
|
|
|
|
>>> betainc(0.75, 1-4j, 0, 2+3j)
|
|
(0.2241657956955709603655887 + 0.3619619242700451992411724j)
|
|
|
|
With regularization::
|
|
|
|
>>> betainc(1, 2, 0, 0.25, regularized=True)
|
|
0.4375
|
|
>>> betainc(pi, e, 0, 1, regularized=True) # Complete
|
|
1.0
|
|
|
|
The beta integral satisfies some simple argument transformation
|
|
symmetries::
|
|
|
|
>>> mp.dps = 15
|
|
>>> betainc(2,3,4,5), -betainc(2,3,5,4), betainc(3,2,1-5,1-4)
|
|
(56.0833333333333, 56.0833333333333, 56.0833333333333)
|
|
|
|
The beta integral can often be evaluated analytically. For integer and
|
|
rational arguments, the incomplete beta function typically reduces to a
|
|
simple algebraic-logarithmic expression::
|
|
|
|
>>> mp.dps = 25
|
|
>>> identify(chop(betainc(0, 0, 3, 4)))
|
|
'-(log((9/8)))'
|
|
>>> identify(betainc(2, 3, 4, 5))
|
|
'(673/12)'
|
|
>>> identify(betainc(1.5, 1, 1, 2))
|
|
'((-12+sqrt(1152))/18)'
|
|
|
|
"""
|
|
|
|
binomial = r"""
|
|
Computes the binomial coefficient
|
|
|
|
.. math ::
|
|
|
|
{n \choose k} = \frac{n!}{k!(n-k)!}.
|
|
|
|
The binomial coefficient gives the number of ways that `k` items
|
|
can be chosen from a set of `n` items. More generally, the binomial
|
|
coefficient is a well-defined function of arbitrary real or
|
|
complex `n` and `k`, via the gamma function.
|
|
|
|
**Examples**
|
|
|
|
Generate Pascal's triangle::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> for n in range(5):
|
|
... nprint([binomial(n,k) for k in range(n+1)])
|
|
...
|
|
[1.0]
|
|
[1.0, 1.0]
|
|
[1.0, 2.0, 1.0]
|
|
[1.0, 3.0, 3.0, 1.0]
|
|
[1.0, 4.0, 6.0, 4.0, 1.0]
|
|
|
|
There is 1 way to select 0 items from the empty set, and 0 ways to
|
|
select 1 item from the empty set::
|
|
|
|
>>> binomial(0, 0)
|
|
1.0
|
|
>>> binomial(0, 1)
|
|
0.0
|
|
|
|
:func:`~mpmath.binomial` supports large arguments::
|
|
|
|
>>> binomial(10**20, 10**20-5)
|
|
8.33333333333333e+97
|
|
>>> binomial(10**20, 10**10)
|
|
2.60784095465201e+104342944813
|
|
|
|
Nonintegral binomial coefficients find use in series
|
|
expansions::
|
|
|
|
>>> nprint(taylor(lambda x: (1+x)**0.25, 0, 4))
|
|
[1.0, 0.25, -0.09375, 0.0546875, -0.0375977]
|
|
>>> nprint([binomial(0.25, k) for k in range(5)])
|
|
[1.0, 0.25, -0.09375, 0.0546875, -0.0375977]
|
|
|
|
An integral representation::
|
|
|
|
>>> n, k = 5, 3
|
|
>>> f = lambda t: exp(-j*k*t)*(1+exp(j*t))**n
|
|
>>> chop(quad(f, [-pi,pi])/(2*pi))
|
|
10.0
|
|
>>> binomial(n,k)
|
|
10.0
|
|
|
|
"""
|
|
|
|
rf = r"""
|
|
Computes the rising factorial or Pochhammer symbol,
|
|
|
|
.. math ::
|
|
|
|
x^{(n)} = x (x+1) \cdots (x+n-1) = \frac{\Gamma(x+n)}{\Gamma(x)}
|
|
|
|
where the rightmost expression is valid for nonintegral `n`.
|
|
|
|
**Examples**
|
|
|
|
For integral `n`, the rising factorial is a polynomial::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> for n in range(5):
|
|
... nprint(taylor(lambda x: rf(x,n), 0, n))
|
|
...
|
|
[1.0]
|
|
[0.0, 1.0]
|
|
[0.0, 1.0, 1.0]
|
|
[0.0, 2.0, 3.0, 1.0]
|
|
[0.0, 6.0, 11.0, 6.0, 1.0]
|
|
|
|
Evaluation is supported for arbitrary arguments::
|
|
|
|
>>> rf(2+3j, 5.5)
|
|
(-7202.03920483347 - 3777.58810701527j)
|
|
"""
|
|
|
|
ff = r"""
|
|
Computes the falling factorial,
|
|
|
|
.. math ::
|
|
|
|
(x)_n = x (x-1) \cdots (x-n+1) = \frac{\Gamma(x+1)}{\Gamma(x-n+1)}
|
|
|
|
where the rightmost expression is valid for nonintegral `n`.
|
|
|
|
**Examples**
|
|
|
|
For integral `n`, the falling factorial is a polynomial::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> for n in range(5):
|
|
... nprint(taylor(lambda x: ff(x,n), 0, n))
|
|
...
|
|
[1.0]
|
|
[0.0, 1.0]
|
|
[0.0, -1.0, 1.0]
|
|
[0.0, 2.0, -3.0, 1.0]
|
|
[0.0, -6.0, 11.0, -6.0, 1.0]
|
|
|
|
Evaluation is supported for arbitrary arguments::
|
|
|
|
>>> ff(2+3j, 5.5)
|
|
(-720.41085888203 + 316.101124983878j)
|
|
"""
|
|
|
|
fac2 = r"""
|
|
Computes the double factorial `x!!`, defined for integers
|
|
`x > 0` by
|
|
|
|
.. math ::
|
|
|
|
x!! = \begin{cases}
|
|
1 \cdot 3 \cdots (x-2) \cdot x & x \;\mathrm{odd} \\
|
|
2 \cdot 4 \cdots (x-2) \cdot x & x \;\mathrm{even}
|
|
\end{cases}
|
|
|
|
and more generally by [1]
|
|
|
|
.. math ::
|
|
|
|
x!! = 2^{x/2} \left(\frac{\pi}{2}\right)^{(\cos(\pi x)-1)/4}
|
|
\Gamma\left(\frac{x}{2}+1\right).
|
|
|
|
**Examples**
|
|
|
|
The integer sequence of double factorials begins::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> nprint([fac2(n) for n in range(10)])
|
|
[1.0, 1.0, 2.0, 3.0, 8.0, 15.0, 48.0, 105.0, 384.0, 945.0]
|
|
|
|
For large `x`, double factorials follow a Stirling-like asymptotic
|
|
approximation::
|
|
|
|
>>> x = mpf(10000)
|
|
>>> fac2(x)
|
|
5.97272691416282e+17830
|
|
>>> sqrt(pi)*x**((x+1)/2)*exp(-x/2)
|
|
5.97262736954392e+17830
|
|
|
|
The recurrence formula `x!! = x (x-2)!!` can be reversed to
|
|
define the double factorial of negative odd integers (but
|
|
not negative even integers)::
|
|
|
|
>>> fac2(-1), fac2(-3), fac2(-5), fac2(-7)
|
|
(1.0, -1.0, 0.333333333333333, -0.0666666666666667)
|
|
>>> fac2(-2)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: gamma function pole
|
|
|
|
With the exception of the poles at negative even integers,
|
|
:func:`~mpmath.fac2` supports evaluation for arbitrary complex arguments.
|
|
The recurrence formula is valid generally::
|
|
|
|
>>> fac2(pi+2j)
|
|
(-1.3697207890154e-12 + 3.93665300979176e-12j)
|
|
>>> (pi+2j)*fac2(pi-2+2j)
|
|
(-1.3697207890154e-12 + 3.93665300979176e-12j)
|
|
|
|
Double factorials should not be confused with nested factorials,
|
|
which are immensely larger::
|
|
|
|
>>> fac(fac(20))
|
|
5.13805976125208e+43675043585825292774
|
|
>>> fac2(20)
|
|
3715891200.0
|
|
|
|
Double factorials appear, among other things, in series expansions
|
|
of Gaussian functions and the error function. Infinite series
|
|
include::
|
|
|
|
>>> nsum(lambda k: 1/fac2(k), [0, inf])
|
|
3.05940740534258
|
|
>>> sqrt(e)*(1+sqrt(pi/2)*erf(sqrt(2)/2))
|
|
3.05940740534258
|
|
>>> nsum(lambda k: 2**k/fac2(2*k-1), [1, inf])
|
|
4.06015693855741
|
|
>>> e * erf(1) * sqrt(pi)
|
|
4.06015693855741
|
|
|
|
A beautiful Ramanujan sum::
|
|
|
|
>>> nsum(lambda k: (-1)**k*(fac2(2*k-1)/fac2(2*k))**3, [0,inf])
|
|
0.90917279454693
|
|
>>> (gamma('9/8')/gamma('5/4')/gamma('7/8'))**2
|
|
0.90917279454693
|
|
|
|
**References**
|
|
|
|
1. http://functions.wolfram.com/GammaBetaErf/Factorial2/27/01/0002/
|
|
|
|
2. http://mathworld.wolfram.com/DoubleFactorial.html
|
|
|
|
"""
|
|
|
|
hyper = r"""
|
|
Evaluates the generalized hypergeometric function
|
|
|
|
.. math ::
|
|
|
|
\,_pF_q(a_1,\ldots,a_p; b_1,\ldots,b_q; z) =
|
|
\sum_{n=0}^\infty \frac{(a_1)_n (a_2)_n \ldots (a_p)_n}
|
|
{(b_1)_n(b_2)_n\ldots(b_q)_n} \frac{z^n}{n!}
|
|
|
|
where `(x)_n` denotes the rising factorial (see :func:`~mpmath.rf`).
|
|
|
|
The parameters lists ``a_s`` and ``b_s`` may contain integers,
|
|
real numbers, complex numbers, as well as exact fractions given in
|
|
the form of tuples `(p, q)`. :func:`~mpmath.hyper` is optimized to handle
|
|
integers and fractions more efficiently than arbitrary
|
|
floating-point parameters (since rational parameters are by
|
|
far the most common).
|
|
|
|
**Examples**
|
|
|
|
Verifying that :func:`~mpmath.hyper` gives the sum in the definition, by
|
|
comparison with :func:`~mpmath.nsum`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> a,b,c,d = 2,3,4,5
|
|
>>> x = 0.25
|
|
>>> hyper([a,b],[c,d],x)
|
|
1.078903941164934876086237
|
|
>>> fn = lambda n: rf(a,n)*rf(b,n)/rf(c,n)/rf(d,n)*x**n/fac(n)
|
|
>>> nsum(fn, [0, inf])
|
|
1.078903941164934876086237
|
|
|
|
The parameters can be any combination of integers, fractions,
|
|
floats and complex numbers::
|
|
|
|
>>> a, b, c, d, e = 1, (-1,2), pi, 3+4j, (2,3)
|
|
>>> x = 0.2j
|
|
>>> hyper([a,b],[c,d,e],x)
|
|
(0.9923571616434024810831887 - 0.005753848733883879742993122j)
|
|
>>> b, e = -0.5, mpf(2)/3
|
|
>>> fn = lambda n: rf(a,n)*rf(b,n)/rf(c,n)/rf(d,n)/rf(e,n)*x**n/fac(n)
|
|
>>> nsum(fn, [0, inf])
|
|
(0.9923571616434024810831887 - 0.005753848733883879742993122j)
|
|
|
|
The `\,_0F_0` and `\,_1F_0` series are just elementary functions::
|
|
|
|
>>> a, z = sqrt(2), +pi
|
|
>>> hyper([],[],z)
|
|
23.14069263277926900572909
|
|
>>> exp(z)
|
|
23.14069263277926900572909
|
|
>>> hyper([a],[],z)
|
|
(-0.09069132879922920160334114 + 0.3283224323946162083579656j)
|
|
>>> (1-z)**(-a)
|
|
(-0.09069132879922920160334114 + 0.3283224323946162083579656j)
|
|
|
|
If any `a_k` coefficient is a nonpositive integer, the series terminates
|
|
into a finite polynomial::
|
|
|
|
>>> hyper([1,1,1,-3],[2,5],1)
|
|
0.7904761904761904761904762
|
|
>>> identify(_)
|
|
'(83/105)'
|
|
|
|
If any `b_k` is a nonpositive integer, the function is undefined (unless the
|
|
series terminates before the division by zero occurs)::
|
|
|
|
>>> hyper([1,1,1,-3],[-2,5],1)
|
|
Traceback (most recent call last):
|
|
...
|
|
ZeroDivisionError: pole in hypergeometric series
|
|
>>> hyper([1,1,1,-1],[-2,5],1)
|
|
1.1
|
|
|
|
Except for polynomial cases, the radius of convergence `R` of the hypergeometric
|
|
series is either `R = \infty` (if `p \le q`), `R = 1` (if `p = q+1`), or
|
|
`R = 0` (if `p > q+1`).
|
|
|
|
The analytic continuations of the functions with `p = q+1`, i.e. `\,_2F_1`,
|
|
`\,_3F_2`, `\,_4F_3`, etc, are all implemented and therefore these functions
|
|
can be evaluated for `|z| \ge 1`. The shortcuts :func:`~mpmath.hyp2f1`, :func:`~mpmath.hyp3f2`
|
|
are available to handle the most common cases (see their documentation),
|
|
but functions of higher degree are also supported via :func:`~mpmath.hyper`::
|
|
|
|
>>> hyper([1,2,3,4], [5,6,7], 1) # 4F3 at finite-valued branch point
|
|
1.141783505526870731311423
|
|
>>> hyper([4,5,6,7], [1,2,3], 1) # 4F3 at pole
|
|
+inf
|
|
>>> hyper([1,2,3,4,5], [6,7,8,9], 10) # 5F4
|
|
(1.543998916527972259717257 - 0.5876309929580408028816365j)
|
|
>>> hyper([1,2,3,4,5,6], [7,8,9,10,11], 1j) # 6F5
|
|
(0.9996565821853579063502466 + 0.0129721075905630604445669j)
|
|
|
|
Near `z = 1` with noninteger parameters::
|
|
|
|
>>> hyper(['1/3',1,'3/2',2], ['1/5','11/6','41/8'], 1)
|
|
2.219433352235586121250027
|
|
>>> hyper(['1/3',1,'3/2',2], ['1/5','11/6','5/4'], 1)
|
|
+inf
|
|
>>> eps1 = extradps(6)(lambda: 1 - mpf('1e-6'))()
|
|
>>> hyper(['1/3',1,'3/2',2], ['1/5','11/6','5/4'], eps1)
|
|
2923978034.412973409330956
|
|
|
|
Please note that, as currently implemented, evaluation of `\,_pF_{p-1}`
|
|
with `p \ge 3` may be slow or inaccurate when `|z-1|` is small,
|
|
for some parameter values.
|
|
|
|
Evaluation may be aborted if convergence appears to be too slow.
|
|
The optional ``maxterms`` (limiting the number of series terms) and ``maxprec``
|
|
(limiting the internal precision) keyword arguments can be used
|
|
to control evaluation::
|
|
|
|
>>> hyper([1,2,3], [4,5,6], 10000) # doctest: +IGNORE_EXCEPTION_DETAIL
|
|
Traceback (most recent call last):
|
|
...
|
|
NoConvergence: Hypergeometric series converges too slowly. Try increasing maxterms.
|
|
>>> hyper([1,2,3], [4,5,6], 10000, maxterms=10**6)
|
|
7.622806053177969474396918e+4310
|
|
|
|
Additional options include ``force_series`` (which forces direct use of
|
|
a hypergeometric series even if another evaluation method might work better)
|
|
and ``asymp_tol`` which controls the target tolerance for using
|
|
asymptotic series.
|
|
|
|
When `p > q+1`, ``hyper`` computes the (iterated) Borel sum of the divergent
|
|
series. For `\,_2F_0` the Borel sum has an analytic solution and can be
|
|
computed efficiently (see :func:`~mpmath.hyp2f0`). For higher degrees, the functions
|
|
is evaluated first by attempting to sum it directly as an asymptotic
|
|
series (this only works for tiny `|z|`), and then by evaluating the Borel
|
|
regularized sum using numerical integration. Except for
|
|
special parameter combinations, this can be extremely slow.
|
|
|
|
>>> hyper([1,1], [], 0.5) # regularization of 2F0
|
|
(1.340965419580146562086448 + 0.8503366631752726568782447j)
|
|
>>> hyper([1,1,1,1], [1], 0.5) # regularization of 4F1
|
|
(1.108287213689475145830699 + 0.5327107430640678181200491j)
|
|
|
|
With the following magnitude of argument, the asymptotic series for `\,_3F_1`
|
|
gives only a few digits. Using Borel summation, ``hyper`` can produce
|
|
a value with full accuracy::
|
|
|
|
>>> mp.dps = 15
|
|
>>> hyper([2,0.5,4], [5.25], '0.08', force_series=True) # doctest: +IGNORE_EXCEPTION_DETAIL
|
|
Traceback (most recent call last):
|
|
...
|
|
NoConvergence: Hypergeometric series converges too slowly. Try increasing maxterms.
|
|
>>> hyper([2,0.5,4], [5.25], '0.08', asymp_tol=1e-4)
|
|
1.0725535790737
|
|
>>> hyper([2,0.5,4], [5.25], '0.08')
|
|
(1.07269542893559 + 5.54668863216891e-5j)
|
|
>>> hyper([2,0.5,4], [5.25], '-0.08', asymp_tol=1e-4)
|
|
0.946344925484879
|
|
>>> hyper([2,0.5,4], [5.25], '-0.08')
|
|
0.946312503737771
|
|
>>> mp.dps = 25
|
|
>>> hyper([2,0.5,4], [5.25], '-0.08')
|
|
0.9463125037377662296700858
|
|
|
|
Note that with the positive `z` value, there is a complex part in the
|
|
correct result, which falls below the tolerance of the asymptotic series.
|
|
|
|
By default, a parameter that appears in both ``a_s`` and ``b_s`` will be removed
|
|
unless it is a nonpositive integer. This generally speeds up evaluation
|
|
by producing a hypergeometric function of lower order.
|
|
This optimization can be disabled by passing ``eliminate=False``.
|
|
|
|
>>> hyper([1,2,3], [4,5,3], 10000)
|
|
1.268943190440206905892212e+4321
|
|
>>> hyper([1,2,3], [4,5,3], 10000, eliminate=False) # doctest: +IGNORE_EXCEPTION_DETAIL
|
|
Traceback (most recent call last):
|
|
...
|
|
NoConvergence: Hypergeometric series converges too slowly. Try increasing maxterms.
|
|
>>> hyper([1,2,3], [4,5,3], 10000, eliminate=False, maxterms=10**6)
|
|
1.268943190440206905892212e+4321
|
|
|
|
If a nonpositive integer `-n` appears in both ``a_s`` and ``b_s``, this parameter
|
|
cannot be unambiguously removed since it creates a term 0 / 0.
|
|
In this case the hypergeometric series is understood to terminate before
|
|
the division by zero occurs. This convention is consistent with Mathematica.
|
|
An alternative convention of eliminating the parameters can be toggled
|
|
with ``eliminate_all=True``:
|
|
|
|
>>> hyper([2,-1], [-1], 3)
|
|
7.0
|
|
>>> hyper([2,-1], [-1], 3, eliminate_all=True)
|
|
0.25
|
|
>>> hyper([2], [], 3)
|
|
0.25
|
|
|
|
"""
|
|
|
|
hypercomb = r"""
|
|
Computes a weighted combination of hypergeometric functions
|
|
|
|
.. math ::
|
|
|
|
\sum_{r=1}^N \left[ \prod_{k=1}^{l_r} {w_{r,k}}^{c_{r,k}}
|
|
\frac{\prod_{k=1}^{m_r} \Gamma(\alpha_{r,k})}{\prod_{k=1}^{n_r}
|
|
\Gamma(\beta_{r,k})}
|
|
\,_{p_r}F_{q_r}(a_{r,1},\ldots,a_{r,p}; b_{r,1},
|
|
\ldots, b_{r,q}; z_r)\right].
|
|
|
|
Typically the parameters are linear combinations of a small set of base
|
|
parameters; :func:`~mpmath.hypercomb` permits computing a correct value in
|
|
the case that some of the `\alpha`, `\beta`, `b` turn out to be
|
|
nonpositive integers, or if division by zero occurs for some `w^c`,
|
|
assuming that there are opposing singularities that cancel out.
|
|
The limit is computed by evaluating the function with the base
|
|
parameters perturbed, at a higher working precision.
|
|
|
|
The first argument should be a function that takes the perturbable
|
|
base parameters ``params`` as input and returns `N` tuples
|
|
``(w, c, alpha, beta, a, b, z)``, where the coefficients ``w``, ``c``,
|
|
gamma factors ``alpha``, ``beta``, and hypergeometric coefficients
|
|
``a``, ``b`` each should be lists of numbers, and ``z`` should be a single
|
|
number.
|
|
|
|
**Examples**
|
|
|
|
The following evaluates
|
|
|
|
.. math ::
|
|
|
|
(a-1) \frac{\Gamma(a-3)}{\Gamma(a-4)} \,_1F_1(a,a-1,z) = e^z(a-4)(a+z-1)
|
|
|
|
with `a=1, z=3`. There is a zero factor, two gamma function poles, and
|
|
the 1F1 function is singular; all singularities cancel out to give a finite
|
|
value::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> hypercomb(lambda a: [([a-1],[1],[a-3],[a-4],[a],[a-1],3)], [1])
|
|
-180.769832308689
|
|
>>> -9*exp(3)
|
|
-180.769832308689
|
|
|
|
"""
|
|
|
|
hyp0f1 = r"""
|
|
Gives the hypergeometric function `\,_0F_1`, sometimes known as the
|
|
confluent limit function, defined as
|
|
|
|
.. math ::
|
|
|
|
\,_0F_1(a,z) = \sum_{k=0}^{\infty} \frac{1}{(a)_k} \frac{z^k}{k!}.
|
|
|
|
This function satisfies the differential equation `z f''(z) + a f'(z) = f(z)`,
|
|
and is related to the Bessel function of the first kind (see :func:`~mpmath.besselj`).
|
|
|
|
``hyp0f1(a,z)`` is equivalent to ``hyper([],[a],z)``; see documentation for
|
|
:func:`~mpmath.hyper` for more information.
|
|
|
|
**Examples**
|
|
|
|
Evaluation for arbitrary arguments::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> hyp0f1(2, 0.25)
|
|
1.130318207984970054415392
|
|
>>> hyp0f1((1,2), 1234567)
|
|
6.27287187546220705604627e+964
|
|
>>> hyp0f1(3+4j, 1000000j)
|
|
(3.905169561300910030267132e+606 + 3.807708544441684513934213e+606j)
|
|
|
|
Evaluation is supported for arbitrarily large values of `z`,
|
|
using asymptotic expansions::
|
|
|
|
>>> hyp0f1(1, 10**50)
|
|
2.131705322874965310390701e+8685889638065036553022565
|
|
>>> hyp0f1(1, -10**50)
|
|
1.115945364792025420300208e-13
|
|
|
|
Verifying the differential equation::
|
|
|
|
>>> a = 2.5
|
|
>>> f = lambda z: hyp0f1(a,z)
|
|
>>> for z in [0, 10, 3+4j]:
|
|
... chop(z*diff(f,z,2) + a*diff(f,z) - f(z))
|
|
...
|
|
0.0
|
|
0.0
|
|
0.0
|
|
|
|
"""
|
|
|
|
hyp1f1 = r"""
|
|
Gives the confluent hypergeometric function of the first kind,
|
|
|
|
.. math ::
|
|
|
|
\,_1F_1(a,b,z) = \sum_{k=0}^{\infty} \frac{(a)_k}{(b)_k} \frac{z^k}{k!},
|
|
|
|
also known as Kummer's function and sometimes denoted by `M(a,b,z)`. This
|
|
function gives one solution to the confluent (Kummer's) differential equation
|
|
|
|
.. math ::
|
|
|
|
z f''(z) + (b-z) f'(z) - af(z) = 0.
|
|
|
|
A second solution is given by the `U` function; see :func:`~mpmath.hyperu`.
|
|
Solutions are also given in an alternate form by the Whittaker
|
|
functions (:func:`~mpmath.whitm`, :func:`~mpmath.whitw`).
|
|
|
|
``hyp1f1(a,b,z)`` is equivalent
|
|
to ``hyper([a],[b],z)``; see documentation for :func:`~mpmath.hyper` for more
|
|
information.
|
|
|
|
**Examples**
|
|
|
|
Evaluation for real and complex values of the argument `z`, with
|
|
fixed parameters `a = 2, b = -1/3`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> hyp1f1(2, (-1,3), 3.25)
|
|
-2815.956856924817275640248
|
|
>>> hyp1f1(2, (-1,3), -3.25)
|
|
-1.145036502407444445553107
|
|
>>> hyp1f1(2, (-1,3), 1000)
|
|
-8.021799872770764149793693e+441
|
|
>>> hyp1f1(2, (-1,3), -1000)
|
|
0.000003131987633006813594535331
|
|
>>> hyp1f1(2, (-1,3), 100+100j)
|
|
(-3.189190365227034385898282e+48 - 1.106169926814270418999315e+49j)
|
|
|
|
Parameters may be complex::
|
|
|
|
>>> hyp1f1(2+3j, -1+j, 10j)
|
|
(261.8977905181045142673351 + 160.8930312845682213562172j)
|
|
|
|
Arbitrarily large values of `z` are supported::
|
|
|
|
>>> hyp1f1(3, 4, 10**20)
|
|
3.890569218254486878220752e+43429448190325182745
|
|
>>> hyp1f1(3, 4, -10**20)
|
|
6.0e-60
|
|
>>> hyp1f1(3, 4, 10**20*j)
|
|
(-1.935753855797342532571597e-20 - 2.291911213325184901239155e-20j)
|
|
|
|
Verifying the differential equation::
|
|
|
|
>>> a, b = 1.5, 2
|
|
>>> f = lambda z: hyp1f1(a,b,z)
|
|
>>> for z in [0, -10, 3, 3+4j]:
|
|
... chop(z*diff(f,z,2) + (b-z)*diff(f,z) - a*f(z))
|
|
...
|
|
0.0
|
|
0.0
|
|
0.0
|
|
0.0
|
|
|
|
An integral representation::
|
|
|
|
>>> a, b = 1.5, 3
|
|
>>> z = 1.5
|
|
>>> hyp1f1(a,b,z)
|
|
2.269381460919952778587441
|
|
>>> g = lambda t: exp(z*t)*t**(a-1)*(1-t)**(b-a-1)
|
|
>>> gammaprod([b],[a,b-a])*quad(g, [0,1])
|
|
2.269381460919952778587441
|
|
|
|
|
|
"""
|
|
|
|
hyp1f2 = r"""
|
|
Gives the hypergeometric function `\,_1F_2(a_1,a_2;b_1,b_2; z)`.
|
|
The call ``hyp1f2(a1,b1,b2,z)`` is equivalent to
|
|
``hyper([a1],[b1,b2],z)``.
|
|
|
|
Evaluation works for complex and arbitrarily large arguments::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> a, b, c = 1.5, (-1,3), 2.25
|
|
>>> hyp1f2(a, b, c, 10**20)
|
|
-1.159388148811981535941434e+8685889639
|
|
>>> hyp1f2(a, b, c, -10**20)
|
|
-12.60262607892655945795907
|
|
>>> hyp1f2(a, b, c, 10**20*j)
|
|
(4.237220401382240876065501e+6141851464 - 2.950930337531768015892987e+6141851464j)
|
|
>>> hyp1f2(2+3j, -2j, 0.5j, 10-20j)
|
|
(135881.9905586966432662004 - 86681.95885418079535738828j)
|
|
|
|
"""
|
|
|
|
hyp2f2 = r"""
|
|
Gives the hypergeometric function `\,_2F_2(a_1,a_2;b_1,b_2; z)`.
|
|
The call ``hyp2f2(a1,a2,b1,b2,z)`` is equivalent to
|
|
``hyper([a1,a2],[b1,b2],z)``.
|
|
|
|
Evaluation works for complex and arbitrarily large arguments::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> a, b, c, d = 1.5, (-1,3), 2.25, 4
|
|
>>> hyp2f2(a, b, c, d, 10**20)
|
|
-5.275758229007902299823821e+43429448190325182663
|
|
>>> hyp2f2(a, b, c, d, -10**20)
|
|
2561445.079983207701073448
|
|
>>> hyp2f2(a, b, c, d, 10**20*j)
|
|
(2218276.509664121194836667 - 1280722.539991603850462856j)
|
|
>>> hyp2f2(2+3j, -2j, 0.5j, 4j, 10-20j)
|
|
(80500.68321405666957342788 - 20346.82752982813540993502j)
|
|
|
|
"""
|
|
|
|
hyp2f3 = r"""
|
|
Gives the hypergeometric function `\,_2F_3(a_1,a_2;b_1,b_2,b_3; z)`.
|
|
The call ``hyp2f3(a1,a2,b1,b2,b3,z)`` is equivalent to
|
|
``hyper([a1,a2],[b1,b2,b3],z)``.
|
|
|
|
Evaluation works for arbitrarily large arguments::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> a1,a2,b1,b2,b3 = 1.5, (-1,3), 2.25, 4, (1,5)
|
|
>>> hyp2f3(a1,a2,b1,b2,b3,10**20)
|
|
-4.169178177065714963568963e+8685889590
|
|
>>> hyp2f3(a1,a2,b1,b2,b3,-10**20)
|
|
7064472.587757755088178629
|
|
>>> hyp2f3(a1,a2,b1,b2,b3,10**20*j)
|
|
(-5.163368465314934589818543e+6141851415 + 1.783578125755972803440364e+6141851416j)
|
|
>>> hyp2f3(2+3j, -2j, 0.5j, 4j, -1-j, 10-20j)
|
|
(-2280.938956687033150740228 + 13620.97336609573659199632j)
|
|
>>> hyp2f3(2+3j, -2j, 0.5j, 4j, -1-j, 10000000-20000000j)
|
|
(4.849835186175096516193e+3504 - 3.365981529122220091353633e+3504j)
|
|
|
|
"""
|
|
|
|
hyp2f1 = r"""
|
|
Gives the Gauss hypergeometric function `\,_2F_1` (often simply referred to as
|
|
*the* hypergeometric function), defined for `|z| < 1` as
|
|
|
|
.. math ::
|
|
|
|
\,_2F_1(a,b,c,z) = \sum_{k=0}^{\infty}
|
|
\frac{(a)_k (b)_k}{(c)_k} \frac{z^k}{k!}.
|
|
|
|
and for `|z| \ge 1` by analytic continuation, with a branch cut on `(1, \infty)`
|
|
when necessary.
|
|
|
|
Special cases of this function include many of the orthogonal polynomials as
|
|
well as the incomplete beta function and other functions. Properties of the
|
|
Gauss hypergeometric function are documented comprehensively in many references,
|
|
for example Abramowitz & Stegun, section 15.
|
|
|
|
The implementation supports the analytic continuation as well as evaluation
|
|
close to the unit circle where `|z| \approx 1`. The syntax ``hyp2f1(a,b,c,z)``
|
|
is equivalent to ``hyper([a,b],[c],z)``.
|
|
|
|
**Examples**
|
|
|
|
Evaluation with `z` inside, outside and on the unit circle, for
|
|
fixed parameters::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> hyp2f1(2, (1,2), 4, 0.75)
|
|
1.303703703703703703703704
|
|
>>> hyp2f1(2, (1,2), 4, -1.75)
|
|
0.7431290566046919177853916
|
|
>>> hyp2f1(2, (1,2), 4, 1.75)
|
|
(1.418075801749271137026239 - 1.114976146679907015775102j)
|
|
>>> hyp2f1(2, (1,2), 4, 1)
|
|
1.6
|
|
>>> hyp2f1(2, (1,2), 4, -1)
|
|
0.8235498012182875315037882
|
|
>>> hyp2f1(2, (1,2), 4, j)
|
|
(0.9144026291433065674259078 + 0.2050415770437884900574923j)
|
|
>>> hyp2f1(2, (1,2), 4, 2+j)
|
|
(0.9274013540258103029011549 + 0.7455257875808100868984496j)
|
|
>>> hyp2f1(2, (1,2), 4, 0.25j)
|
|
(0.9931169055799728251931672 + 0.06154836525312066938147793j)
|
|
|
|
Evaluation with complex parameter values::
|
|
|
|
>>> hyp2f1(1+j, 0.75, 10j, 1+5j)
|
|
(0.8834833319713479923389638 + 0.7053886880648105068343509j)
|
|
|
|
Evaluation with `z = 1`::
|
|
|
|
>>> hyp2f1(-2.5, 3.5, 1.5, 1)
|
|
0.0
|
|
>>> hyp2f1(-2.5, 3, 4, 1)
|
|
0.06926406926406926406926407
|
|
>>> hyp2f1(2, 3, 4, 1)
|
|
+inf
|
|
|
|
Evaluation for huge arguments::
|
|
|
|
>>> hyp2f1((-1,3), 1.75, 4, '1e100')
|
|
(7.883714220959876246415651e+32 + 1.365499358305579597618785e+33j)
|
|
>>> hyp2f1((-1,3), 1.75, 4, '1e1000000')
|
|
(7.883714220959876246415651e+333332 + 1.365499358305579597618785e+333333j)
|
|
>>> hyp2f1((-1,3), 1.75, 4, '1e1000000j')
|
|
(1.365499358305579597618785e+333333 - 7.883714220959876246415651e+333332j)
|
|
|
|
An integral representation::
|
|
|
|
>>> a,b,c,z = -0.5, 1, 2.5, 0.25
|
|
>>> g = lambda t: t**(b-1) * (1-t)**(c-b-1) * (1-t*z)**(-a)
|
|
>>> gammaprod([c],[b,c-b]) * quad(g, [0,1])
|
|
0.9480458814362824478852618
|
|
>>> hyp2f1(a,b,c,z)
|
|
0.9480458814362824478852618
|
|
|
|
Verifying the hypergeometric differential equation::
|
|
|
|
>>> f = lambda z: hyp2f1(a,b,c,z)
|
|
>>> chop(z*(1-z)*diff(f,z,2) + (c-(a+b+1)*z)*diff(f,z) - a*b*f(z))
|
|
0.0
|
|
|
|
"""
|
|
|
|
hyp3f2 = r"""
|
|
Gives the generalized hypergeometric function `\,_3F_2`, defined for `|z| < 1`
|
|
as
|
|
|
|
.. math ::
|
|
|
|
\,_3F_2(a_1,a_2,a_3,b_1,b_2,z) = \sum_{k=0}^{\infty}
|
|
\frac{(a_1)_k (a_2)_k (a_3)_k}{(b_1)_k (b_2)_k} \frac{z^k}{k!}.
|
|
|
|
and for `|z| \ge 1` by analytic continuation. The analytic structure of this
|
|
function is similar to that of `\,_2F_1`, generally with a singularity at
|
|
`z = 1` and a branch cut on `(1, \infty)`.
|
|
|
|
Evaluation is supported inside, on, and outside
|
|
the circle of convergence `|z| = 1`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> hyp3f2(1,2,3,4,5,0.25)
|
|
1.083533123380934241548707
|
|
>>> hyp3f2(1,2+2j,3,4,5,-10+10j)
|
|
(0.1574651066006004632914361 - 0.03194209021885226400892963j)
|
|
>>> hyp3f2(1,2,3,4,5,-10)
|
|
0.3071141169208772603266489
|
|
>>> hyp3f2(1,2,3,4,5,10)
|
|
(-0.4857045320523947050581423 - 0.5988311440454888436888028j)
|
|
>>> hyp3f2(0.25,1,1,2,1.5,1)
|
|
1.157370995096772047567631
|
|
>>> (8-pi-2*ln2)/3
|
|
1.157370995096772047567631
|
|
>>> hyp3f2(1+j,0.5j,2,1,-2j,-1)
|
|
(1.74518490615029486475959 + 0.1454701525056682297614029j)
|
|
>>> hyp3f2(1+j,0.5j,2,1,-2j,sqrt(j))
|
|
(0.9829816481834277511138055 - 0.4059040020276937085081127j)
|
|
>>> hyp3f2(-3,2,1,-5,4,1)
|
|
1.41
|
|
>>> hyp3f2(-3,2,1,-5,4,2)
|
|
2.12
|
|
|
|
Evaluation very close to the unit circle::
|
|
|
|
>>> hyp3f2(1,2,3,4,5,'1.0001')
|
|
(1.564877796743282766872279 - 3.76821518787438186031973e-11j)
|
|
>>> hyp3f2(1,2,3,4,5,'1+0.0001j')
|
|
(1.564747153061671573212831 + 0.0001305757570366084557648482j)
|
|
>>> hyp3f2(1,2,3,4,5,'0.9999')
|
|
1.564616644881686134983664
|
|
>>> hyp3f2(1,2,3,4,5,'-0.9999')
|
|
0.7823896253461678060196207
|
|
|
|
.. note ::
|
|
|
|
Evaluation for `|z-1|` small can currently be inaccurate or slow
|
|
for some parameter combinations.
|
|
|
|
For various parameter combinations, `\,_3F_2` admits representation in terms
|
|
of hypergeometric functions of lower degree, or in terms of
|
|
simpler functions::
|
|
|
|
>>> for a, b, z in [(1,2,-1), (2,0.5,1)]:
|
|
... hyp2f1(a,b,a+b+0.5,z)**2
|
|
... hyp3f2(2*a,a+b,2*b,a+b+0.5,2*a+2*b,z)
|
|
...
|
|
0.4246104461966439006086308
|
|
0.4246104461966439006086308
|
|
7.111111111111111111111111
|
|
7.111111111111111111111111
|
|
|
|
>>> z = 2+3j
|
|
>>> hyp3f2(0.5,1,1.5,2,2,z)
|
|
(0.7621440939243342419729144 + 0.4249117735058037649915723j)
|
|
>>> 4*(pi-2*ellipe(z))/(pi*z)
|
|
(0.7621440939243342419729144 + 0.4249117735058037649915723j)
|
|
|
|
"""
|
|
|
|
hyperu = r"""
|
|
Gives the Tricomi confluent hypergeometric function `U`, also known as
|
|
the Kummer or confluent hypergeometric function of the second kind. This
|
|
function gives a second linearly independent solution to the confluent
|
|
hypergeometric differential equation (the first is provided by `\,_1F_1` --
|
|
see :func:`~mpmath.hyp1f1`).
|
|
|
|
**Examples**
|
|
|
|
Evaluation for arbitrary complex arguments::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> hyperu(2,3,4)
|
|
0.0625
|
|
>>> hyperu(0.25, 5, 1000)
|
|
0.1779949416140579573763523
|
|
>>> hyperu(0.25, 5, -1000)
|
|
(0.1256256609322773150118907 - 0.1256256609322773150118907j)
|
|
|
|
The `U` function may be singular at `z = 0`::
|
|
|
|
>>> hyperu(1.5, 2, 0)
|
|
+inf
|
|
>>> hyperu(1.5, -2, 0)
|
|
0.1719434921288400112603671
|
|
|
|
Verifying the differential equation::
|
|
|
|
>>> a, b = 1.5, 2
|
|
>>> f = lambda z: hyperu(a,b,z)
|
|
>>> for z in [-10, 3, 3+4j]:
|
|
... chop(z*diff(f,z,2) + (b-z)*diff(f,z) - a*f(z))
|
|
...
|
|
0.0
|
|
0.0
|
|
0.0
|
|
|
|
An integral representation::
|
|
|
|
>>> a,b,z = 2, 3.5, 4.25
|
|
>>> hyperu(a,b,z)
|
|
0.06674960718150520648014567
|
|
>>> quad(lambda t: exp(-z*t)*t**(a-1)*(1+t)**(b-a-1),[0,inf]) / gamma(a)
|
|
0.06674960718150520648014567
|
|
|
|
|
|
[1] http://people.math.sfu.ca/~cbm/aands/page_504.htm
|
|
"""
|
|
|
|
hyp2f0 = r"""
|
|
Gives the hypergeometric function `\,_2F_0`, defined formally by the
|
|
series
|
|
|
|
.. math ::
|
|
|
|
\,_2F_0(a,b;;z) = \sum_{n=0}^{\infty} (a)_n (b)_n \frac{z^n}{n!}.
|
|
|
|
This series usually does not converge. For small enough `z`, it can be viewed
|
|
as an asymptotic series that may be summed directly with an appropriate
|
|
truncation. When this is not the case, :func:`~mpmath.hyp2f0` gives a regularized sum,
|
|
or equivalently, it uses a representation in terms of the
|
|
hypergeometric U function [1]. The series also converges when either `a` or `b`
|
|
is a nonpositive integer, as it then terminates into a polynomial
|
|
after `-a` or `-b` terms.
|
|
|
|
**Examples**
|
|
|
|
Evaluation is supported for arbitrary complex arguments::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> hyp2f0((2,3), 1.25, -100)
|
|
0.07095851870980052763312791
|
|
>>> hyp2f0((2,3), 1.25, 100)
|
|
(-0.03254379032170590665041131 + 0.07269254613282301012735797j)
|
|
>>> hyp2f0(-0.75, 1-j, 4j)
|
|
(-0.3579987031082732264862155 - 3.052951783922142735255881j)
|
|
|
|
Even with real arguments, the regularized value of 2F0 is often complex-valued,
|
|
but the imaginary part decreases exponentially as `z \to 0`. In the following
|
|
example, the first call uses complex evaluation while the second has a small
|
|
enough `z` to evaluate using the direct series and thus the returned value
|
|
is strictly real (this should be taken to indicate that the imaginary
|
|
part is less than ``eps``)::
|
|
|
|
>>> mp.dps = 15
|
|
>>> hyp2f0(1.5, 0.5, 0.05)
|
|
(1.04166637647907 + 8.34584913683906e-8j)
|
|
>>> hyp2f0(1.5, 0.5, 0.0005)
|
|
1.00037535207621
|
|
|
|
The imaginary part can be retrieved by increasing the working precision::
|
|
|
|
>>> mp.dps = 80
|
|
>>> nprint(hyp2f0(1.5, 0.5, 0.009).imag)
|
|
1.23828e-46
|
|
|
|
In the polynomial case (the series terminating), 2F0 can evaluate exactly::
|
|
|
|
>>> mp.dps = 15
|
|
>>> hyp2f0(-6,-6,2)
|
|
291793.0
|
|
>>> identify(hyp2f0(-2,1,0.25))
|
|
'(5/8)'
|
|
|
|
The coefficients of the polynomials can be recovered using Taylor expansion::
|
|
|
|
>>> nprint(taylor(lambda x: hyp2f0(-3,0.5,x), 0, 10))
|
|
[1.0, -1.5, 2.25, -1.875, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
|
|
>>> nprint(taylor(lambda x: hyp2f0(-4,0.5,x), 0, 10))
|
|
[1.0, -2.0, 4.5, -7.5, 6.5625, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
|
|
|
|
|
|
[1] http://people.math.sfu.ca/~cbm/aands/page_504.htm
|
|
"""
|
|
|
|
|
|
gammainc = r"""
|
|
``gammainc(z, a=0, b=inf)`` computes the (generalized) incomplete
|
|
gamma function with integration limits `[a, b]`:
|
|
|
|
.. math ::
|
|
|
|
\Gamma(z,a,b) = \int_a^b t^{z-1} e^{-t} \, dt
|
|
|
|
The generalized incomplete gamma function reduces to the
|
|
following special cases when one or both endpoints are fixed:
|
|
|
|
* `\Gamma(z,0,\infty)` is the standard ("complete")
|
|
gamma function, `\Gamma(z)` (available directly
|
|
as the mpmath function :func:`~mpmath.gamma`)
|
|
* `\Gamma(z,a,\infty)` is the "upper" incomplete gamma
|
|
function, `\Gamma(z,a)`
|
|
* `\Gamma(z,0,b)` is the "lower" incomplete gamma
|
|
function, `\gamma(z,b)`.
|
|
|
|
Of course, we have
|
|
`\Gamma(z,0,x) + \Gamma(z,x,\infty) = \Gamma(z)`
|
|
for all `z` and `x`.
|
|
|
|
Note however that some authors reverse the order of the
|
|
arguments when defining the lower and upper incomplete
|
|
gamma function, so one should be careful to get the correct
|
|
definition.
|
|
|
|
If also given the keyword argument ``regularized=True``,
|
|
:func:`~mpmath.gammainc` computes the "regularized" incomplete gamma
|
|
function
|
|
|
|
.. math ::
|
|
|
|
P(z,a,b) = \frac{\Gamma(z,a,b)}{\Gamma(z)}.
|
|
|
|
**Examples**
|
|
|
|
We can compare with numerical quadrature to verify that
|
|
:func:`~mpmath.gammainc` computes the integral in the definition::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> gammainc(2+3j, 4, 10)
|
|
(0.00977212668627705160602312 - 0.0770637306312989892451977j)
|
|
>>> quad(lambda t: t**(2+3j-1) * exp(-t), [4, 10])
|
|
(0.00977212668627705160602312 - 0.0770637306312989892451977j)
|
|
|
|
Argument symmetries follow directly from the integral definition::
|
|
|
|
>>> gammainc(3, 4, 5) + gammainc(3, 5, 4)
|
|
0.0
|
|
>>> gammainc(3,0,2) + gammainc(3,2,4); gammainc(3,0,4)
|
|
1.523793388892911312363331
|
|
1.523793388892911312363331
|
|
>>> findroot(lambda z: gammainc(2,z,3), 1)
|
|
3.0
|
|
|
|
Evaluation for arbitrarily large arguments::
|
|
|
|
>>> gammainc(10, 100)
|
|
4.083660630910611272288592e-26
|
|
>>> gammainc(10, 10000000000000000)
|
|
5.290402449901174752972486e-4342944819032375
|
|
>>> gammainc(3+4j, 1000000+1000000j)
|
|
(-1.257913707524362408877881e-434284 + 2.556691003883483531962095e-434284j)
|
|
|
|
Evaluation of a generalized incomplete gamma function automatically chooses
|
|
the representation that gives a more accurate result, depending on which
|
|
parameter is larger::
|
|
|
|
>>> gammainc(10000000, 3) - gammainc(10000000, 2) # Bad
|
|
0.0
|
|
>>> gammainc(10000000, 2, 3) # Good
|
|
1.755146243738946045873491e+4771204
|
|
>>> gammainc(2, 0, 100000001) - gammainc(2, 0, 100000000) # Bad
|
|
0.0
|
|
>>> gammainc(2, 100000000, 100000001) # Good
|
|
4.078258353474186729184421e-43429441
|
|
|
|
The incomplete gamma functions satisfy simple recurrence
|
|
relations::
|
|
|
|
>>> mp.dps = 25
|
|
>>> z, a = mpf(3.5), mpf(2)
|
|
>>> gammainc(z+1, a); z*gammainc(z,a) + a**z*exp(-a)
|
|
10.60130296933533459267329
|
|
10.60130296933533459267329
|
|
>>> gammainc(z+1,0,a); z*gammainc(z,0,a) - a**z*exp(-a)
|
|
1.030425427232114336470932
|
|
1.030425427232114336470932
|
|
|
|
Evaluation at integers and poles::
|
|
|
|
>>> gammainc(-3, -4, -5)
|
|
(-0.2214577048967798566234192 + 0.0j)
|
|
>>> gammainc(-3, 0, 5)
|
|
+inf
|
|
|
|
If `z` is an integer, the recurrence reduces the incomplete gamma
|
|
function to `P(a) \exp(-a) + Q(b) \exp(-b)` where `P` and
|
|
`Q` are polynomials::
|
|
|
|
>>> gammainc(1, 2); exp(-2)
|
|
0.1353352832366126918939995
|
|
0.1353352832366126918939995
|
|
>>> mp.dps = 50
|
|
>>> identify(gammainc(6, 1, 2), ['exp(-1)', 'exp(-2)'])
|
|
'(326*exp(-1) + (-872)*exp(-2))'
|
|
|
|
The incomplete gamma functions reduce to functions such as
|
|
the exponential integral Ei and the error function for special
|
|
arguments::
|
|
|
|
>>> mp.dps = 25
|
|
>>> gammainc(0, 4); -ei(-4)
|
|
0.00377935240984890647887486
|
|
0.00377935240984890647887486
|
|
>>> gammainc(0.5, 0, 2); sqrt(pi)*erf(sqrt(2))
|
|
1.691806732945198336509541
|
|
1.691806732945198336509541
|
|
|
|
"""
|
|
|
|
erf = r"""
|
|
Computes the error function, `\mathrm{erf}(x)`. The error
|
|
function is the normalized antiderivative of the Gaussian function
|
|
`\exp(-t^2)`. More precisely,
|
|
|
|
.. math::
|
|
|
|
\mathrm{erf}(x) = \frac{2}{\sqrt \pi} \int_0^x \exp(-t^2) \,dt
|
|
|
|
**Basic examples**
|
|
|
|
Simple values and limits include::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> erf(0)
|
|
0.0
|
|
>>> erf(1)
|
|
0.842700792949715
|
|
>>> erf(-1)
|
|
-0.842700792949715
|
|
>>> erf(inf)
|
|
1.0
|
|
>>> erf(-inf)
|
|
-1.0
|
|
|
|
For large real `x`, `\mathrm{erf}(x)` approaches 1 very
|
|
rapidly::
|
|
|
|
>>> erf(3)
|
|
0.999977909503001
|
|
>>> erf(5)
|
|
0.999999999998463
|
|
|
|
The error function is an odd function::
|
|
|
|
>>> nprint(chop(taylor(erf, 0, 5)))
|
|
[0.0, 1.12838, 0.0, -0.376126, 0.0, 0.112838]
|
|
|
|
:func:`~mpmath.erf` implements arbitrary-precision evaluation and
|
|
supports complex numbers::
|
|
|
|
>>> mp.dps = 50
|
|
>>> erf(0.5)
|
|
0.52049987781304653768274665389196452873645157575796
|
|
>>> mp.dps = 25
|
|
>>> erf(1+j)
|
|
(1.316151281697947644880271 + 0.1904534692378346862841089j)
|
|
|
|
Evaluation is supported for large arguments::
|
|
|
|
>>> mp.dps = 25
|
|
>>> erf('1e1000')
|
|
1.0
|
|
>>> erf('-1e1000')
|
|
-1.0
|
|
>>> erf('1e-1000')
|
|
1.128379167095512573896159e-1000
|
|
>>> erf('1e7j')
|
|
(0.0 + 8.593897639029319267398803e+43429448190317j)
|
|
>>> erf('1e7+1e7j')
|
|
(0.9999999858172446172631323 + 3.728805278735270407053139e-8j)
|
|
|
|
**Related functions**
|
|
|
|
See also :func:`~mpmath.erfc`, which is more accurate for large `x`,
|
|
and :func:`~mpmath.erfi` which gives the antiderivative of
|
|
`\exp(t^2)`.
|
|
|
|
The Fresnel integrals :func:`~mpmath.fresnels` and :func:`~mpmath.fresnelc`
|
|
are also related to the error function.
|
|
"""
|
|
|
|
erfc = r"""
|
|
Computes the complementary error function,
|
|
`\mathrm{erfc}(x) = 1-\mathrm{erf}(x)`.
|
|
This function avoids cancellation that occurs when naively
|
|
computing the complementary error function as ``1-erf(x)``::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> 1 - erf(10)
|
|
0.0
|
|
>>> erfc(10)
|
|
2.08848758376254e-45
|
|
|
|
:func:`~mpmath.erfc` works accurately even for ludicrously large
|
|
arguments::
|
|
|
|
>>> erfc(10**10)
|
|
4.3504398860243e-43429448190325182776
|
|
|
|
Complex arguments are supported::
|
|
|
|
>>> erfc(500+50j)
|
|
(1.19739830969552e-107492 + 1.46072418957528e-107491j)
|
|
|
|
"""
|
|
|
|
|
|
erfi = r"""
|
|
Computes the imaginary error function, `\mathrm{erfi}(x)`.
|
|
The imaginary error function is defined in analogy with the
|
|
error function, but with a positive sign in the integrand:
|
|
|
|
.. math ::
|
|
|
|
\mathrm{erfi}(x) = \frac{2}{\sqrt \pi} \int_0^x \exp(t^2) \,dt
|
|
|
|
Whereas the error function rapidly converges to 1 as `x` grows,
|
|
the imaginary error function rapidly diverges to infinity.
|
|
The functions are related as
|
|
`\mathrm{erfi}(x) = -i\,\mathrm{erf}(ix)` for all complex
|
|
numbers `x`.
|
|
|
|
**Examples**
|
|
|
|
Basic values and limits::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> erfi(0)
|
|
0.0
|
|
>>> erfi(1)
|
|
1.65042575879754
|
|
>>> erfi(-1)
|
|
-1.65042575879754
|
|
>>> erfi(inf)
|
|
+inf
|
|
>>> erfi(-inf)
|
|
-inf
|
|
|
|
Note the symmetry between erf and erfi::
|
|
|
|
>>> erfi(3j)
|
|
(0.0 + 0.999977909503001j)
|
|
>>> erf(3)
|
|
0.999977909503001
|
|
>>> erf(1+2j)
|
|
(-0.536643565778565 - 5.04914370344703j)
|
|
>>> erfi(2+1j)
|
|
(-5.04914370344703 - 0.536643565778565j)
|
|
|
|
Large arguments are supported::
|
|
|
|
>>> erfi(1000)
|
|
1.71130938718796e+434291
|
|
>>> erfi(10**10)
|
|
7.3167287567024e+43429448190325182754
|
|
>>> erfi(-10**10)
|
|
-7.3167287567024e+43429448190325182754
|
|
>>> erfi(1000-500j)
|
|
(2.49895233563961e+325717 + 2.6846779342253e+325717j)
|
|
>>> erfi(100000j)
|
|
(0.0 + 1.0j)
|
|
>>> erfi(-100000j)
|
|
(0.0 - 1.0j)
|
|
|
|
|
|
"""
|
|
|
|
erfinv = r"""
|
|
Computes the inverse error function, satisfying
|
|
|
|
.. math ::
|
|
|
|
\mathrm{erf}(\mathrm{erfinv}(x)) =
|
|
\mathrm{erfinv}(\mathrm{erf}(x)) = x.
|
|
|
|
This function is defined only for `-1 \le x \le 1`.
|
|
|
|
**Examples**
|
|
|
|
Special values include::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> erfinv(0)
|
|
0.0
|
|
>>> erfinv(1)
|
|
+inf
|
|
>>> erfinv(-1)
|
|
-inf
|
|
|
|
The domain is limited to the standard interval::
|
|
|
|
>>> erfinv(2)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: erfinv(x) is defined only for -1 <= x <= 1
|
|
|
|
It is simple to check that :func:`~mpmath.erfinv` computes inverse values of
|
|
:func:`~mpmath.erf` as promised::
|
|
|
|
>>> erf(erfinv(0.75))
|
|
0.75
|
|
>>> erf(erfinv(-0.995))
|
|
-0.995
|
|
|
|
:func:`~mpmath.erfinv` supports arbitrary-precision evaluation::
|
|
|
|
>>> mp.dps = 50
|
|
>>> x = erf(2)
|
|
>>> x
|
|
0.99532226501895273416206925636725292861089179704006
|
|
>>> erfinv(x)
|
|
2.0
|
|
|
|
A definite integral involving the inverse error function::
|
|
|
|
>>> mp.dps = 15
|
|
>>> quad(erfinv, [0, 1])
|
|
0.564189583547756
|
|
>>> 1/sqrt(pi)
|
|
0.564189583547756
|
|
|
|
The inverse error function can be used to generate random numbers
|
|
with a Gaussian distribution (although this is a relatively
|
|
inefficient algorithm)::
|
|
|
|
>>> nprint([erfinv(2*rand()-1) for n in range(6)]) # doctest: +SKIP
|
|
[-0.586747, 1.10233, -0.376796, 0.926037, -0.708142, -0.732012]
|
|
|
|
"""
|
|
|
|
npdf = r"""
|
|
``npdf(x, mu=0, sigma=1)`` evaluates the probability density
|
|
function of a normal distribution with mean value `\mu`
|
|
and variance `\sigma^2`.
|
|
|
|
Elementary properties of the probability distribution can
|
|
be verified using numerical integration::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> quad(npdf, [-inf, inf])
|
|
1.0
|
|
>>> quad(lambda x: npdf(x, 3), [3, inf])
|
|
0.5
|
|
>>> quad(lambda x: npdf(x, 3, 2), [3, inf])
|
|
0.5
|
|
|
|
See also :func:`~mpmath.ncdf`, which gives the cumulative
|
|
distribution.
|
|
"""
|
|
|
|
ncdf = r"""
|
|
``ncdf(x, mu=0, sigma=1)`` evaluates the cumulative distribution
|
|
function of a normal distribution with mean value `\mu`
|
|
and variance `\sigma^2`.
|
|
|
|
See also :func:`~mpmath.npdf`, which gives the probability density.
|
|
|
|
Elementary properties include::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> ncdf(pi, mu=pi)
|
|
0.5
|
|
>>> ncdf(-inf)
|
|
0.0
|
|
>>> ncdf(+inf)
|
|
1.0
|
|
|
|
The cumulative distribution is the integral of the density
|
|
function having identical mu and sigma::
|
|
|
|
>>> mp.dps = 15
|
|
>>> diff(ncdf, 2)
|
|
0.053990966513188
|
|
>>> npdf(2)
|
|
0.053990966513188
|
|
>>> diff(lambda x: ncdf(x, 1, 0.5), 0)
|
|
0.107981933026376
|
|
>>> npdf(0, 1, 0.5)
|
|
0.107981933026376
|
|
"""
|
|
|
|
expint = r"""
|
|
:func:`~mpmath.expint(n,z)` gives the generalized exponential integral
|
|
or En-function,
|
|
|
|
.. math ::
|
|
|
|
\mathrm{E}_n(z) = \int_1^{\infty} \frac{e^{-zt}}{t^n} dt,
|
|
|
|
where `n` and `z` may both be complex numbers. The case with `n = 1` is
|
|
also given by :func:`~mpmath.e1`.
|
|
|
|
**Examples**
|
|
|
|
Evaluation at real and complex arguments::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> expint(1, 6.25)
|
|
0.0002704758872637179088496194
|
|
>>> expint(-3, 2+3j)
|
|
(0.00299658467335472929656159 + 0.06100816202125885450319632j)
|
|
>>> expint(2+3j, 4-5j)
|
|
(0.001803529474663565056945248 - 0.002235061547756185403349091j)
|
|
|
|
At negative integer values of `n`, `E_n(z)` reduces to a
|
|
rational-exponential function::
|
|
|
|
>>> f = lambda n, z: fac(n)*sum(z**k/fac(k-1) for k in range(1,n+2))/\
|
|
... exp(z)/z**(n+2)
|
|
>>> n = 3
|
|
>>> z = 1/pi
|
|
>>> expint(-n,z)
|
|
584.2604820613019908668219
|
|
>>> f(n,z)
|
|
584.2604820613019908668219
|
|
>>> n = 5
|
|
>>> expint(-n,z)
|
|
115366.5762594725451811138
|
|
>>> f(n,z)
|
|
115366.5762594725451811138
|
|
"""
|
|
|
|
e1 = r"""
|
|
Computes the exponential integral `\mathrm{E}_1(z)`, given by
|
|
|
|
.. math ::
|
|
|
|
\mathrm{E}_1(z) = \int_z^{\infty} \frac{e^{-t}}{t} dt.
|
|
|
|
This is equivalent to :func:`~mpmath.expint` with `n = 1`.
|
|
|
|
**Examples**
|
|
|
|
Two ways to evaluate this function::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> e1(6.25)
|
|
0.0002704758872637179088496194
|
|
>>> expint(1,6.25)
|
|
0.0002704758872637179088496194
|
|
|
|
The E1-function is essentially the same as the Ei-function (:func:`~mpmath.ei`)
|
|
with negated argument, except for an imaginary branch cut term::
|
|
|
|
>>> e1(2.5)
|
|
0.02491491787026973549562801
|
|
>>> -ei(-2.5)
|
|
0.02491491787026973549562801
|
|
>>> e1(-2.5)
|
|
(-7.073765894578600711923552 - 3.141592653589793238462643j)
|
|
>>> -ei(2.5)
|
|
-7.073765894578600711923552
|
|
|
|
"""
|
|
|
|
ei = r"""
|
|
Computes the exponential integral or Ei-function, `\mathrm{Ei}(x)`.
|
|
The exponential integral is defined as
|
|
|
|
.. math ::
|
|
|
|
\mathrm{Ei}(x) = \int_{-\infty\,}^x \frac{e^t}{t} \, dt.
|
|
|
|
When the integration range includes `t = 0`, the exponential
|
|
integral is interpreted as providing the Cauchy principal value.
|
|
|
|
For real `x`, the Ei-function behaves roughly like
|
|
`\mathrm{Ei}(x) \approx \exp(x) + \log(|x|)`.
|
|
|
|
The Ei-function is related to the more general family of exponential
|
|
integral functions denoted by `E_n`, which are available as :func:`~mpmath.expint`.
|
|
|
|
**Basic examples**
|
|
|
|
Some basic values and limits are::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> ei(0)
|
|
-inf
|
|
>>> ei(1)
|
|
1.89511781635594
|
|
>>> ei(inf)
|
|
+inf
|
|
>>> ei(-inf)
|
|
0.0
|
|
|
|
For `x < 0`, the defining integral can be evaluated
|
|
numerically as a reference::
|
|
|
|
>>> ei(-4)
|
|
-0.00377935240984891
|
|
>>> quad(lambda t: exp(t)/t, [-inf, -4])
|
|
-0.00377935240984891
|
|
|
|
:func:`~mpmath.ei` supports complex arguments and arbitrary
|
|
precision evaluation::
|
|
|
|
>>> mp.dps = 50
|
|
>>> ei(pi)
|
|
10.928374389331410348638445906907535171566338835056
|
|
>>> mp.dps = 25
|
|
>>> ei(3+4j)
|
|
(-4.154091651642689822535359 + 4.294418620024357476985535j)
|
|
|
|
**Related functions**
|
|
|
|
The exponential integral is closely related to the logarithmic
|
|
integral. See :func:`~mpmath.li` for additional information.
|
|
|
|
The exponential integral is related to the hyperbolic
|
|
and trigonometric integrals (see :func:`~mpmath.chi`, :func:`~mpmath.shi`,
|
|
:func:`~mpmath.ci`, :func:`~mpmath.si`) similarly to how the ordinary
|
|
exponential function is related to the hyperbolic and
|
|
trigonometric functions::
|
|
|
|
>>> mp.dps = 15
|
|
>>> ei(3)
|
|
9.93383257062542
|
|
>>> chi(3) + shi(3)
|
|
9.93383257062542
|
|
>>> chop(ci(3j) - j*si(3j) - pi*j/2)
|
|
9.93383257062542
|
|
|
|
Beware that logarithmic corrections, as in the last example
|
|
above, are required to obtain the correct branch in general.
|
|
For details, see [1].
|
|
|
|
The exponential integral is also a special case of the
|
|
hypergeometric function `\,_2F_2`::
|
|
|
|
>>> z = 0.6
|
|
>>> z*hyper([1,1],[2,2],z) + (ln(z)-ln(1/z))/2 + euler
|
|
0.769881289937359
|
|
>>> ei(z)
|
|
0.769881289937359
|
|
|
|
**References**
|
|
|
|
1. Relations between Ei and other functions:
|
|
http://functions.wolfram.com/GammaBetaErf/ExpIntegralEi/27/01/
|
|
|
|
2. Abramowitz & Stegun, section 5:
|
|
http://people.math.sfu.ca/~cbm/aands/page_228.htm
|
|
|
|
3. Asymptotic expansion for Ei:
|
|
http://mathworld.wolfram.com/En-Function.html
|
|
"""
|
|
|
|
li = r"""
|
|
Computes the logarithmic integral or li-function
|
|
`\mathrm{li}(x)`, defined by
|
|
|
|
.. math ::
|
|
|
|
\mathrm{li}(x) = \int_0^x \frac{1}{\log t} \, dt
|
|
|
|
The logarithmic integral has a singularity at `x = 1`.
|
|
|
|
Alternatively, ``li(x, offset=True)`` computes the offset
|
|
logarithmic integral (used in number theory)
|
|
|
|
.. math ::
|
|
|
|
\mathrm{Li}(x) = \int_2^x \frac{1}{\log t} \, dt.
|
|
|
|
These two functions are related via the simple identity
|
|
`\mathrm{Li}(x) = \mathrm{li}(x) - \mathrm{li}(2)`.
|
|
|
|
The logarithmic integral should also not be confused with
|
|
the polylogarithm (also denoted by Li), which is implemented
|
|
as :func:`~mpmath.polylog`.
|
|
|
|
**Examples**
|
|
|
|
Some basic values and limits::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 30; mp.pretty = True
|
|
>>> li(0)
|
|
0.0
|
|
>>> li(1)
|
|
-inf
|
|
>>> li(1)
|
|
-inf
|
|
>>> li(2)
|
|
1.04516378011749278484458888919
|
|
>>> findroot(li, 2)
|
|
1.45136923488338105028396848589
|
|
>>> li(inf)
|
|
+inf
|
|
>>> li(2, offset=True)
|
|
0.0
|
|
>>> li(1, offset=True)
|
|
-inf
|
|
>>> li(0, offset=True)
|
|
-1.04516378011749278484458888919
|
|
>>> li(10, offset=True)
|
|
5.12043572466980515267839286347
|
|
|
|
The logarithmic integral can be evaluated for arbitrary
|
|
complex arguments::
|
|
|
|
>>> mp.dps = 20
|
|
>>> li(3+4j)
|
|
(3.1343755504645775265 + 2.6769247817778742392j)
|
|
|
|
The logarithmic integral is related to the exponential integral::
|
|
|
|
>>> ei(log(3))
|
|
2.1635885946671919729
|
|
>>> li(3)
|
|
2.1635885946671919729
|
|
|
|
The logarithmic integral grows like `O(x/\log(x))`::
|
|
|
|
>>> mp.dps = 15
|
|
>>> x = 10**100
|
|
>>> x/log(x)
|
|
4.34294481903252e+97
|
|
>>> li(x)
|
|
4.3619719871407e+97
|
|
|
|
The prime number theorem states that the number of primes less
|
|
than `x` is asymptotic to `\mathrm{Li}(x)` (equivalently
|
|
`\mathrm{li}(x)`). For example, it is known that there are
|
|
exactly 1,925,320,391,606,803,968,923 prime numbers less than
|
|
`10^{23}` [1]. The logarithmic integral provides a very
|
|
accurate estimate::
|
|
|
|
>>> li(10**23, offset=True)
|
|
1.92532039161405e+21
|
|
|
|
A definite integral is::
|
|
|
|
>>> quad(li, [0, 1])
|
|
-0.693147180559945
|
|
>>> -ln(2)
|
|
-0.693147180559945
|
|
|
|
**References**
|
|
|
|
1. http://mathworld.wolfram.com/PrimeCountingFunction.html
|
|
|
|
2. http://mathworld.wolfram.com/LogarithmicIntegral.html
|
|
|
|
"""
|
|
|
|
ci = r"""
|
|
Computes the cosine integral,
|
|
|
|
.. math ::
|
|
|
|
\mathrm{Ci}(x) = -\int_x^{\infty} \frac{\cos t}{t}\,dt
|
|
= \gamma + \log x + \int_0^x \frac{\cos t - 1}{t}\,dt
|
|
|
|
**Examples**
|
|
|
|
Some values and limits::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> ci(0)
|
|
-inf
|
|
>>> ci(1)
|
|
0.3374039229009681346626462
|
|
>>> ci(pi)
|
|
0.07366791204642548599010096
|
|
>>> ci(inf)
|
|
0.0
|
|
>>> ci(-inf)
|
|
(0.0 + 3.141592653589793238462643j)
|
|
>>> ci(2+3j)
|
|
(1.408292501520849518759125 - 2.983617742029605093121118j)
|
|
|
|
The cosine integral behaves roughly like the sinc function
|
|
(see :func:`~mpmath.sinc`) for large real `x`::
|
|
|
|
>>> ci(10**10)
|
|
-4.875060251748226537857298e-11
|
|
>>> sinc(10**10)
|
|
-4.875060250875106915277943e-11
|
|
>>> chop(limit(ci, inf))
|
|
0.0
|
|
|
|
It has infinitely many roots on the positive real axis::
|
|
|
|
>>> findroot(ci, 1)
|
|
0.6165054856207162337971104
|
|
>>> findroot(ci, 2)
|
|
3.384180422551186426397851
|
|
|
|
Evaluation is supported for `z` anywhere in the complex plane::
|
|
|
|
>>> ci(10**6*(1+j))
|
|
(4.449410587611035724984376e+434287 + 9.75744874290013526417059e+434287j)
|
|
|
|
We can evaluate the defining integral as a reference::
|
|
|
|
>>> mp.dps = 15
|
|
>>> -quadosc(lambda t: cos(t)/t, [5, inf], omega=1)
|
|
-0.190029749656644
|
|
>>> ci(5)
|
|
-0.190029749656644
|
|
|
|
Some infinite series can be evaluated using the
|
|
cosine integral::
|
|
|
|
>>> nsum(lambda k: (-1)**k/(fac(2*k)*(2*k)), [1,inf])
|
|
-0.239811742000565
|
|
>>> ci(1) - euler
|
|
-0.239811742000565
|
|
|
|
"""
|
|
|
|
si = r"""
|
|
Computes the sine integral,
|
|
|
|
.. math ::
|
|
|
|
\mathrm{Si}(x) = \int_0^x \frac{\sin t}{t}\,dt.
|
|
|
|
The sine integral is thus the antiderivative of the sinc
|
|
function (see :func:`~mpmath.sinc`).
|
|
|
|
**Examples**
|
|
|
|
Some values and limits::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> si(0)
|
|
0.0
|
|
>>> si(1)
|
|
0.9460830703671830149413533
|
|
>>> si(-1)
|
|
-0.9460830703671830149413533
|
|
>>> si(pi)
|
|
1.851937051982466170361053
|
|
>>> si(inf)
|
|
1.570796326794896619231322
|
|
>>> si(-inf)
|
|
-1.570796326794896619231322
|
|
>>> si(2+3j)
|
|
(4.547513889562289219853204 + 1.399196580646054789459839j)
|
|
|
|
The sine integral approaches `\pi/2` for large real `x`::
|
|
|
|
>>> si(10**10)
|
|
1.570796326707584656968511
|
|
>>> pi/2
|
|
1.570796326794896619231322
|
|
|
|
Evaluation is supported for `z` anywhere in the complex plane::
|
|
|
|
>>> si(10**6*(1+j))
|
|
(-9.75744874290013526417059e+434287 + 4.449410587611035724984376e+434287j)
|
|
|
|
We can evaluate the defining integral as a reference::
|
|
|
|
>>> mp.dps = 15
|
|
>>> quad(sinc, [0, 5])
|
|
1.54993124494467
|
|
>>> si(5)
|
|
1.54993124494467
|
|
|
|
Some infinite series can be evaluated using the
|
|
sine integral::
|
|
|
|
>>> nsum(lambda k: (-1)**k/(fac(2*k+1)*(2*k+1)), [0,inf])
|
|
0.946083070367183
|
|
>>> si(1)
|
|
0.946083070367183
|
|
|
|
"""
|
|
|
|
chi = r"""
|
|
Computes the hyperbolic cosine integral, defined
|
|
in analogy with the cosine integral (see :func:`~mpmath.ci`) as
|
|
|
|
.. math ::
|
|
|
|
\mathrm{Chi}(x) = -\int_x^{\infty} \frac{\cosh t}{t}\,dt
|
|
= \gamma + \log x + \int_0^x \frac{\cosh t - 1}{t}\,dt
|
|
|
|
Some values and limits::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> chi(0)
|
|
-inf
|
|
>>> chi(1)
|
|
0.8378669409802082408946786
|
|
>>> chi(inf)
|
|
+inf
|
|
>>> findroot(chi, 0.5)
|
|
0.5238225713898644064509583
|
|
>>> chi(2+3j)
|
|
(-0.1683628683277204662429321 + 2.625115880451325002151688j)
|
|
|
|
Evaluation is supported for `z` anywhere in the complex plane::
|
|
|
|
>>> chi(10**6*(1+j))
|
|
(4.449410587611035724984376e+434287 - 9.75744874290013526417059e+434287j)
|
|
|
|
"""
|
|
|
|
shi = r"""
|
|
Computes the hyperbolic sine integral, defined
|
|
in analogy with the sine integral (see :func:`~mpmath.si`) as
|
|
|
|
.. math ::
|
|
|
|
\mathrm{Shi}(x) = \int_0^x \frac{\sinh t}{t}\,dt.
|
|
|
|
Some values and limits::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> shi(0)
|
|
0.0
|
|
>>> shi(1)
|
|
1.057250875375728514571842
|
|
>>> shi(-1)
|
|
-1.057250875375728514571842
|
|
>>> shi(inf)
|
|
+inf
|
|
>>> shi(2+3j)
|
|
(-0.1931890762719198291678095 + 2.645432555362369624818525j)
|
|
|
|
Evaluation is supported for `z` anywhere in the complex plane::
|
|
|
|
>>> shi(10**6*(1+j))
|
|
(4.449410587611035724984376e+434287 - 9.75744874290013526417059e+434287j)
|
|
|
|
"""
|
|
|
|
fresnels = r"""
|
|
Computes the Fresnel sine integral
|
|
|
|
.. math ::
|
|
|
|
S(x) = \int_0^x \sin\left(\frac{\pi t^2}{2}\right) \,dt
|
|
|
|
Note that some sources define this function
|
|
without the normalization factor `\pi/2`.
|
|
|
|
**Examples**
|
|
|
|
Some basic values and limits::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> fresnels(0)
|
|
0.0
|
|
>>> fresnels(inf)
|
|
0.5
|
|
>>> fresnels(-inf)
|
|
-0.5
|
|
>>> fresnels(1)
|
|
0.4382591473903547660767567
|
|
>>> fresnels(1+2j)
|
|
(36.72546488399143842838788 + 15.58775110440458732748279j)
|
|
|
|
Comparing with the definition::
|
|
|
|
>>> fresnels(3)
|
|
0.4963129989673750360976123
|
|
>>> quad(lambda t: sin(pi*t**2/2), [0,3])
|
|
0.4963129989673750360976123
|
|
"""
|
|
|
|
fresnelc = r"""
|
|
Computes the Fresnel cosine integral
|
|
|
|
.. math ::
|
|
|
|
C(x) = \int_0^x \cos\left(\frac{\pi t^2}{2}\right) \,dt
|
|
|
|
Note that some sources define this function
|
|
without the normalization factor `\pi/2`.
|
|
|
|
**Examples**
|
|
|
|
Some basic values and limits::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> fresnelc(0)
|
|
0.0
|
|
>>> fresnelc(inf)
|
|
0.5
|
|
>>> fresnelc(-inf)
|
|
-0.5
|
|
>>> fresnelc(1)
|
|
0.7798934003768228294742064
|
|
>>> fresnelc(1+2j)
|
|
(16.08787137412548041729489 - 36.22568799288165021578758j)
|
|
|
|
Comparing with the definition::
|
|
|
|
>>> fresnelc(3)
|
|
0.6057207892976856295561611
|
|
>>> quad(lambda t: cos(pi*t**2/2), [0,3])
|
|
0.6057207892976856295561611
|
|
"""
|
|
|
|
airyai = r"""
|
|
Computes the Airy function `\operatorname{Ai}(z)`, which is
|
|
the solution of the Airy differential equation `f''(z) - z f(z) = 0`
|
|
with initial conditions
|
|
|
|
.. math ::
|
|
|
|
\operatorname{Ai}(0) =
|
|
\frac{1}{3^{2/3}\Gamma\left(\frac{2}{3}\right)}
|
|
|
|
\operatorname{Ai}'(0) =
|
|
-\frac{1}{3^{1/3}\Gamma\left(\frac{1}{3}\right)}.
|
|
|
|
Other common ways of defining the Ai-function include
|
|
integrals such as
|
|
|
|
.. math ::
|
|
|
|
\operatorname{Ai}(x) = \frac{1}{\pi}
|
|
\int_0^{\infty} \cos\left(\frac{1}{3}t^3+xt\right) dt
|
|
\qquad x \in \mathbb{R}
|
|
|
|
\operatorname{Ai}(z) = \frac{\sqrt{3}}{2\pi}
|
|
\int_0^{\infty}
|
|
\exp\left(-\frac{t^3}{3}-\frac{z^3}{3t^3}\right) dt.
|
|
|
|
The Ai-function is an entire function with a turning point,
|
|
behaving roughly like a slowly decaying sine wave for `z < 0` and
|
|
like a rapidly decreasing exponential for `z > 0`.
|
|
A second solution of the Airy differential equation
|
|
is given by `\operatorname{Bi}(z)` (see :func:`~mpmath.airybi`).
|
|
|
|
Optionally, with *derivative=alpha*, :func:`airyai` can compute the
|
|
`\alpha`-th order fractional derivative with respect to `z`.
|
|
For `\alpha = n = 1,2,3,\ldots` this gives the derivative
|
|
`\operatorname{Ai}^{(n)}(z)`, and for `\alpha = -n = -1,-2,-3,\ldots`
|
|
this gives the `n`-fold iterated integral
|
|
|
|
.. math ::
|
|
|
|
f_0(z) = \operatorname{Ai}(z)
|
|
|
|
f_n(z) = \int_0^z f_{n-1}(t) dt.
|
|
|
|
The Ai-function has infinitely many zeros, all located along the
|
|
negative half of the real axis. They can be computed with
|
|
:func:`~mpmath.airyaizero`.
|
|
|
|
**Plots**
|
|
|
|
.. literalinclude :: /plots/ai.py
|
|
.. image :: /plots/ai.png
|
|
.. literalinclude :: /plots/ai_c.py
|
|
.. image :: /plots/ai_c.png
|
|
|
|
**Basic examples**
|
|
|
|
Limits and values include::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> airyai(0); 1/(power(3,'2/3')*gamma('2/3'))
|
|
0.3550280538878172392600632
|
|
0.3550280538878172392600632
|
|
>>> airyai(1)
|
|
0.1352924163128814155241474
|
|
>>> airyai(-1)
|
|
0.5355608832923521187995166
|
|
>>> airyai(inf); airyai(-inf)
|
|
0.0
|
|
0.0
|
|
|
|
Evaluation is supported for large magnitudes of the argument::
|
|
|
|
>>> airyai(-100)
|
|
0.1767533932395528780908311
|
|
>>> airyai(100)
|
|
2.634482152088184489550553e-291
|
|
>>> airyai(50+50j)
|
|
(-5.31790195707456404099817e-68 - 1.163588003770709748720107e-67j)
|
|
>>> airyai(-50+50j)
|
|
(1.041242537363167632587245e+158 + 3.347525544923600321838281e+157j)
|
|
|
|
Huge arguments are also fine::
|
|
|
|
>>> airyai(10**10)
|
|
1.162235978298741779953693e-289529654602171
|
|
>>> airyai(-10**10)
|
|
0.0001736206448152818510510181
|
|
>>> w = airyai(10**10*(1+j))
|
|
>>> w.real
|
|
5.711508683721355528322567e-186339621747698
|
|
>>> w.imag
|
|
1.867245506962312577848166e-186339621747697
|
|
|
|
The first root of the Ai-function is::
|
|
|
|
>>> findroot(airyai, -2)
|
|
-2.338107410459767038489197
|
|
>>> airyaizero(1)
|
|
-2.338107410459767038489197
|
|
|
|
**Properties and relations**
|
|
|
|
Verifying the Airy differential equation::
|
|
|
|
>>> for z in [-3.4, 0, 2.5, 1+2j]:
|
|
... chop(airyai(z,2) - z*airyai(z))
|
|
...
|
|
0.0
|
|
0.0
|
|
0.0
|
|
0.0
|
|
|
|
The first few terms of the Taylor series expansion around `z = 0`
|
|
(every third term is zero)::
|
|
|
|
>>> nprint(taylor(airyai, 0, 5))
|
|
[0.355028, -0.258819, 0.0, 0.0591713, -0.0215683, 0.0]
|
|
|
|
The Airy functions satisfy the Wronskian relation
|
|
`\operatorname{Ai}(z) \operatorname{Bi}'(z) -
|
|
\operatorname{Ai}'(z) \operatorname{Bi}(z) = 1/\pi`::
|
|
|
|
>>> z = -0.5
|
|
>>> airyai(z)*airybi(z,1) - airyai(z,1)*airybi(z)
|
|
0.3183098861837906715377675
|
|
>>> 1/pi
|
|
0.3183098861837906715377675
|
|
|
|
The Airy functions can be expressed in terms of Bessel
|
|
functions of order `\pm 1/3`. For `\Re[z] \le 0`, we have::
|
|
|
|
>>> z = -3
|
|
>>> airyai(z)
|
|
-0.3788142936776580743472439
|
|
>>> y = 2*power(-z,'3/2')/3
|
|
>>> (sqrt(-z) * (besselj('1/3',y) + besselj('-1/3',y)))/3
|
|
-0.3788142936776580743472439
|
|
|
|
**Derivatives and integrals**
|
|
|
|
Derivatives of the Ai-function (directly and using :func:`~mpmath.diff`)::
|
|
|
|
>>> airyai(-3,1); diff(airyai,-3)
|
|
0.3145837692165988136507873
|
|
0.3145837692165988136507873
|
|
>>> airyai(-3,2); diff(airyai,-3,2)
|
|
1.136442881032974223041732
|
|
1.136442881032974223041732
|
|
>>> airyai(1000,1); diff(airyai,1000)
|
|
-2.943133917910336090459748e-9156
|
|
-2.943133917910336090459748e-9156
|
|
|
|
Several derivatives at `z = 0`::
|
|
|
|
>>> airyai(0,0); airyai(0,1); airyai(0,2)
|
|
0.3550280538878172392600632
|
|
-0.2588194037928067984051836
|
|
0.0
|
|
>>> airyai(0,3); airyai(0,4); airyai(0,5)
|
|
0.3550280538878172392600632
|
|
-0.5176388075856135968103671
|
|
0.0
|
|
>>> airyai(0,15); airyai(0,16); airyai(0,17)
|
|
1292.30211615165475090663
|
|
-3188.655054727379756351861
|
|
0.0
|
|
|
|
The integral of the Ai-function::
|
|
|
|
>>> airyai(3,-1); quad(airyai, [0,3])
|
|
0.3299203760070217725002701
|
|
0.3299203760070217725002701
|
|
>>> airyai(-10,-1); quad(airyai, [0,-10])
|
|
-0.765698403134212917425148
|
|
-0.765698403134212917425148
|
|
|
|
Integrals of high or fractional order::
|
|
|
|
>>> airyai(-2,0.5); differint(airyai,-2,0.5,0)
|
|
(0.0 + 0.2453596101351438273844725j)
|
|
(0.0 + 0.2453596101351438273844725j)
|
|
>>> airyai(-2,-4); differint(airyai,-2,-4,0)
|
|
0.2939176441636809580339365
|
|
0.2939176441636809580339365
|
|
>>> airyai(0,-1); airyai(0,-2); airyai(0,-3)
|
|
0.0
|
|
0.0
|
|
0.0
|
|
|
|
Integrals of the Ai-function can be evaluated at limit points::
|
|
|
|
>>> airyai(-1000000,-1); airyai(-inf,-1)
|
|
-0.6666843728311539978751512
|
|
-0.6666666666666666666666667
|
|
>>> airyai(10,-1); airyai(+inf,-1)
|
|
0.3333333332991690159427932
|
|
0.3333333333333333333333333
|
|
>>> airyai(+inf,-2); airyai(+inf,-3)
|
|
+inf
|
|
+inf
|
|
>>> airyai(-1000000,-2); airyai(-inf,-2)
|
|
666666.4078472650651209742
|
|
+inf
|
|
>>> airyai(-1000000,-3); airyai(-inf,-3)
|
|
-333333074513.7520264995733
|
|
-inf
|
|
|
|
**References**
|
|
|
|
1. [DLMF]_ Chapter 9: Airy and Related Functions
|
|
2. [WolframFunctions]_ section: Bessel-Type Functions
|
|
|
|
"""
|
|
|
|
airybi = r"""
|
|
Computes the Airy function `\operatorname{Bi}(z)`, which is
|
|
the solution of the Airy differential equation `f''(z) - z f(z) = 0`
|
|
with initial conditions
|
|
|
|
.. math ::
|
|
|
|
\operatorname{Bi}(0) =
|
|
\frac{1}{3^{1/6}\Gamma\left(\frac{2}{3}\right)}
|
|
|
|
\operatorname{Bi}'(0) =
|
|
\frac{3^{1/6}}{\Gamma\left(\frac{1}{3}\right)}.
|
|
|
|
Like the Ai-function (see :func:`~mpmath.airyai`), the Bi-function
|
|
is oscillatory for `z < 0`, but it grows rather than decreases
|
|
for `z > 0`.
|
|
|
|
Optionally, as for :func:`~mpmath.airyai`, derivatives, integrals
|
|
and fractional derivatives can be computed with the *derivative*
|
|
parameter.
|
|
|
|
The Bi-function has infinitely many zeros along the negative
|
|
half-axis, as well as complex zeros, which can all be computed
|
|
with :func:`~mpmath.airybizero`.
|
|
|
|
**Plots**
|
|
|
|
.. literalinclude :: /plots/bi.py
|
|
.. image :: /plots/bi.png
|
|
.. literalinclude :: /plots/bi_c.py
|
|
.. image :: /plots/bi_c.png
|
|
|
|
**Basic examples**
|
|
|
|
Limits and values include::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> airybi(0); 1/(power(3,'1/6')*gamma('2/3'))
|
|
0.6149266274460007351509224
|
|
0.6149266274460007351509224
|
|
>>> airybi(1)
|
|
1.207423594952871259436379
|
|
>>> airybi(-1)
|
|
0.10399738949694461188869
|
|
>>> airybi(inf); airybi(-inf)
|
|
+inf
|
|
0.0
|
|
|
|
Evaluation is supported for large magnitudes of the argument::
|
|
|
|
>>> airybi(-100)
|
|
0.02427388768016013160566747
|
|
>>> airybi(100)
|
|
6.041223996670201399005265e+288
|
|
>>> airybi(50+50j)
|
|
(-5.322076267321435669290334e+63 + 1.478450291165243789749427e+65j)
|
|
>>> airybi(-50+50j)
|
|
(-3.347525544923600321838281e+157 + 1.041242537363167632587245e+158j)
|
|
|
|
Huge arguments::
|
|
|
|
>>> airybi(10**10)
|
|
1.369385787943539818688433e+289529654602165
|
|
>>> airybi(-10**10)
|
|
0.001775656141692932747610973
|
|
>>> w = airybi(10**10*(1+j))
|
|
>>> w.real
|
|
-6.559955931096196875845858e+186339621747689
|
|
>>> w.imag
|
|
-6.822462726981357180929024e+186339621747690
|
|
|
|
The first real root of the Bi-function is::
|
|
|
|
>>> findroot(airybi, -1); airybizero(1)
|
|
-1.17371322270912792491998
|
|
-1.17371322270912792491998
|
|
|
|
**Properties and relations**
|
|
|
|
Verifying the Airy differential equation::
|
|
|
|
>>> for z in [-3.4, 0, 2.5, 1+2j]:
|
|
... chop(airybi(z,2) - z*airybi(z))
|
|
...
|
|
0.0
|
|
0.0
|
|
0.0
|
|
0.0
|
|
|
|
The first few terms of the Taylor series expansion around `z = 0`
|
|
(every third term is zero)::
|
|
|
|
>>> nprint(taylor(airybi, 0, 5))
|
|
[0.614927, 0.448288, 0.0, 0.102488, 0.0373574, 0.0]
|
|
|
|
The Airy functions can be expressed in terms of Bessel
|
|
functions of order `\pm 1/3`. For `\Re[z] \le 0`, we have::
|
|
|
|
>>> z = -3
|
|
>>> airybi(z)
|
|
-0.1982896263749265432206449
|
|
>>> p = 2*power(-z,'3/2')/3
|
|
>>> sqrt(-mpf(z)/3)*(besselj('-1/3',p) - besselj('1/3',p))
|
|
-0.1982896263749265432206449
|
|
|
|
**Derivatives and integrals**
|
|
|
|
Derivatives of the Bi-function (directly and using :func:`~mpmath.diff`)::
|
|
|
|
>>> airybi(-3,1); diff(airybi,-3)
|
|
-0.675611222685258537668032
|
|
-0.675611222685258537668032
|
|
>>> airybi(-3,2); diff(airybi,-3,2)
|
|
0.5948688791247796296619346
|
|
0.5948688791247796296619346
|
|
>>> airybi(1000,1); diff(airybi,1000)
|
|
1.710055114624614989262335e+9156
|
|
1.710055114624614989262335e+9156
|
|
|
|
Several derivatives at `z = 0`::
|
|
|
|
>>> airybi(0,0); airybi(0,1); airybi(0,2)
|
|
0.6149266274460007351509224
|
|
0.4482883573538263579148237
|
|
0.0
|
|
>>> airybi(0,3); airybi(0,4); airybi(0,5)
|
|
0.6149266274460007351509224
|
|
0.8965767147076527158296474
|
|
0.0
|
|
>>> airybi(0,15); airybi(0,16); airybi(0,17)
|
|
2238.332923903442675949357
|
|
5522.912562599140729510628
|
|
0.0
|
|
|
|
The integral of the Bi-function::
|
|
|
|
>>> airybi(3,-1); quad(airybi, [0,3])
|
|
10.06200303130620056316655
|
|
10.06200303130620056316655
|
|
>>> airybi(-10,-1); quad(airybi, [0,-10])
|
|
-0.01504042480614002045135483
|
|
-0.01504042480614002045135483
|
|
|
|
Integrals of high or fractional order::
|
|
|
|
>>> airybi(-2,0.5); differint(airybi, -2, 0.5, 0)
|
|
(0.0 + 0.5019859055341699223453257j)
|
|
(0.0 + 0.5019859055341699223453257j)
|
|
>>> airybi(-2,-4); differint(airybi,-2,-4,0)
|
|
0.2809314599922447252139092
|
|
0.2809314599922447252139092
|
|
>>> airybi(0,-1); airybi(0,-2); airybi(0,-3)
|
|
0.0
|
|
0.0
|
|
0.0
|
|
|
|
Integrals of the Bi-function can be evaluated at limit points::
|
|
|
|
>>> airybi(-1000000,-1); airybi(-inf,-1)
|
|
0.000002191261128063434047966873
|
|
0.0
|
|
>>> airybi(10,-1); airybi(+inf,-1)
|
|
147809803.1074067161675853
|
|
+inf
|
|
>>> airybi(+inf,-2); airybi(+inf,-3)
|
|
+inf
|
|
+inf
|
|
>>> airybi(-1000000,-2); airybi(-inf,-2)
|
|
0.4482883750599908479851085
|
|
0.4482883573538263579148237
|
|
>>> gamma('2/3')*power(3,'2/3')/(2*pi)
|
|
0.4482883573538263579148237
|
|
>>> airybi(-100000,-3); airybi(-inf,-3)
|
|
-44828.52827206932872493133
|
|
-inf
|
|
>>> airybi(-100000,-4); airybi(-inf,-4)
|
|
2241411040.437759489540248
|
|
+inf
|
|
|
|
"""
|
|
|
|
airyaizero = r"""
|
|
Gives the `k`-th zero of the Airy Ai-function,
|
|
i.e. the `k`-th number `a_k` ordered by magnitude for which
|
|
`\operatorname{Ai}(a_k) = 0`.
|
|
|
|
Optionally, with *derivative=1*, the corresponding
|
|
zero `a'_k` of the derivative function, i.e.
|
|
`\operatorname{Ai}'(a'_k) = 0`, is computed.
|
|
|
|
**Examples**
|
|
|
|
Some values of `a_k`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> airyaizero(1)
|
|
-2.338107410459767038489197
|
|
>>> airyaizero(2)
|
|
-4.087949444130970616636989
|
|
>>> airyaizero(3)
|
|
-5.520559828095551059129856
|
|
>>> airyaizero(1000)
|
|
-281.0315196125215528353364
|
|
|
|
Some values of `a'_k`::
|
|
|
|
>>> airyaizero(1,1)
|
|
-1.018792971647471089017325
|
|
>>> airyaizero(2,1)
|
|
-3.248197582179836537875424
|
|
>>> airyaizero(3,1)
|
|
-4.820099211178735639400616
|
|
>>> airyaizero(1000,1)
|
|
-280.9378080358935070607097
|
|
|
|
Verification::
|
|
|
|
>>> chop(airyai(airyaizero(1)))
|
|
0.0
|
|
>>> chop(airyai(airyaizero(1,1),1))
|
|
0.0
|
|
|
|
"""
|
|
|
|
airybizero = r"""
|
|
With *complex=False*, gives the `k`-th real zero of the Airy Bi-function,
|
|
i.e. the `k`-th number `b_k` ordered by magnitude for which
|
|
`\operatorname{Bi}(b_k) = 0`.
|
|
|
|
With *complex=True*, gives the `k`-th complex zero in the upper
|
|
half plane `\beta_k`. Also the conjugate `\overline{\beta_k}`
|
|
is a zero.
|
|
|
|
Optionally, with *derivative=1*, the corresponding
|
|
zero `b'_k` or `\beta'_k` of the derivative function, i.e.
|
|
`\operatorname{Bi}'(b'_k) = 0` or `\operatorname{Bi}'(\beta'_k) = 0`,
|
|
is computed.
|
|
|
|
**Examples**
|
|
|
|
Some values of `b_k`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> airybizero(1)
|
|
-1.17371322270912792491998
|
|
>>> airybizero(2)
|
|
-3.271093302836352715680228
|
|
>>> airybizero(3)
|
|
-4.830737841662015932667709
|
|
>>> airybizero(1000)
|
|
-280.9378112034152401578834
|
|
|
|
Some values of `b_k`::
|
|
|
|
>>> airybizero(1,1)
|
|
-2.294439682614123246622459
|
|
>>> airybizero(2,1)
|
|
-4.073155089071828215552369
|
|
>>> airybizero(3,1)
|
|
-5.512395729663599496259593
|
|
>>> airybizero(1000,1)
|
|
-281.0315164471118527161362
|
|
|
|
Some values of `\beta_k`::
|
|
|
|
>>> airybizero(1,complex=True)
|
|
(0.9775448867316206859469927 + 2.141290706038744575749139j)
|
|
>>> airybizero(2,complex=True)
|
|
(1.896775013895336346627217 + 3.627291764358919410440499j)
|
|
>>> airybizero(3,complex=True)
|
|
(2.633157739354946595708019 + 4.855468179979844983174628j)
|
|
>>> airybizero(1000,complex=True)
|
|
(140.4978560578493018899793 + 243.3907724215792121244867j)
|
|
|
|
Some values of `\beta'_k`::
|
|
|
|
>>> airybizero(1,1,complex=True)
|
|
(0.2149470745374305676088329 + 1.100600143302797880647194j)
|
|
>>> airybizero(2,1,complex=True)
|
|
(1.458168309223507392028211 + 2.912249367458445419235083j)
|
|
>>> airybizero(3,1,complex=True)
|
|
(2.273760763013482299792362 + 4.254528549217097862167015j)
|
|
>>> airybizero(1000,1,complex=True)
|
|
(140.4509972835270559730423 + 243.3096175398562811896208j)
|
|
|
|
Verification::
|
|
|
|
>>> chop(airybi(airybizero(1)))
|
|
0.0
|
|
>>> chop(airybi(airybizero(1,1),1))
|
|
0.0
|
|
>>> u = airybizero(1,complex=True)
|
|
>>> chop(airybi(u))
|
|
0.0
|
|
>>> chop(airybi(conj(u)))
|
|
0.0
|
|
|
|
The complex zeros (in the upper and lower half-planes respectively)
|
|
asymptotically approach the rays `z = R \exp(\pm i \pi /3)`::
|
|
|
|
>>> arg(airybizero(1,complex=True))
|
|
1.142532510286334022305364
|
|
>>> arg(airybizero(1000,complex=True))
|
|
1.047271114786212061583917
|
|
>>> arg(airybizero(1000000,complex=True))
|
|
1.047197624741816183341355
|
|
>>> pi/3
|
|
1.047197551196597746154214
|
|
|
|
"""
|
|
|
|
|
|
ellipk = r"""
|
|
Evaluates the complete elliptic integral of the first kind,
|
|
`K(m)`, defined by
|
|
|
|
.. math ::
|
|
|
|
K(m) = \int_0^{\pi/2} \frac{dt}{\sqrt{1-m \sin^2 t}} \, = \,
|
|
\frac{\pi}{2} \,_2F_1\left(\frac{1}{2}, \frac{1}{2}, 1, m\right).
|
|
|
|
Note that the argument is the parameter `m = k^2`,
|
|
not the modulus `k` which is sometimes used.
|
|
|
|
**Plots**
|
|
|
|
.. literalinclude :: /plots/ellipk.py
|
|
.. image :: /plots/ellipk.png
|
|
|
|
**Examples**
|
|
|
|
Values and limits include::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> ellipk(0)
|
|
1.570796326794896619231322
|
|
>>> ellipk(inf)
|
|
(0.0 + 0.0j)
|
|
>>> ellipk(-inf)
|
|
0.0
|
|
>>> ellipk(1)
|
|
+inf
|
|
>>> ellipk(-1)
|
|
1.31102877714605990523242
|
|
>>> ellipk(2)
|
|
(1.31102877714605990523242 - 1.31102877714605990523242j)
|
|
|
|
Verifying the defining integral and hypergeometric
|
|
representation::
|
|
|
|
>>> ellipk(0.5)
|
|
1.85407467730137191843385
|
|
>>> quad(lambda t: (1-0.5*sin(t)**2)**-0.5, [0, pi/2])
|
|
1.85407467730137191843385
|
|
>>> pi/2*hyp2f1(0.5,0.5,1,0.5)
|
|
1.85407467730137191843385
|
|
|
|
Evaluation is supported for arbitrary complex `m`::
|
|
|
|
>>> ellipk(3+4j)
|
|
(0.9111955638049650086562171 + 0.6313342832413452438845091j)
|
|
|
|
A definite integral::
|
|
|
|
>>> quad(ellipk, [0, 1])
|
|
2.0
|
|
"""
|
|
|
|
agm = r"""
|
|
``agm(a, b)`` computes the arithmetic-geometric mean of `a` and
|
|
`b`, defined as the limit of the following iteration:
|
|
|
|
.. math ::
|
|
|
|
a_0 = a
|
|
|
|
b_0 = b
|
|
|
|
a_{n+1} = \frac{a_n+b_n}{2}
|
|
|
|
b_{n+1} = \sqrt{a_n b_n}
|
|
|
|
This function can be called with a single argument, computing
|
|
`\mathrm{agm}(a,1) = \mathrm{agm}(1,a)`.
|
|
|
|
**Examples**
|
|
|
|
It is a well-known theorem that the geometric mean of
|
|
two distinct positive numbers is less than the arithmetic
|
|
mean. It follows that the arithmetic-geometric mean lies
|
|
between the two means::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> a = mpf(3)
|
|
>>> b = mpf(4)
|
|
>>> sqrt(a*b)
|
|
3.46410161513775
|
|
>>> agm(a,b)
|
|
3.48202767635957
|
|
>>> (a+b)/2
|
|
3.5
|
|
|
|
The arithmetic-geometric mean is scale-invariant::
|
|
|
|
>>> agm(10*e, 10*pi)
|
|
29.261085515723
|
|
>>> 10*agm(e, pi)
|
|
29.261085515723
|
|
|
|
As an order-of-magnitude estimate, `\mathrm{agm}(1,x) \approx x`
|
|
for large `x`::
|
|
|
|
>>> agm(10**10)
|
|
643448704.760133
|
|
>>> agm(10**50)
|
|
1.34814309345871e+48
|
|
|
|
For tiny `x`, `\mathrm{agm}(1,x) \approx -\pi/(2 \log(x/4))`::
|
|
|
|
>>> agm('0.01')
|
|
0.262166887202249
|
|
>>> -pi/2/log('0.0025')
|
|
0.262172347753122
|
|
|
|
The arithmetic-geometric mean can also be computed for complex
|
|
numbers::
|
|
|
|
>>> agm(3, 2+j)
|
|
(2.51055133276184 + 0.547394054060638j)
|
|
|
|
The AGM iteration converges very quickly (each step doubles
|
|
the number of correct digits), so :func:`~mpmath.agm` supports efficient
|
|
high-precision evaluation::
|
|
|
|
>>> mp.dps = 10000
|
|
>>> a = agm(1,2)
|
|
>>> str(a)[-10:]
|
|
'1679581912'
|
|
|
|
**Mathematical relations**
|
|
|
|
The arithmetic-geometric mean may be used to evaluate the
|
|
following two parametric definite integrals:
|
|
|
|
.. math ::
|
|
|
|
I_1 = \int_0^{\infty}
|
|
\frac{1}{\sqrt{(x^2+a^2)(x^2+b^2)}} \,dx
|
|
|
|
I_2 = \int_0^{\pi/2}
|
|
\frac{1}{\sqrt{a^2 \cos^2(x) + b^2 \sin^2(x)}} \,dx
|
|
|
|
We have::
|
|
|
|
>>> mp.dps = 15
|
|
>>> a = 3
|
|
>>> b = 4
|
|
>>> f1 = lambda x: ((x**2+a**2)*(x**2+b**2))**-0.5
|
|
>>> f2 = lambda x: ((a*cos(x))**2 + (b*sin(x))**2)**-0.5
|
|
>>> quad(f1, [0, inf])
|
|
0.451115405388492
|
|
>>> quad(f2, [0, pi/2])
|
|
0.451115405388492
|
|
>>> pi/(2*agm(a,b))
|
|
0.451115405388492
|
|
|
|
A formula for `\Gamma(1/4)`::
|
|
|
|
>>> gamma(0.25)
|
|
3.62560990822191
|
|
>>> sqrt(2*sqrt(2*pi**3)/agm(1,sqrt(2)))
|
|
3.62560990822191
|
|
|
|
**Possible issues**
|
|
|
|
The branch cut chosen for complex `a` and `b` is somewhat
|
|
arbitrary.
|
|
|
|
"""
|
|
|
|
gegenbauer = r"""
|
|
Evaluates the Gegenbauer polynomial, or ultraspherical polynomial,
|
|
|
|
.. math ::
|
|
|
|
C_n^{(a)}(z) = {n+2a-1 \choose n} \,_2F_1\left(-n, n+2a;
|
|
a+\frac{1}{2}; \frac{1}{2}(1-z)\right).
|
|
|
|
When `n` is a nonnegative integer, this formula gives a polynomial
|
|
in `z` of degree `n`, but all parameters are permitted to be
|
|
complex numbers. With `a = 1/2`, the Gegenbauer polynomial
|
|
reduces to a Legendre polynomial.
|
|
|
|
**Examples**
|
|
|
|
Evaluation for arbitrary arguments::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> gegenbauer(3, 0.5, -10)
|
|
-2485.0
|
|
>>> gegenbauer(1000, 10, 100)
|
|
3.012757178975667428359374e+2322
|
|
>>> gegenbauer(2+3j, -0.75, -1000j)
|
|
(-5038991.358609026523401901 + 9414549.285447104177860806j)
|
|
|
|
Evaluation at negative integer orders::
|
|
|
|
>>> gegenbauer(-4, 2, 1.75)
|
|
-1.0
|
|
>>> gegenbauer(-4, 3, 1.75)
|
|
0.0
|
|
>>> gegenbauer(-4, 2j, 1.75)
|
|
0.0
|
|
>>> gegenbauer(-7, 0.5, 3)
|
|
8989.0
|
|
|
|
The Gegenbauer polynomials solve the differential equation::
|
|
|
|
>>> n, a = 4.5, 1+2j
|
|
>>> f = lambda z: gegenbauer(n, a, z)
|
|
>>> for z in [0, 0.75, -0.5j]:
|
|
... chop((1-z**2)*diff(f,z,2) - (2*a+1)*z*diff(f,z) + n*(n+2*a)*f(z))
|
|
...
|
|
0.0
|
|
0.0
|
|
0.0
|
|
|
|
The Gegenbauer polynomials have generating function
|
|
`(1-2zt+t^2)^{-a}`::
|
|
|
|
>>> a, z = 2.5, 1
|
|
>>> taylor(lambda t: (1-2*z*t+t**2)**(-a), 0, 3)
|
|
[1.0, 5.0, 15.0, 35.0]
|
|
>>> [gegenbauer(n,a,z) for n in range(4)]
|
|
[1.0, 5.0, 15.0, 35.0]
|
|
|
|
The Gegenbauer polynomials are orthogonal on `[-1, 1]` with respect
|
|
to the weight `(1-z^2)^{a-\frac{1}{2}}`::
|
|
|
|
>>> a, n, m = 2.5, 4, 5
|
|
>>> Cn = lambda z: gegenbauer(n, a, z, zeroprec=1000)
|
|
>>> Cm = lambda z: gegenbauer(m, a, z, zeroprec=1000)
|
|
>>> chop(quad(lambda z: Cn(z)*Cm(z)*(1-z**2)*(a-0.5), [-1, 1]))
|
|
0.0
|
|
"""
|
|
|
|
laguerre = r"""
|
|
Gives the generalized (associated) Laguerre polynomial, defined by
|
|
|
|
.. math ::
|
|
|
|
L_n^a(z) = \frac{\Gamma(n+b+1)}{\Gamma(b+1) \Gamma(n+1)}
|
|
\,_1F_1(-n, a+1, z).
|
|
|
|
With `a = 0` and `n` a nonnegative integer, this reduces to an ordinary
|
|
Laguerre polynomial, the sequence of which begins
|
|
`L_0(z) = 1, L_1(z) = 1-z, L_2(z) = z^2-2z+1, \ldots`.
|
|
|
|
The Laguerre polynomials are orthogonal with respect to the weight
|
|
`z^a e^{-z}` on `[0, \infty)`.
|
|
|
|
**Plots**
|
|
|
|
.. literalinclude :: /plots/laguerre.py
|
|
.. image :: /plots/laguerre.png
|
|
|
|
**Examples**
|
|
|
|
Evaluation for arbitrary arguments::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> laguerre(5, 0, 0.25)
|
|
0.03726399739583333333333333
|
|
>>> laguerre(1+j, 0.5, 2+3j)
|
|
(4.474921610704496808379097 - 11.02058050372068958069241j)
|
|
>>> laguerre(2, 0, 10000)
|
|
49980001.0
|
|
>>> laguerre(2.5, 0, 10000)
|
|
-9.327764910194842158583189e+4328
|
|
|
|
The first few Laguerre polynomials, normalized to have integer
|
|
coefficients::
|
|
|
|
>>> for n in range(7):
|
|
... chop(taylor(lambda z: fac(n)*laguerre(n, 0, z), 0, n))
|
|
...
|
|
[1.0]
|
|
[1.0, -1.0]
|
|
[2.0, -4.0, 1.0]
|
|
[6.0, -18.0, 9.0, -1.0]
|
|
[24.0, -96.0, 72.0, -16.0, 1.0]
|
|
[120.0, -600.0, 600.0, -200.0, 25.0, -1.0]
|
|
[720.0, -4320.0, 5400.0, -2400.0, 450.0, -36.0, 1.0]
|
|
|
|
Verifying orthogonality::
|
|
|
|
>>> Lm = lambda t: laguerre(m,a,t)
|
|
>>> Ln = lambda t: laguerre(n,a,t)
|
|
>>> a, n, m = 2.5, 2, 3
|
|
>>> chop(quad(lambda t: exp(-t)*t**a*Lm(t)*Ln(t), [0,inf]))
|
|
0.0
|
|
|
|
|
|
"""
|
|
|
|
hermite = r"""
|
|
Evaluates the Hermite polynomial `H_n(z)`, which may be defined using
|
|
the recurrence
|
|
|
|
.. math ::
|
|
|
|
H_0(z) = 1
|
|
|
|
H_1(z) = 2z
|
|
|
|
H_{n+1} = 2z H_n(z) - 2n H_{n-1}(z).
|
|
|
|
The Hermite polynomials are orthogonal on `(-\infty, \infty)` with
|
|
respect to the weight `e^{-z^2}`. More generally, allowing arbitrary complex
|
|
values of `n`, the Hermite function `H_n(z)` is defined as
|
|
|
|
.. math ::
|
|
|
|
H_n(z) = (2z)^n \,_2F_0\left(-\frac{n}{2}, \frac{1-n}{2},
|
|
-\frac{1}{z^2}\right)
|
|
|
|
for `\Re{z} > 0`, or generally
|
|
|
|
.. math ::
|
|
|
|
H_n(z) = 2^n \sqrt{\pi} \left(
|
|
\frac{1}{\Gamma\left(\frac{1-n}{2}\right)}
|
|
\,_1F_1\left(-\frac{n}{2}, \frac{1}{2}, z^2\right) -
|
|
\frac{2z}{\Gamma\left(-\frac{n}{2}\right)}
|
|
\,_1F_1\left(\frac{1-n}{2}, \frac{3}{2}, z^2\right)
|
|
\right).
|
|
|
|
**Plots**
|
|
|
|
.. literalinclude :: /plots/hermite.py
|
|
.. image :: /plots/hermite.png
|
|
|
|
**Examples**
|
|
|
|
Evaluation for arbitrary arguments::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> hermite(0, 10)
|
|
1.0
|
|
>>> hermite(1, 10); hermite(2, 10)
|
|
20.0
|
|
398.0
|
|
>>> hermite(10000, 2)
|
|
4.950440066552087387515653e+19334
|
|
>>> hermite(3, -10**8)
|
|
-7999999999999998800000000.0
|
|
>>> hermite(-3, -10**8)
|
|
1.675159751729877682920301e+4342944819032534
|
|
>>> hermite(2+3j, -1+2j)
|
|
(-0.07652130602993513389421901 - 0.1084662449961914580276007j)
|
|
|
|
Coefficients of the first few Hermite polynomials are::
|
|
|
|
>>> for n in range(7):
|
|
... chop(taylor(lambda z: hermite(n, z), 0, n))
|
|
...
|
|
[1.0]
|
|
[0.0, 2.0]
|
|
[-2.0, 0.0, 4.0]
|
|
[0.0, -12.0, 0.0, 8.0]
|
|
[12.0, 0.0, -48.0, 0.0, 16.0]
|
|
[0.0, 120.0, 0.0, -160.0, 0.0, 32.0]
|
|
[-120.0, 0.0, 720.0, 0.0, -480.0, 0.0, 64.0]
|
|
|
|
Values at `z = 0`::
|
|
|
|
>>> for n in range(-5, 9):
|
|
... hermite(n, 0)
|
|
...
|
|
0.02769459142039868792653387
|
|
0.08333333333333333333333333
|
|
0.2215567313631895034122709
|
|
0.5
|
|
0.8862269254527580136490837
|
|
1.0
|
|
0.0
|
|
-2.0
|
|
0.0
|
|
12.0
|
|
0.0
|
|
-120.0
|
|
0.0
|
|
1680.0
|
|
|
|
Hermite functions satisfy the differential equation::
|
|
|
|
>>> n = 4
|
|
>>> f = lambda z: hermite(n, z)
|
|
>>> z = 1.5
|
|
>>> chop(diff(f,z,2) - 2*z*diff(f,z) + 2*n*f(z))
|
|
0.0
|
|
|
|
Verifying orthogonality::
|
|
|
|
>>> chop(quad(lambda t: hermite(2,t)*hermite(4,t)*exp(-t**2), [-inf,inf]))
|
|
0.0
|
|
|
|
"""
|
|
|
|
jacobi = r"""
|
|
``jacobi(n, a, b, x)`` evaluates the Jacobi polynomial
|
|
`P_n^{(a,b)}(x)`. The Jacobi polynomials are a special
|
|
case of the hypergeometric function `\,_2F_1` given by:
|
|
|
|
.. math ::
|
|
|
|
P_n^{(a,b)}(x) = {n+a \choose n}
|
|
\,_2F_1\left(-n,1+a+b+n,a+1,\frac{1-x}{2}\right).
|
|
|
|
Note that this definition generalizes to nonintegral values
|
|
of `n`. When `n` is an integer, the hypergeometric series
|
|
terminates after a finite number of terms, giving
|
|
a polynomial in `x`.
|
|
|
|
**Evaluation of Jacobi polynomials**
|
|
|
|
A special evaluation is `P_n^{(a,b)}(1) = {n+a \choose n}`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> jacobi(4, 0.5, 0.25, 1)
|
|
2.4609375
|
|
>>> binomial(4+0.5, 4)
|
|
2.4609375
|
|
|
|
A Jacobi polynomial of degree `n` is equal to its
|
|
Taylor polynomial of degree `n`. The explicit
|
|
coefficients of Jacobi polynomials can therefore
|
|
be recovered easily using :func:`~mpmath.taylor`::
|
|
|
|
>>> for n in range(5):
|
|
... nprint(taylor(lambda x: jacobi(n,1,2,x), 0, n))
|
|
...
|
|
[1.0]
|
|
[-0.5, 2.5]
|
|
[-0.75, -1.5, 5.25]
|
|
[0.5, -3.5, -3.5, 10.5]
|
|
[0.625, 2.5, -11.25, -7.5, 20.625]
|
|
|
|
For nonintegral `n`, the Jacobi "polynomial" is no longer
|
|
a polynomial::
|
|
|
|
>>> nprint(taylor(lambda x: jacobi(0.5,1,2,x), 0, 4))
|
|
[0.309983, 1.84119, -1.26933, 1.26699, -1.34808]
|
|
|
|
**Orthogonality**
|
|
|
|
The Jacobi polynomials are orthogonal on the interval
|
|
`[-1, 1]` with respect to the weight function
|
|
`w(x) = (1-x)^a (1+x)^b`. That is,
|
|
`w(x) P_n^{(a,b)}(x) P_m^{(a,b)}(x)` integrates to
|
|
zero if `m \ne n` and to a nonzero number if `m = n`.
|
|
|
|
The orthogonality is easy to verify using numerical
|
|
quadrature::
|
|
|
|
>>> P = jacobi
|
|
>>> f = lambda x: (1-x)**a * (1+x)**b * P(m,a,b,x) * P(n,a,b,x)
|
|
>>> a = 2
|
|
>>> b = 3
|
|
>>> m, n = 3, 4
|
|
>>> chop(quad(f, [-1, 1]), 1)
|
|
0.0
|
|
>>> m, n = 4, 4
|
|
>>> quad(f, [-1, 1])
|
|
1.9047619047619
|
|
|
|
**Differential equation**
|
|
|
|
The Jacobi polynomials are solutions of the differential
|
|
equation
|
|
|
|
.. math ::
|
|
|
|
(1-x^2) y'' + (b-a-(a+b+2)x) y' + n (n+a+b+1) y = 0.
|
|
|
|
We can verify that :func:`~mpmath.jacobi` approximately satisfies
|
|
this equation::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15
|
|
>>> a = 2.5
|
|
>>> b = 4
|
|
>>> n = 3
|
|
>>> y = lambda x: jacobi(n,a,b,x)
|
|
>>> x = pi
|
|
>>> A0 = n*(n+a+b+1)*y(x)
|
|
>>> A1 = (b-a-(a+b+2)*x)*diff(y,x)
|
|
>>> A2 = (1-x**2)*diff(y,x,2)
|
|
>>> nprint(A2 + A1 + A0, 1)
|
|
4.0e-12
|
|
|
|
The difference of order `10^{-12}` is as close to zero as
|
|
it could be at 15-digit working precision, since the terms
|
|
are large::
|
|
|
|
>>> A0, A1, A2
|
|
(26560.2328981879, -21503.7641037294, -5056.46879445852)
|
|
|
|
"""
|
|
|
|
legendre = r"""
|
|
``legendre(n, x)`` evaluates the Legendre polynomial `P_n(x)`.
|
|
The Legendre polynomials are given by the formula
|
|
|
|
.. math ::
|
|
|
|
P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 -1)^n.
|
|
|
|
Alternatively, they can be computed recursively using
|
|
|
|
.. math ::
|
|
|
|
P_0(x) = 1
|
|
|
|
P_1(x) = x
|
|
|
|
(n+1) P_{n+1}(x) = (2n+1) x P_n(x) - n P_{n-1}(x).
|
|
|
|
A third definition is in terms of the hypergeometric function
|
|
`\,_2F_1`, whereby they can be generalized to arbitrary `n`:
|
|
|
|
.. math ::
|
|
|
|
P_n(x) = \,_2F_1\left(-n, n+1, 1, \frac{1-x}{2}\right)
|
|
|
|
**Plots**
|
|
|
|
.. literalinclude :: /plots/legendre.py
|
|
.. image :: /plots/legendre.png
|
|
|
|
**Basic evaluation**
|
|
|
|
The Legendre polynomials assume fixed values at the points
|
|
`x = -1` and `x = 1`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> nprint([legendre(n, 1) for n in range(6)])
|
|
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
|
|
>>> nprint([legendre(n, -1) for n in range(6)])
|
|
[1.0, -1.0, 1.0, -1.0, 1.0, -1.0]
|
|
|
|
The coefficients of Legendre polynomials can be recovered
|
|
using degree-`n` Taylor expansion::
|
|
|
|
>>> for n in range(5):
|
|
... nprint(chop(taylor(lambda x: legendre(n, x), 0, n)))
|
|
...
|
|
[1.0]
|
|
[0.0, 1.0]
|
|
[-0.5, 0.0, 1.5]
|
|
[0.0, -1.5, 0.0, 2.5]
|
|
[0.375, 0.0, -3.75, 0.0, 4.375]
|
|
|
|
The roots of Legendre polynomials are located symmetrically
|
|
on the interval `[-1, 1]`::
|
|
|
|
>>> for n in range(5):
|
|
... nprint(polyroots(taylor(lambda x: legendre(n, x), 0, n)[::-1]))
|
|
...
|
|
[]
|
|
[0.0]
|
|
[-0.57735, 0.57735]
|
|
[-0.774597, 0.0, 0.774597]
|
|
[-0.861136, -0.339981, 0.339981, 0.861136]
|
|
|
|
An example of an evaluation for arbitrary `n`::
|
|
|
|
>>> legendre(0.75, 2+4j)
|
|
(1.94952805264875 + 2.1071073099422j)
|
|
|
|
**Orthogonality**
|
|
|
|
The Legendre polynomials are orthogonal on `[-1, 1]` with respect
|
|
to the trivial weight `w(x) = 1`. That is, `P_m(x) P_n(x)`
|
|
integrates to zero if `m \ne n` and to `2/(2n+1)` if `m = n`::
|
|
|
|
>>> m, n = 3, 4
|
|
>>> quad(lambda x: legendre(m,x)*legendre(n,x), [-1, 1])
|
|
0.0
|
|
>>> m, n = 4, 4
|
|
>>> quad(lambda x: legendre(m,x)*legendre(n,x), [-1, 1])
|
|
0.222222222222222
|
|
|
|
**Differential equation**
|
|
|
|
The Legendre polynomials satisfy the differential equation
|
|
|
|
.. math ::
|
|
|
|
((1-x^2) y')' + n(n+1) y' = 0.
|
|
|
|
We can verify this numerically::
|
|
|
|
>>> n = 3.6
|
|
>>> x = 0.73
|
|
>>> P = legendre
|
|
>>> A = diff(lambda t: (1-t**2)*diff(lambda u: P(n,u), t), x)
|
|
>>> B = n*(n+1)*P(n,x)
|
|
>>> nprint(A+B,1)
|
|
9.0e-16
|
|
|
|
"""
|
|
|
|
|
|
legenp = r"""
|
|
Calculates the (associated) Legendre function of the first kind of
|
|
degree *n* and order *m*, `P_n^m(z)`. Taking `m = 0` gives the ordinary
|
|
Legendre function of the first kind, `P_n(z)`. The parameters may be
|
|
complex numbers.
|
|
|
|
In terms of the Gauss hypergeometric function, the (associated) Legendre
|
|
function is defined as
|
|
|
|
.. math ::
|
|
|
|
P_n^m(z) = \frac{1}{\Gamma(1-m)} \frac{(1+z)^{m/2}}{(1-z)^{m/2}}
|
|
\,_2F_1\left(-n, n+1, 1-m, \frac{1-z}{2}\right).
|
|
|
|
With *type=3* instead of *type=2*, the alternative
|
|
definition
|
|
|
|
.. math ::
|
|
|
|
\hat{P}_n^m(z) = \frac{1}{\Gamma(1-m)} \frac{(z+1)^{m/2}}{(z-1)^{m/2}}
|
|
\,_2F_1\left(-n, n+1, 1-m, \frac{1-z}{2}\right).
|
|
|
|
is used. These functions correspond respectively to ``LegendreP[n,m,2,z]``
|
|
and ``LegendreP[n,m,3,z]`` in Mathematica.
|
|
|
|
The general solution of the (associated) Legendre differential equation
|
|
|
|
.. math ::
|
|
|
|
(1-z^2) f''(z) - 2zf'(z) + \left(n(n+1)-\frac{m^2}{1-z^2}\right)f(z) = 0
|
|
|
|
is given by `C_1 P_n^m(z) + C_2 Q_n^m(z)` for arbitrary constants
|
|
`C_1`, `C_2`, where `Q_n^m(z)` is a Legendre function of the
|
|
second kind as implemented by :func:`~mpmath.legenq`.
|
|
|
|
**Examples**
|
|
|
|
Evaluation for arbitrary parameters and arguments::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> legenp(2, 0, 10); legendre(2, 10)
|
|
149.5
|
|
149.5
|
|
>>> legenp(-2, 0.5, 2.5)
|
|
(1.972260393822275434196053 - 1.972260393822275434196053j)
|
|
>>> legenp(2+3j, 1-j, -0.5+4j)
|
|
(-3.335677248386698208736542 - 5.663270217461022307645625j)
|
|
>>> chop(legenp(3, 2, -1.5, type=2))
|
|
28.125
|
|
>>> chop(legenp(3, 2, -1.5, type=3))
|
|
-28.125
|
|
|
|
Verifying the associated Legendre differential equation::
|
|
|
|
>>> n, m = 2, -0.5
|
|
>>> C1, C2 = 1, -3
|
|
>>> f = lambda z: C1*legenp(n,m,z) + C2*legenq(n,m,z)
|
|
>>> deq = lambda z: (1-z**2)*diff(f,z,2) - 2*z*diff(f,z) + \
|
|
... (n*(n+1)-m**2/(1-z**2))*f(z)
|
|
>>> for z in [0, 2, -1.5, 0.5+2j]:
|
|
... chop(deq(mpmathify(z)))
|
|
...
|
|
0.0
|
|
0.0
|
|
0.0
|
|
0.0
|
|
"""
|
|
|
|
legenq = r"""
|
|
Calculates the (associated) Legendre function of the second kind of
|
|
degree *n* and order *m*, `Q_n^m(z)`. Taking `m = 0` gives the ordinary
|
|
Legendre function of the second kind, `Q_n(z)`. The parameters may be
|
|
complex numbers.
|
|
|
|
The Legendre functions of the second kind give a second set of
|
|
solutions to the (associated) Legendre differential equation.
|
|
(See :func:`~mpmath.legenp`.)
|
|
Unlike the Legendre functions of the first kind, they are not
|
|
polynomials of `z` for integer `n`, `m` but rational or logarithmic
|
|
functions with poles at `z = \pm 1`.
|
|
|
|
There are various ways to define Legendre functions of
|
|
the second kind, giving rise to different complex structure.
|
|
A version can be selected using the *type* keyword argument.
|
|
The *type=2* and *type=3* functions are given respectively by
|
|
|
|
.. math ::
|
|
|
|
Q_n^m(z) = \frac{\pi}{2 \sin(\pi m)}
|
|
\left( \cos(\pi m) P_n^m(z) -
|
|
\frac{\Gamma(1+m+n)}{\Gamma(1-m+n)} P_n^{-m}(z)\right)
|
|
|
|
\hat{Q}_n^m(z) = \frac{\pi}{2 \sin(\pi m)} e^{\pi i m}
|
|
\left( \hat{P}_n^m(z) -
|
|
\frac{\Gamma(1+m+n)}{\Gamma(1-m+n)} \hat{P}_n^{-m}(z)\right)
|
|
|
|
where `P` and `\hat{P}` are the *type=2* and *type=3* Legendre functions
|
|
of the first kind. The formulas above should be understood as limits
|
|
when `m` is an integer.
|
|
|
|
These functions correspond to ``LegendreQ[n,m,2,z]`` (or ``LegendreQ[n,m,z]``)
|
|
and ``LegendreQ[n,m,3,z]`` in Mathematica. The *type=3* function
|
|
is essentially the same as the function defined in
|
|
Abramowitz & Stegun (eq. 8.1.3) but with `(z+1)^{m/2}(z-1)^{m/2}` instead
|
|
of `(z^2-1)^{m/2}`, giving slightly different branches.
|
|
|
|
**Examples**
|
|
|
|
Evaluation for arbitrary parameters and arguments::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> legenq(2, 0, 0.5)
|
|
-0.8186632680417568557122028
|
|
>>> legenq(-1.5, -2, 2.5)
|
|
(0.6655964618250228714288277 + 0.3937692045497259717762649j)
|
|
>>> legenq(2-j, 3+4j, -6+5j)
|
|
(-10001.95256487468541686564 - 6011.691337610097577791134j)
|
|
|
|
Different versions of the function::
|
|
|
|
>>> legenq(2, 1, 0.5)
|
|
0.7298060598018049369381857
|
|
>>> legenq(2, 1, 1.5)
|
|
(-7.902916572420817192300921 + 0.1998650072605976600724502j)
|
|
>>> legenq(2, 1, 0.5, type=3)
|
|
(2.040524284763495081918338 - 0.7298060598018049369381857j)
|
|
>>> chop(legenq(2, 1, 1.5, type=3))
|
|
-0.1998650072605976600724502
|
|
|
|
"""
|
|
|
|
chebyt = r"""
|
|
``chebyt(n, x)`` evaluates the Chebyshev polynomial of the first
|
|
kind `T_n(x)`, defined by the identity
|
|
|
|
.. math ::
|
|
|
|
T_n(\cos x) = \cos(n x).
|
|
|
|
The Chebyshev polynomials of the first kind are a special
|
|
case of the Jacobi polynomials, and by extension of the
|
|
hypergeometric function `\,_2F_1`. They can thus also be
|
|
evaluated for nonintegral `n`.
|
|
|
|
**Plots**
|
|
|
|
.. literalinclude :: /plots/chebyt.py
|
|
.. image :: /plots/chebyt.png
|
|
|
|
**Basic evaluation**
|
|
|
|
The coefficients of the `n`-th polynomial can be recovered
|
|
using using degree-`n` Taylor expansion::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> for n in range(5):
|
|
... nprint(chop(taylor(lambda x: chebyt(n, x), 0, n)))
|
|
...
|
|
[1.0]
|
|
[0.0, 1.0]
|
|
[-1.0, 0.0, 2.0]
|
|
[0.0, -3.0, 0.0, 4.0]
|
|
[1.0, 0.0, -8.0, 0.0, 8.0]
|
|
|
|
**Orthogonality**
|
|
|
|
The Chebyshev polynomials of the first kind are orthogonal
|
|
on the interval `[-1, 1]` with respect to the weight
|
|
function `w(x) = 1/\sqrt{1-x^2}`::
|
|
|
|
>>> f = lambda x: chebyt(m,x)*chebyt(n,x)/sqrt(1-x**2)
|
|
>>> m, n = 3, 4
|
|
>>> nprint(quad(f, [-1, 1]),1)
|
|
0.0
|
|
>>> m, n = 4, 4
|
|
>>> quad(f, [-1, 1])
|
|
1.57079632596448
|
|
|
|
"""
|
|
|
|
chebyu = r"""
|
|
``chebyu(n, x)`` evaluates the Chebyshev polynomial of the second
|
|
kind `U_n(x)`, defined by the identity
|
|
|
|
.. math ::
|
|
|
|
U_n(\cos x) = \frac{\sin((n+1)x)}{\sin(x)}.
|
|
|
|
The Chebyshev polynomials of the second kind are a special
|
|
case of the Jacobi polynomials, and by extension of the
|
|
hypergeometric function `\,_2F_1`. They can thus also be
|
|
evaluated for nonintegral `n`.
|
|
|
|
**Plots**
|
|
|
|
.. literalinclude :: /plots/chebyu.py
|
|
.. image :: /plots/chebyu.png
|
|
|
|
**Basic evaluation**
|
|
|
|
The coefficients of the `n`-th polynomial can be recovered
|
|
using using degree-`n` Taylor expansion::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> for n in range(5):
|
|
... nprint(chop(taylor(lambda x: chebyu(n, x), 0, n)))
|
|
...
|
|
[1.0]
|
|
[0.0, 2.0]
|
|
[-1.0, 0.0, 4.0]
|
|
[0.0, -4.0, 0.0, 8.0]
|
|
[1.0, 0.0, -12.0, 0.0, 16.0]
|
|
|
|
**Orthogonality**
|
|
|
|
The Chebyshev polynomials of the second kind are orthogonal
|
|
on the interval `[-1, 1]` with respect to the weight
|
|
function `w(x) = \sqrt{1-x^2}`::
|
|
|
|
>>> f = lambda x: chebyu(m,x)*chebyu(n,x)*sqrt(1-x**2)
|
|
>>> m, n = 3, 4
|
|
>>> quad(f, [-1, 1])
|
|
0.0
|
|
>>> m, n = 4, 4
|
|
>>> quad(f, [-1, 1])
|
|
1.5707963267949
|
|
"""
|
|
|
|
besselj = r"""
|
|
``besselj(n, x, derivative=0)`` gives the Bessel function of the first kind
|
|
`J_n(x)`. Bessel functions of the first kind are defined as
|
|
solutions of the differential equation
|
|
|
|
.. math ::
|
|
|
|
x^2 y'' + x y' + (x^2 - n^2) y = 0
|
|
|
|
which appears, among other things, when solving the radial
|
|
part of Laplace's equation in cylindrical coordinates. This
|
|
equation has two solutions for given `n`, where the
|
|
`J_n`-function is the solution that is nonsingular at `x = 0`.
|
|
For positive integer `n`, `J_n(x)` behaves roughly like a sine
|
|
(odd `n`) or cosine (even `n`) multiplied by a magnitude factor
|
|
that decays slowly as `x \to \pm\infty`.
|
|
|
|
Generally, `J_n` is a special case of the hypergeometric
|
|
function `\,_0F_1`:
|
|
|
|
.. math ::
|
|
|
|
J_n(x) = \frac{x^n}{2^n \Gamma(n+1)}
|
|
\,_0F_1\left(n+1,-\frac{x^2}{4}\right)
|
|
|
|
With *derivative* = `m \ne 0`, the `m`-th derivative
|
|
|
|
.. math ::
|
|
|
|
\frac{d^m}{dx^m} J_n(x)
|
|
|
|
is computed.
|
|
|
|
**Plots**
|
|
|
|
.. literalinclude :: /plots/besselj.py
|
|
.. image :: /plots/besselj.png
|
|
.. literalinclude :: /plots/besselj_c.py
|
|
.. image :: /plots/besselj_c.png
|
|
|
|
**Examples**
|
|
|
|
Evaluation is supported for arbitrary arguments, and at
|
|
arbitrary precision::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> besselj(2, 1000)
|
|
-0.024777229528606
|
|
>>> besselj(4, 0.75)
|
|
0.000801070086542314
|
|
>>> besselj(2, 1000j)
|
|
(-2.48071721019185e+432 + 6.41567059811949e-437j)
|
|
>>> mp.dps = 25
|
|
>>> besselj(0.75j, 3+4j)
|
|
(-2.778118364828153309919653 - 1.5863603889018621585533j)
|
|
>>> mp.dps = 50
|
|
>>> besselj(1, pi)
|
|
0.28461534317975275734531059968613140570981118184947
|
|
|
|
Arguments may be large::
|
|
|
|
>>> mp.dps = 25
|
|
>>> besselj(0, 10000)
|
|
-0.007096160353388801477265164
|
|
>>> besselj(0, 10**10)
|
|
0.000002175591750246891726859055
|
|
>>> besselj(2, 10**100)
|
|
7.337048736538615712436929e-51
|
|
>>> besselj(2, 10**5*j)
|
|
(-3.540725411970948860173735e+43426 + 4.4949812409615803110051e-43433j)
|
|
|
|
The Bessel functions of the first kind satisfy simple
|
|
symmetries around `x = 0`::
|
|
|
|
>>> mp.dps = 15
|
|
>>> nprint([besselj(n,0) for n in range(5)])
|
|
[1.0, 0.0, 0.0, 0.0, 0.0]
|
|
>>> nprint([besselj(n,pi) for n in range(5)])
|
|
[-0.304242, 0.284615, 0.485434, 0.333458, 0.151425]
|
|
>>> nprint([besselj(n,-pi) for n in range(5)])
|
|
[-0.304242, -0.284615, 0.485434, -0.333458, 0.151425]
|
|
|
|
Roots of Bessel functions are often used::
|
|
|
|
>>> nprint([findroot(j0, k) for k in [2, 5, 8, 11, 14]])
|
|
[2.40483, 5.52008, 8.65373, 11.7915, 14.9309]
|
|
>>> nprint([findroot(j1, k) for k in [3, 7, 10, 13, 16]])
|
|
[3.83171, 7.01559, 10.1735, 13.3237, 16.4706]
|
|
|
|
The roots are not periodic, but the distance between successive
|
|
roots asymptotically approaches `2 \pi`. Bessel functions of
|
|
the first kind have the following normalization::
|
|
|
|
>>> quadosc(j0, [0, inf], period=2*pi)
|
|
1.0
|
|
>>> quadosc(j1, [0, inf], period=2*pi)
|
|
1.0
|
|
|
|
For `n = 1/2` or `n = -1/2`, the Bessel function reduces to a
|
|
trigonometric function::
|
|
|
|
>>> x = 10
|
|
>>> besselj(0.5, x), sqrt(2/(pi*x))*sin(x)
|
|
(-0.13726373575505, -0.13726373575505)
|
|
>>> besselj(-0.5, x), sqrt(2/(pi*x))*cos(x)
|
|
(-0.211708866331398, -0.211708866331398)
|
|
|
|
Derivatives of any order can be computed (negative orders
|
|
correspond to integration)::
|
|
|
|
>>> mp.dps = 25
|
|
>>> besselj(0, 7.5, 1)
|
|
-0.1352484275797055051822405
|
|
>>> diff(lambda x: besselj(0,x), 7.5)
|
|
-0.1352484275797055051822405
|
|
>>> besselj(0, 7.5, 10)
|
|
-0.1377811164763244890135677
|
|
>>> diff(lambda x: besselj(0,x), 7.5, 10)
|
|
-0.1377811164763244890135677
|
|
>>> besselj(0,7.5,-1) - besselj(0,3.5,-1)
|
|
-0.1241343240399987693521378
|
|
>>> quad(j0, [3.5, 7.5])
|
|
-0.1241343240399987693521378
|
|
|
|
Differentiation with a noninteger order gives the fractional derivative
|
|
in the sense of the Riemann-Liouville differintegral, as computed by
|
|
:func:`~mpmath.differint`::
|
|
|
|
>>> mp.dps = 15
|
|
>>> besselj(1, 3.5, 0.75)
|
|
-0.385977722939384
|
|
>>> differint(lambda x: besselj(1, x), 3.5, 0.75)
|
|
-0.385977722939384
|
|
|
|
"""
|
|
|
|
besseli = r"""
|
|
``besseli(n, x, derivative=0)`` gives the modified Bessel function of the
|
|
first kind,
|
|
|
|
.. math ::
|
|
|
|
I_n(x) = i^{-n} J_n(ix).
|
|
|
|
With *derivative* = `m \ne 0`, the `m`-th derivative
|
|
|
|
.. math ::
|
|
|
|
\frac{d^m}{dx^m} I_n(x)
|
|
|
|
is computed.
|
|
|
|
**Plots**
|
|
|
|
.. literalinclude :: /plots/besseli.py
|
|
.. image :: /plots/besseli.png
|
|
.. literalinclude :: /plots/besseli_c.py
|
|
.. image :: /plots/besseli_c.png
|
|
|
|
**Examples**
|
|
|
|
Some values of `I_n(x)`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> besseli(0,0)
|
|
1.0
|
|
>>> besseli(1,0)
|
|
0.0
|
|
>>> besseli(0,1)
|
|
1.266065877752008335598245
|
|
>>> besseli(3.5, 2+3j)
|
|
(-0.2904369752642538144289025 - 0.4469098397654815837307006j)
|
|
|
|
Arguments may be large::
|
|
|
|
>>> besseli(2, 1000)
|
|
2.480717210191852440616782e+432
|
|
>>> besseli(2, 10**10)
|
|
4.299602851624027900335391e+4342944813
|
|
>>> besseli(2, 6000+10000j)
|
|
(-2.114650753239580827144204e+2603 + 4.385040221241629041351886e+2602j)
|
|
|
|
For integers `n`, the following integral representation holds::
|
|
|
|
>>> mp.dps = 15
|
|
>>> n = 3
|
|
>>> x = 2.3
|
|
>>> quad(lambda t: exp(x*cos(t))*cos(n*t), [0,pi])/pi
|
|
0.349223221159309
|
|
>>> besseli(n,x)
|
|
0.349223221159309
|
|
|
|
Derivatives and antiderivatives of any order can be computed::
|
|
|
|
>>> mp.dps = 25
|
|
>>> besseli(2, 7.5, 1)
|
|
195.8229038931399062565883
|
|
>>> diff(lambda x: besseli(2,x), 7.5)
|
|
195.8229038931399062565883
|
|
>>> besseli(2, 7.5, 10)
|
|
153.3296508971734525525176
|
|
>>> diff(lambda x: besseli(2,x), 7.5, 10)
|
|
153.3296508971734525525176
|
|
>>> besseli(2,7.5,-1) - besseli(2,3.5,-1)
|
|
202.5043900051930141956876
|
|
>>> quad(lambda x: besseli(2,x), [3.5, 7.5])
|
|
202.5043900051930141956876
|
|
|
|
"""
|
|
|
|
bessely = r"""
|
|
``bessely(n, x, derivative=0)`` gives the Bessel function of the second kind,
|
|
|
|
.. math ::
|
|
|
|
Y_n(x) = \frac{J_n(x) \cos(\pi n) - J_{-n}(x)}{\sin(\pi n)}.
|
|
|
|
For `n` an integer, this formula should be understood as a
|
|
limit. With *derivative* = `m \ne 0`, the `m`-th derivative
|
|
|
|
.. math ::
|
|
|
|
\frac{d^m}{dx^m} Y_n(x)
|
|
|
|
is computed.
|
|
|
|
**Plots**
|
|
|
|
.. literalinclude :: /plots/bessely.py
|
|
.. image :: /plots/bessely.png
|
|
.. literalinclude :: /plots/bessely_c.py
|
|
.. image :: /plots/bessely_c.png
|
|
|
|
**Examples**
|
|
|
|
Some values of `Y_n(x)`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> bessely(0,0), bessely(1,0), bessely(2,0)
|
|
(-inf, -inf, -inf)
|
|
>>> bessely(1, pi)
|
|
0.3588729167767189594679827
|
|
>>> bessely(0.5, 3+4j)
|
|
(9.242861436961450520325216 - 3.085042824915332562522402j)
|
|
|
|
Arguments may be large::
|
|
|
|
>>> bessely(0, 10000)
|
|
0.00364780555898660588668872
|
|
>>> bessely(2.5, 10**50)
|
|
-4.8952500412050989295774e-26
|
|
>>> bessely(2.5, -10**50)
|
|
(0.0 + 4.8952500412050989295774e-26j)
|
|
|
|
Derivatives and antiderivatives of any order can be computed::
|
|
|
|
>>> bessely(2, 3.5, 1)
|
|
0.3842618820422660066089231
|
|
>>> diff(lambda x: bessely(2, x), 3.5)
|
|
0.3842618820422660066089231
|
|
>>> bessely(0.5, 3.5, 1)
|
|
-0.2066598304156764337900417
|
|
>>> diff(lambda x: bessely(0.5, x), 3.5)
|
|
-0.2066598304156764337900417
|
|
>>> diff(lambda x: bessely(2, x), 0.5, 10)
|
|
-208173867409.5547350101511
|
|
>>> bessely(2, 0.5, 10)
|
|
-208173867409.5547350101511
|
|
>>> bessely(2, 100.5, 100)
|
|
0.02668487547301372334849043
|
|
>>> quad(lambda x: bessely(2,x), [1,3])
|
|
-1.377046859093181969213262
|
|
>>> bessely(2,3,-1) - bessely(2,1,-1)
|
|
-1.377046859093181969213262
|
|
|
|
"""
|
|
|
|
besselk = r"""
|
|
``besselk(n, x)`` gives the modified Bessel function of the
|
|
second kind,
|
|
|
|
.. math ::
|
|
|
|
K_n(x) = \frac{\pi}{2} \frac{I_{-n}(x)-I_{n}(x)}{\sin(\pi n)}
|
|
|
|
For `n` an integer, this formula should be understood as a
|
|
limit.
|
|
|
|
**Plots**
|
|
|
|
.. literalinclude :: /plots/besselk.py
|
|
.. image :: /plots/besselk.png
|
|
.. literalinclude :: /plots/besselk_c.py
|
|
.. image :: /plots/besselk_c.png
|
|
|
|
**Examples**
|
|
|
|
Evaluation is supported for arbitrary complex arguments::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> besselk(0,1)
|
|
0.4210244382407083333356274
|
|
>>> besselk(0, -1)
|
|
(0.4210244382407083333356274 - 3.97746326050642263725661j)
|
|
>>> besselk(3.5, 2+3j)
|
|
(-0.02090732889633760668464128 + 0.2464022641351420167819697j)
|
|
>>> besselk(2+3j, 0.5)
|
|
(0.9615816021726349402626083 + 0.1918250181801757416908224j)
|
|
|
|
Arguments may be large::
|
|
|
|
>>> besselk(0, 100)
|
|
4.656628229175902018939005e-45
|
|
>>> besselk(1, 10**6)
|
|
4.131967049321725588398296e-434298
|
|
>>> besselk(1, 10**6*j)
|
|
(0.001140348428252385844876706 - 0.0005200017201681152909000961j)
|
|
>>> besselk(4.5, fmul(10**50, j, exact=True))
|
|
(1.561034538142413947789221e-26 + 1.243554598118700063281496e-25j)
|
|
|
|
The point `x = 0` is a singularity (logarithmic if `n = 0`)::
|
|
|
|
>>> besselk(0,0)
|
|
+inf
|
|
>>> besselk(1,0)
|
|
+inf
|
|
>>> for n in range(-4, 5):
|
|
... print(besselk(n, '1e-1000'))
|
|
...
|
|
4.8e+4001
|
|
8.0e+3000
|
|
2.0e+2000
|
|
1.0e+1000
|
|
2302.701024509704096466802
|
|
1.0e+1000
|
|
2.0e+2000
|
|
8.0e+3000
|
|
4.8e+4001
|
|
|
|
"""
|
|
|
|
hankel1 = r"""
|
|
``hankel1(n,x)`` computes the Hankel function of the first kind,
|
|
which is the complex combination of Bessel functions given by
|
|
|
|
.. math ::
|
|
|
|
H_n^{(1)}(x) = J_n(x) + i Y_n(x).
|
|
|
|
**Plots**
|
|
|
|
.. literalinclude :: /plots/hankel1.py
|
|
.. image :: /plots/hankel1.png
|
|
.. literalinclude :: /plots/hankel1_c.py
|
|
.. image :: /plots/hankel1_c.png
|
|
|
|
**Examples**
|
|
|
|
The Hankel function is generally complex-valued::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> hankel1(2, pi)
|
|
(0.4854339326315091097054957 - 0.0999007139290278787734903j)
|
|
>>> hankel1(3.5, pi)
|
|
(0.2340002029630507922628888 - 0.6419643823412927142424049j)
|
|
"""
|
|
|
|
hankel2 = r"""
|
|
``hankel2(n,x)`` computes the Hankel function of the second kind,
|
|
which is the complex combination of Bessel functions given by
|
|
|
|
.. math ::
|
|
|
|
H_n^{(2)}(x) = J_n(x) - i Y_n(x).
|
|
|
|
**Plots**
|
|
|
|
.. literalinclude :: /plots/hankel2.py
|
|
.. image :: /plots/hankel2.png
|
|
.. literalinclude :: /plots/hankel2_c.py
|
|
.. image :: /plots/hankel2_c.png
|
|
|
|
**Examples**
|
|
|
|
The Hankel function is generally complex-valued::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> hankel2(2, pi)
|
|
(0.4854339326315091097054957 + 0.0999007139290278787734903j)
|
|
>>> hankel2(3.5, pi)
|
|
(0.2340002029630507922628888 + 0.6419643823412927142424049j)
|
|
"""
|
|
|
|
lambertw = r"""
|
|
The Lambert W function `W(z)` is defined as the inverse function
|
|
of `w \exp(w)`. In other words, the value of `W(z)` is such that
|
|
`z = W(z) \exp(W(z))` for any complex number `z`.
|
|
|
|
The Lambert W function is a multivalued function with infinitely
|
|
many branches `W_k(z)`, indexed by `k \in \mathbb{Z}`. Each branch
|
|
gives a different solution `w` of the equation `z = w \exp(w)`.
|
|
All branches are supported by :func:`~mpmath.lambertw`:
|
|
|
|
* ``lambertw(z)`` gives the principal solution (branch 0)
|
|
|
|
* ``lambertw(z, k)`` gives the solution on branch `k`
|
|
|
|
The Lambert W function has two partially real branches: the
|
|
principal branch (`k = 0`) is real for real `z > -1/e`, and the
|
|
`k = -1` branch is real for `-1/e < z < 0`. All branches except
|
|
`k = 0` have a logarithmic singularity at `z = 0`.
|
|
|
|
The definition, implementation and choice of branches
|
|
is based on [Corless]_.
|
|
|
|
**Plots**
|
|
|
|
.. literalinclude :: /plots/lambertw.py
|
|
.. image :: /plots/lambertw.png
|
|
.. literalinclude :: /plots/lambertw_c.py
|
|
.. image :: /plots/lambertw_c.png
|
|
|
|
**Basic examples**
|
|
|
|
The Lambert W function is the inverse of `w \exp(w)`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> w = lambertw(1)
|
|
>>> w
|
|
0.5671432904097838729999687
|
|
>>> w*exp(w)
|
|
1.0
|
|
|
|
Any branch gives a valid inverse::
|
|
|
|
>>> w = lambertw(1, k=3)
|
|
>>> w
|
|
(-2.853581755409037807206819 + 17.11353553941214591260783j)
|
|
>>> w = lambertw(1, k=25)
|
|
>>> w
|
|
(-5.047020464221569709378686 + 155.4763860949415867162066j)
|
|
>>> chop(w*exp(w))
|
|
1.0
|
|
|
|
**Applications to equation-solving**
|
|
|
|
The Lambert W function may be used to solve various kinds of
|
|
equations, such as finding the value of the infinite power
|
|
tower `z^{z^{z^{\ldots}}}`::
|
|
|
|
>>> def tower(z, n):
|
|
... if n == 0:
|
|
... return z
|
|
... return z ** tower(z, n-1)
|
|
...
|
|
>>> tower(mpf(0.5), 100)
|
|
0.6411857445049859844862005
|
|
>>> -lambertw(-log(0.5))/log(0.5)
|
|
0.6411857445049859844862005
|
|
|
|
**Properties**
|
|
|
|
The Lambert W function grows roughly like the natural logarithm
|
|
for large arguments::
|
|
|
|
>>> lambertw(1000); log(1000)
|
|
5.249602852401596227126056
|
|
6.907755278982137052053974
|
|
>>> lambertw(10**100); log(10**100)
|
|
224.8431064451185015393731
|
|
230.2585092994045684017991
|
|
|
|
The principal branch of the Lambert W function has a rational
|
|
Taylor series expansion around `z = 0`::
|
|
|
|
>>> nprint(taylor(lambertw, 0, 6), 10)
|
|
[0.0, 1.0, -1.0, 1.5, -2.666666667, 5.208333333, -10.8]
|
|
|
|
Some special values and limits are::
|
|
|
|
>>> lambertw(0)
|
|
0.0
|
|
>>> lambertw(1)
|
|
0.5671432904097838729999687
|
|
>>> lambertw(e)
|
|
1.0
|
|
>>> lambertw(inf)
|
|
+inf
|
|
>>> lambertw(0, k=-1)
|
|
-inf
|
|
>>> lambertw(0, k=3)
|
|
-inf
|
|
>>> lambertw(inf, k=2)
|
|
(+inf + 12.56637061435917295385057j)
|
|
>>> lambertw(inf, k=3)
|
|
(+inf + 18.84955592153875943077586j)
|
|
>>> lambertw(-inf, k=3)
|
|
(+inf + 21.9911485751285526692385j)
|
|
|
|
The `k = 0` and `k = -1` branches join at `z = -1/e` where
|
|
`W(z) = -1` for both branches. Since `-1/e` can only be represented
|
|
approximately with binary floating-point numbers, evaluating the
|
|
Lambert W function at this point only gives `-1` approximately::
|
|
|
|
>>> lambertw(-1/e, 0)
|
|
-0.9999999999998371330228251
|
|
>>> lambertw(-1/e, -1)
|
|
-1.000000000000162866977175
|
|
|
|
If `-1/e` happens to round in the negative direction, there might be
|
|
a small imaginary part::
|
|
|
|
>>> mp.dps = 15
|
|
>>> lambertw(-1/e)
|
|
(-1.0 + 8.22007971483662e-9j)
|
|
>>> lambertw(-1/e+eps)
|
|
-0.999999966242188
|
|
|
|
**References**
|
|
|
|
1. [Corless]_
|
|
"""
|
|
|
|
barnesg = r"""
|
|
Evaluates the Barnes G-function, which generalizes the
|
|
superfactorial (:func:`~mpmath.superfac`) and by extension also the
|
|
hyperfactorial (:func:`~mpmath.hyperfac`) to the complex numbers
|
|
in an analogous way to how the gamma function generalizes
|
|
the ordinary factorial.
|
|
|
|
The Barnes G-function may be defined in terms of a Weierstrass
|
|
product:
|
|
|
|
.. math ::
|
|
|
|
G(z+1) = (2\pi)^{z/2} e^{-[z(z+1)+\gamma z^2]/2}
|
|
\prod_{n=1}^\infty
|
|
\left[\left(1+\frac{z}{n}\right)^ne^{-z+z^2/(2n)}\right]
|
|
|
|
For positive integers `n`, we have have relation to superfactorials
|
|
`G(n) = \mathrm{sf}(n-2) = 0! \cdot 1! \cdots (n-2)!`.
|
|
|
|
**Examples**
|
|
|
|
Some elementary values and limits of the Barnes G-function::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> barnesg(1), barnesg(2), barnesg(3)
|
|
(1.0, 1.0, 1.0)
|
|
>>> barnesg(4)
|
|
2.0
|
|
>>> barnesg(5)
|
|
12.0
|
|
>>> barnesg(6)
|
|
288.0
|
|
>>> barnesg(7)
|
|
34560.0
|
|
>>> barnesg(8)
|
|
24883200.0
|
|
>>> barnesg(inf)
|
|
+inf
|
|
>>> barnesg(0), barnesg(-1), barnesg(-2)
|
|
(0.0, 0.0, 0.0)
|
|
|
|
Closed-form values are known for some rational arguments::
|
|
|
|
>>> barnesg('1/2')
|
|
0.603244281209446
|
|
>>> sqrt(exp(0.25+log(2)/12)/sqrt(pi)/glaisher**3)
|
|
0.603244281209446
|
|
>>> barnesg('1/4')
|
|
0.29375596533861
|
|
>>> nthroot(exp('3/8')/exp(catalan/pi)/
|
|
... gamma(0.25)**3/sqrt(glaisher)**9, 4)
|
|
0.29375596533861
|
|
|
|
The Barnes G-function satisfies the functional equation
|
|
`G(z+1) = \Gamma(z) G(z)`::
|
|
|
|
>>> z = pi
|
|
>>> barnesg(z+1)
|
|
2.39292119327948
|
|
>>> gamma(z)*barnesg(z)
|
|
2.39292119327948
|
|
|
|
The asymptotic growth rate of the Barnes G-function is related to
|
|
the Glaisher-Kinkelin constant::
|
|
|
|
>>> limit(lambda n: barnesg(n+1)/(n**(n**2/2-mpf(1)/12)*
|
|
... (2*pi)**(n/2)*exp(-3*n**2/4)), inf)
|
|
0.847536694177301
|
|
>>> exp('1/12')/glaisher
|
|
0.847536694177301
|
|
|
|
The Barnes G-function can be differentiated in closed form::
|
|
|
|
>>> z = 3
|
|
>>> diff(barnesg, z)
|
|
0.264507203401607
|
|
>>> barnesg(z)*((z-1)*psi(0,z)-z+(log(2*pi)+1)/2)
|
|
0.264507203401607
|
|
|
|
Evaluation is supported for arbitrary arguments and at arbitrary
|
|
precision::
|
|
|
|
>>> barnesg(6.5)
|
|
2548.7457695685
|
|
>>> barnesg(-pi)
|
|
0.00535976768353037
|
|
>>> barnesg(3+4j)
|
|
(-0.000676375932234244 - 4.42236140124728e-5j)
|
|
>>> mp.dps = 50
|
|
>>> barnesg(1/sqrt(2))
|
|
0.81305501090451340843586085064413533788206204124732
|
|
>>> q = barnesg(10j)
|
|
>>> q.real
|
|
0.000000000021852360840356557241543036724799812371995850552234
|
|
>>> q.imag
|
|
-0.00000000000070035335320062304849020654215545839053210041457588
|
|
>>> mp.dps = 15
|
|
>>> barnesg(100)
|
|
3.10361006263698e+6626
|
|
>>> barnesg(-101)
|
|
0.0
|
|
>>> barnesg(-10.5)
|
|
5.94463017605008e+25
|
|
>>> barnesg(-10000.5)
|
|
-6.14322868174828e+167480422
|
|
>>> barnesg(1000j)
|
|
(5.21133054865546e-1173597 + 4.27461836811016e-1173597j)
|
|
>>> barnesg(-1000+1000j)
|
|
(2.43114569750291e+1026623 + 2.24851410674842e+1026623j)
|
|
|
|
|
|
**References**
|
|
|
|
1. Whittaker & Watson, *A Course of Modern Analysis*,
|
|
Cambridge University Press, 4th edition (1927), p.264
|
|
2. http://en.wikipedia.org/wiki/Barnes_G-function
|
|
3. http://mathworld.wolfram.com/BarnesG-Function.html
|
|
|
|
"""
|
|
|
|
superfac = r"""
|
|
Computes the superfactorial, defined as the product of
|
|
consecutive factorials
|
|
|
|
.. math ::
|
|
|
|
\mathrm{sf}(n) = \prod_{k=1}^n k!
|
|
|
|
For general complex `z`, `\mathrm{sf}(z)` is defined
|
|
in terms of the Barnes G-function (see :func:`~mpmath.barnesg`).
|
|
|
|
**Examples**
|
|
|
|
The first few superfactorials are (OEIS A000178)::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> for n in range(10):
|
|
... print("%s %s" % (n, superfac(n)))
|
|
...
|
|
0 1.0
|
|
1 1.0
|
|
2 2.0
|
|
3 12.0
|
|
4 288.0
|
|
5 34560.0
|
|
6 24883200.0
|
|
7 125411328000.0
|
|
8 5.05658474496e+15
|
|
9 1.83493347225108e+21
|
|
|
|
Superfactorials grow very rapidly::
|
|
|
|
>>> superfac(1000)
|
|
3.24570818422368e+1177245
|
|
>>> superfac(10**10)
|
|
2.61398543581249e+467427913956904067453
|
|
|
|
Evaluation is supported for arbitrary arguments::
|
|
|
|
>>> mp.dps = 25
|
|
>>> superfac(pi)
|
|
17.20051550121297985285333
|
|
>>> superfac(2+3j)
|
|
(-0.005915485633199789627466468 + 0.008156449464604044948738263j)
|
|
>>> diff(superfac, 1)
|
|
0.2645072034016070205673056
|
|
|
|
**References**
|
|
|
|
1. http://oeis.org/A000178
|
|
|
|
"""
|
|
|
|
|
|
hyperfac = r"""
|
|
Computes the hyperfactorial, defined for integers as the product
|
|
|
|
.. math ::
|
|
|
|
H(n) = \prod_{k=1}^n k^k.
|
|
|
|
|
|
The hyperfactorial satisfies the recurrence formula `H(z) = z^z H(z-1)`.
|
|
It can be defined more generally in terms of the Barnes G-function (see
|
|
:func:`~mpmath.barnesg`) and the gamma function by the formula
|
|
|
|
.. math ::
|
|
|
|
H(z) = \frac{\Gamma(z+1)^z}{G(z)}.
|
|
|
|
The extension to complex numbers can also be done via
|
|
the integral representation
|
|
|
|
.. math ::
|
|
|
|
H(z) = (2\pi)^{-z/2} \exp \left[
|
|
{z+1 \choose 2} + \int_0^z \log(t!)\,dt
|
|
\right].
|
|
|
|
**Examples**
|
|
|
|
The rapidly-growing sequence of hyperfactorials begins
|
|
(OEIS A002109)::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> for n in range(10):
|
|
... print("%s %s" % (n, hyperfac(n)))
|
|
...
|
|
0 1.0
|
|
1 1.0
|
|
2 4.0
|
|
3 108.0
|
|
4 27648.0
|
|
5 86400000.0
|
|
6 4031078400000.0
|
|
7 3.3197663987712e+18
|
|
8 5.56964379417266e+25
|
|
9 2.15779412229419e+34
|
|
|
|
Some even larger hyperfactorials are::
|
|
|
|
>>> hyperfac(1000)
|
|
5.46458120882585e+1392926
|
|
>>> hyperfac(10**10)
|
|
4.60408207642219e+489142638002418704309
|
|
|
|
The hyperfactorial can be evaluated for arbitrary arguments::
|
|
|
|
>>> hyperfac(0.5)
|
|
0.880449235173423
|
|
>>> diff(hyperfac, 1)
|
|
0.581061466795327
|
|
>>> hyperfac(pi)
|
|
205.211134637462
|
|
>>> hyperfac(-10+1j)
|
|
(3.01144471378225e+46 - 2.45285242480185e+46j)
|
|
|
|
The recurrence property of the hyperfactorial holds
|
|
generally::
|
|
|
|
>>> z = 3-4*j
|
|
>>> hyperfac(z)
|
|
(-4.49795891462086e-7 - 6.33262283196162e-7j)
|
|
>>> z**z * hyperfac(z-1)
|
|
(-4.49795891462086e-7 - 6.33262283196162e-7j)
|
|
>>> z = mpf(-0.6)
|
|
>>> chop(z**z * hyperfac(z-1))
|
|
1.28170142849352
|
|
>>> hyperfac(z)
|
|
1.28170142849352
|
|
|
|
The hyperfactorial may also be computed using the integral
|
|
definition::
|
|
|
|
>>> z = 2.5
|
|
>>> hyperfac(z)
|
|
15.9842119922237
|
|
>>> (2*pi)**(-z/2)*exp(binomial(z+1,2) +
|
|
... quad(lambda t: loggamma(t+1), [0, z]))
|
|
15.9842119922237
|
|
|
|
:func:`~mpmath.hyperfac` supports arbitrary-precision evaluation::
|
|
|
|
>>> mp.dps = 50
|
|
>>> hyperfac(10)
|
|
215779412229418562091680268288000000000000000.0
|
|
>>> hyperfac(1/sqrt(2))
|
|
0.89404818005227001975423476035729076375705084390942
|
|
|
|
**References**
|
|
|
|
1. http://oeis.org/A002109
|
|
2. http://mathworld.wolfram.com/Hyperfactorial.html
|
|
|
|
"""
|
|
|
|
rgamma = r"""
|
|
Computes the reciprocal of the gamma function, `1/\Gamma(z)`. This
|
|
function evaluates to zero at the poles
|
|
of the gamma function, `z = 0, -1, -2, \ldots`.
|
|
|
|
**Examples**
|
|
|
|
Basic examples::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> rgamma(1)
|
|
1.0
|
|
>>> rgamma(4)
|
|
0.1666666666666666666666667
|
|
>>> rgamma(0); rgamma(-1)
|
|
0.0
|
|
0.0
|
|
>>> rgamma(1000)
|
|
2.485168143266784862783596e-2565
|
|
>>> rgamma(inf)
|
|
0.0
|
|
|
|
A definite integral that can be evaluated in terms of elementary
|
|
integrals::
|
|
|
|
>>> quad(rgamma, [0,inf])
|
|
2.807770242028519365221501
|
|
>>> e + quad(lambda t: exp(-t)/(pi**2+log(t)**2), [0,inf])
|
|
2.807770242028519365221501
|
|
"""
|
|
|
|
loggamma = r"""
|
|
Computes the principal branch of the log-gamma function,
|
|
`\ln \Gamma(z)`. Unlike `\ln(\Gamma(z))`, which has infinitely many
|
|
complex branch cuts, the principal log-gamma function only has a single
|
|
branch cut along the negative half-axis. The principal branch
|
|
continuously matches the asymptotic Stirling expansion
|
|
|
|
.. math ::
|
|
|
|
\ln \Gamma(z) \sim \frac{\ln(2 \pi)}{2} +
|
|
\left(z-\frac{1}{2}\right) \ln(z) - z + O(z^{-1}).
|
|
|
|
The real parts of both functions agree, but their imaginary
|
|
parts generally differ by `2 n \pi` for some `n \in \mathbb{Z}`.
|
|
They coincide for `z \in \mathbb{R}, z > 0`.
|
|
|
|
Computationally, it is advantageous to use :func:`~mpmath.loggamma`
|
|
instead of :func:`~mpmath.gamma` for extremely large arguments.
|
|
|
|
**Examples**
|
|
|
|
Comparing with `\ln(\Gamma(z))`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> loggamma('13.2'); log(gamma('13.2'))
|
|
20.49400419456603678498394
|
|
20.49400419456603678498394
|
|
>>> loggamma(3+4j)
|
|
(-1.756626784603784110530604 + 4.742664438034657928194889j)
|
|
>>> log(gamma(3+4j))
|
|
(-1.756626784603784110530604 - 1.540520869144928548730397j)
|
|
>>> log(gamma(3+4j)) + 2*pi*j
|
|
(-1.756626784603784110530604 + 4.742664438034657928194889j)
|
|
|
|
Note the imaginary parts for negative arguments::
|
|
|
|
>>> loggamma(-0.5); loggamma(-1.5); loggamma(-2.5)
|
|
(1.265512123484645396488946 - 3.141592653589793238462643j)
|
|
(0.8600470153764810145109327 - 6.283185307179586476925287j)
|
|
(-0.05624371649767405067259453 - 9.42477796076937971538793j)
|
|
|
|
Some special values::
|
|
|
|
>>> loggamma(1); loggamma(2)
|
|
0.0
|
|
0.0
|
|
>>> loggamma(3); +ln2
|
|
0.6931471805599453094172321
|
|
0.6931471805599453094172321
|
|
>>> loggamma(3.5); log(15*sqrt(pi)/8)
|
|
1.200973602347074224816022
|
|
1.200973602347074224816022
|
|
>>> loggamma(inf)
|
|
+inf
|
|
|
|
Huge arguments are permitted::
|
|
|
|
>>> loggamma('1e30')
|
|
6.807755278982137052053974e+31
|
|
>>> loggamma('1e300')
|
|
6.897755278982137052053974e+302
|
|
>>> loggamma('1e3000')
|
|
6.906755278982137052053974e+3003
|
|
>>> loggamma('1e100000000000000000000')
|
|
2.302585092994045684007991e+100000000000000000020
|
|
>>> loggamma('1e30j')
|
|
(-1.570796326794896619231322e+30 + 6.807755278982137052053974e+31j)
|
|
>>> loggamma('1e300j')
|
|
(-1.570796326794896619231322e+300 + 6.897755278982137052053974e+302j)
|
|
>>> loggamma('1e3000j')
|
|
(-1.570796326794896619231322e+3000 + 6.906755278982137052053974e+3003j)
|
|
|
|
The log-gamma function can be integrated analytically
|
|
on any interval of unit length::
|
|
|
|
>>> z = 0
|
|
>>> quad(loggamma, [z,z+1]); log(2*pi)/2
|
|
0.9189385332046727417803297
|
|
0.9189385332046727417803297
|
|
>>> z = 3+4j
|
|
>>> quad(loggamma, [z,z+1]); (log(z)-1)*z + log(2*pi)/2
|
|
(-0.9619286014994750641314421 + 5.219637303741238195688575j)
|
|
(-0.9619286014994750641314421 + 5.219637303741238195688575j)
|
|
|
|
The derivatives of the log-gamma function are given by the
|
|
polygamma function (:func:`~mpmath.psi`)::
|
|
|
|
>>> diff(loggamma, -4+3j); psi(0, -4+3j)
|
|
(1.688493531222971393607153 + 2.554898911356806978892748j)
|
|
(1.688493531222971393607153 + 2.554898911356806978892748j)
|
|
>>> diff(loggamma, -4+3j, 2); psi(1, -4+3j)
|
|
(-0.1539414829219882371561038 - 0.1020485197430267719746479j)
|
|
(-0.1539414829219882371561038 - 0.1020485197430267719746479j)
|
|
|
|
The log-gamma function satisfies an additive form of the
|
|
recurrence relation for the ordinary gamma function::
|
|
|
|
>>> z = 2+3j
|
|
>>> loggamma(z); loggamma(z+1) - log(z)
|
|
(-2.092851753092733349564189 + 2.302396543466867626153708j)
|
|
(-2.092851753092733349564189 + 2.302396543466867626153708j)
|
|
|
|
"""
|
|
|
|
siegeltheta = r"""
|
|
Computes the Riemann-Siegel theta function,
|
|
|
|
.. math ::
|
|
|
|
\theta(t) = \frac{
|
|
\log\Gamma\left(\frac{1+2it}{4}\right) -
|
|
\log\Gamma\left(\frac{1-2it}{4}\right)
|
|
}{2i} - \frac{\log \pi}{2} t.
|
|
|
|
The Riemann-Siegel theta function is important in
|
|
providing the phase factor for the Z-function
|
|
(see :func:`~mpmath.siegelz`). Evaluation is supported for real and
|
|
complex arguments::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> siegeltheta(0)
|
|
0.0
|
|
>>> siegeltheta(inf)
|
|
+inf
|
|
>>> siegeltheta(-inf)
|
|
-inf
|
|
>>> siegeltheta(1)
|
|
-1.767547952812290388302216
|
|
>>> siegeltheta(10+0.25j)
|
|
(-3.068638039426838572528867 + 0.05804937947429712998395177j)
|
|
|
|
Arbitrary derivatives may be computed with derivative = k
|
|
|
|
>>> siegeltheta(1234, derivative=2)
|
|
0.0004051864079114053109473741
|
|
>>> diff(siegeltheta, 1234, n=2)
|
|
0.0004051864079114053109473741
|
|
|
|
|
|
The Riemann-Siegel theta function has odd symmetry around `t = 0`,
|
|
two local extreme points and three real roots including 0 (located
|
|
symmetrically)::
|
|
|
|
>>> nprint(chop(taylor(siegeltheta, 0, 5)))
|
|
[0.0, -2.68609, 0.0, 2.69433, 0.0, -6.40218]
|
|
>>> findroot(diffun(siegeltheta), 7)
|
|
6.28983598883690277966509
|
|
>>> findroot(siegeltheta, 20)
|
|
17.84559954041086081682634
|
|
|
|
For large `t`, there is a famous asymptotic formula
|
|
for `\theta(t)`, to first order given by::
|
|
|
|
>>> t = mpf(10**6)
|
|
>>> siegeltheta(t)
|
|
5488816.353078403444882823
|
|
>>> -t*log(2*pi/t)/2-t/2
|
|
5488816.745777464310273645
|
|
"""
|
|
|
|
grampoint = r"""
|
|
Gives the `n`-th Gram point `g_n`, defined as the solution
|
|
to the equation `\theta(g_n) = \pi n` where `\theta(t)`
|
|
is the Riemann-Siegel theta function (:func:`~mpmath.siegeltheta`).
|
|
|
|
The first few Gram points are::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> grampoint(0)
|
|
17.84559954041086081682634
|
|
>>> grampoint(1)
|
|
23.17028270124630927899664
|
|
>>> grampoint(2)
|
|
27.67018221781633796093849
|
|
>>> grampoint(3)
|
|
31.71797995476405317955149
|
|
|
|
Checking the definition::
|
|
|
|
>>> siegeltheta(grampoint(3))
|
|
9.42477796076937971538793
|
|
>>> 3*pi
|
|
9.42477796076937971538793
|
|
|
|
A large Gram point::
|
|
|
|
>>> grampoint(10**10)
|
|
3293531632.728335454561153
|
|
|
|
Gram points are useful when studying the Z-function
|
|
(:func:`~mpmath.siegelz`). See the documentation of that function
|
|
for additional examples.
|
|
|
|
:func:`~mpmath.grampoint` can solve the defining equation for
|
|
nonintegral `n`. There is a fixed point where `g(x) = x`::
|
|
|
|
>>> findroot(lambda x: grampoint(x) - x, 10000)
|
|
9146.698193171459265866198
|
|
|
|
**References**
|
|
|
|
1. http://mathworld.wolfram.com/GramPoint.html
|
|
|
|
"""
|
|
|
|
siegelz = r"""
|
|
Computes the Z-function, also known as the Riemann-Siegel Z function,
|
|
|
|
.. math ::
|
|
|
|
Z(t) = e^{i \theta(t)} \zeta(1/2+it)
|
|
|
|
where `\zeta(s)` is the Riemann zeta function (:func:`~mpmath.zeta`)
|
|
and where `\theta(t)` denotes the Riemann-Siegel theta function
|
|
(see :func:`~mpmath.siegeltheta`).
|
|
|
|
Evaluation is supported for real and complex arguments::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> siegelz(1)
|
|
-0.7363054628673177346778998
|
|
>>> siegelz(3+4j)
|
|
(-0.1852895764366314976003936 - 0.2773099198055652246992479j)
|
|
|
|
The first four derivatives are supported, using the
|
|
optional *derivative* keyword argument::
|
|
|
|
>>> siegelz(1234567, derivative=3)
|
|
56.89689348495089294249178
|
|
>>> diff(siegelz, 1234567, n=3)
|
|
56.89689348495089294249178
|
|
|
|
|
|
The Z-function has a Maclaurin expansion::
|
|
|
|
>>> nprint(chop(taylor(siegelz, 0, 4)))
|
|
[-1.46035, 0.0, 2.73588, 0.0, -8.39357]
|
|
|
|
The Z-function `Z(t)` is equal to `\pm |\zeta(s)|` on the
|
|
critical line `s = 1/2+it` (i.e. for real arguments `t`
|
|
to `Z`). Its zeros coincide with those of the Riemann zeta
|
|
function::
|
|
|
|
>>> findroot(siegelz, 14)
|
|
14.13472514173469379045725
|
|
>>> findroot(siegelz, 20)
|
|
21.02203963877155499262848
|
|
>>> findroot(zeta, 0.5+14j)
|
|
(0.5 + 14.13472514173469379045725j)
|
|
>>> findroot(zeta, 0.5+20j)
|
|
(0.5 + 21.02203963877155499262848j)
|
|
|
|
Since the Z-function is real-valued on the critical line
|
|
(and unlike `|\zeta(s)|` analytic), it is useful for
|
|
investigating the zeros of the Riemann zeta function.
|
|
For example, one can use a root-finding algorithm based
|
|
on sign changes::
|
|
|
|
>>> findroot(siegelz, [100, 200], solver='bisect')
|
|
176.4414342977104188888926
|
|
|
|
To locate roots, Gram points `g_n` which can be computed
|
|
by :func:`~mpmath.grampoint` are useful. If `(-1)^n Z(g_n)` is
|
|
positive for two consecutive `n`, then `Z(t)` must have
|
|
a zero between those points::
|
|
|
|
>>> g10 = grampoint(10)
|
|
>>> g11 = grampoint(11)
|
|
>>> (-1)**10 * siegelz(g10) > 0
|
|
True
|
|
>>> (-1)**11 * siegelz(g11) > 0
|
|
True
|
|
>>> findroot(siegelz, [g10, g11], solver='bisect')
|
|
56.44624769706339480436776
|
|
>>> g10, g11
|
|
(54.67523744685325626632663, 57.54516517954725443703014)
|
|
|
|
"""
|
|
|
|
riemannr = r"""
|
|
Evaluates the Riemann R function, a smooth approximation of the
|
|
prime counting function `\pi(x)` (see :func:`~mpmath.primepi`). The Riemann
|
|
R function gives a fast numerical approximation useful e.g. to
|
|
roughly estimate the number of primes in a given interval.
|
|
|
|
The Riemann R function is computed using the rapidly convergent Gram
|
|
series,
|
|
|
|
.. math ::
|
|
|
|
R(x) = 1 + \sum_{k=1}^{\infty}
|
|
\frac{\log^k x}{k k! \zeta(k+1)}.
|
|
|
|
From the Gram series, one sees that the Riemann R function is a
|
|
well-defined analytic function (except for a branch cut along
|
|
the negative real half-axis); it can be evaluated for arbitrary
|
|
real or complex arguments.
|
|
|
|
The Riemann R function gives a very accurate approximation
|
|
of the prime counting function. For example, it is wrong by at
|
|
most 2 for `x < 1000`, and for `x = 10^9` differs from the exact
|
|
value of `\pi(x)` by 79, or less than two parts in a million.
|
|
It is about 10 times more accurate than the logarithmic integral
|
|
estimate (see :func:`~mpmath.li`), which however is even faster to evaluate.
|
|
It is orders of magnitude more accurate than the extremely
|
|
fast `x/\log x` estimate.
|
|
|
|
**Examples**
|
|
|
|
For small arguments, the Riemann R function almost exactly
|
|
gives the prime counting function if rounded to the nearest
|
|
integer::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> primepi(50), riemannr(50)
|
|
(15, 14.9757023241462)
|
|
>>> max(abs(primepi(n)-int(round(riemannr(n)))) for n in range(100))
|
|
1
|
|
>>> max(abs(primepi(n)-int(round(riemannr(n)))) for n in range(300))
|
|
2
|
|
|
|
The Riemann R function can be evaluated for arguments far too large
|
|
for exact determination of `\pi(x)` to be computationally
|
|
feasible with any presently known algorithm::
|
|
|
|
>>> riemannr(10**30)
|
|
1.46923988977204e+28
|
|
>>> riemannr(10**100)
|
|
4.3619719871407e+97
|
|
>>> riemannr(10**1000)
|
|
4.3448325764012e+996
|
|
|
|
A comparison of the Riemann R function and logarithmic integral estimates
|
|
for `\pi(x)` using exact values of `\pi(10^n)` up to `n = 9`.
|
|
The fractional error is shown in parentheses::
|
|
|
|
>>> exact = [4,25,168,1229,9592,78498,664579,5761455,50847534]
|
|
>>> for n, p in enumerate(exact):
|
|
... n += 1
|
|
... r, l = riemannr(10**n), li(10**n)
|
|
... rerr, lerr = nstr((r-p)/p,3), nstr((l-p)/p,3)
|
|
... print("%i %i %s(%s) %s(%s)" % (n, p, r, rerr, l, lerr))
|
|
...
|
|
1 4 4.56458314100509(0.141) 6.1655995047873(0.541)
|
|
2 25 25.6616332669242(0.0265) 30.1261415840796(0.205)
|
|
3 168 168.359446281167(0.00214) 177.609657990152(0.0572)
|
|
4 1229 1226.93121834343(-0.00168) 1246.13721589939(0.0139)
|
|
5 9592 9587.43173884197(-0.000476) 9629.8090010508(0.00394)
|
|
6 78498 78527.3994291277(0.000375) 78627.5491594622(0.00165)
|
|
7 664579 664667.447564748(0.000133) 664918.405048569(0.000511)
|
|
8 5761455 5761551.86732017(1.68e-5) 5762209.37544803(0.000131)
|
|
9 50847534 50847455.4277214(-1.55e-6) 50849234.9570018(3.35e-5)
|
|
|
|
The derivative of the Riemann R function gives the approximate
|
|
probability for a number of magnitude `x` to be prime::
|
|
|
|
>>> diff(riemannr, 1000)
|
|
0.141903028110784
|
|
>>> mpf(primepi(1050) - primepi(950)) / 100
|
|
0.15
|
|
|
|
Evaluation is supported for arbitrary arguments and at arbitrary
|
|
precision::
|
|
|
|
>>> mp.dps = 30
|
|
>>> riemannr(7.5)
|
|
3.72934743264966261918857135136
|
|
>>> riemannr(-4+2j)
|
|
(-0.551002208155486427591793957644 + 2.16966398138119450043195899746j)
|
|
|
|
"""
|
|
|
|
primepi = r"""
|
|
Evaluates the prime counting function, `\pi(x)`, which gives
|
|
the number of primes less than or equal to `x`. The argument
|
|
`x` may be fractional.
|
|
|
|
The prime counting function is very expensive to evaluate
|
|
precisely for large `x`, and the present implementation is
|
|
not optimized in any way. For numerical approximation of the
|
|
prime counting function, it is better to use :func:`~mpmath.primepi2`
|
|
or :func:`~mpmath.riemannr`.
|
|
|
|
Some values of the prime counting function::
|
|
|
|
>>> from mpmath import *
|
|
>>> [primepi(k) for k in range(20)]
|
|
[0, 0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 8]
|
|
>>> primepi(3.5)
|
|
2
|
|
>>> primepi(100000)
|
|
9592
|
|
|
|
"""
|
|
|
|
primepi2 = r"""
|
|
Returns an interval (as an ``mpi`` instance) providing bounds
|
|
for the value of the prime counting function `\pi(x)`. For small
|
|
`x`, :func:`~mpmath.primepi2` returns an exact interval based on
|
|
the output of :func:`~mpmath.primepi`. For `x > 2656`, a loose interval
|
|
based on Schoenfeld's inequality
|
|
|
|
.. math ::
|
|
|
|
|\pi(x) - \mathrm{li}(x)| < \frac{\sqrt x \log x}{8 \pi}
|
|
|
|
is returned. This estimate is rigorous assuming the truth of
|
|
the Riemann hypothesis, and can be computed very quickly.
|
|
|
|
**Examples**
|
|
|
|
Exact values of the prime counting function for small `x`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> iv.dps = 15; iv.pretty = True
|
|
>>> primepi2(10)
|
|
[4.0, 4.0]
|
|
>>> primepi2(100)
|
|
[25.0, 25.0]
|
|
>>> primepi2(1000)
|
|
[168.0, 168.0]
|
|
|
|
Loose intervals are generated for moderately large `x`:
|
|
|
|
>>> primepi2(10000), primepi(10000)
|
|
([1209.0, 1283.0], 1229)
|
|
>>> primepi2(50000), primepi(50000)
|
|
([5070.0, 5263.0], 5133)
|
|
|
|
As `x` increases, the absolute error gets worse while the relative
|
|
error improves. The exact value of `\pi(10^{23})` is
|
|
1925320391606803968923, and :func:`~mpmath.primepi2` gives 9 significant
|
|
digits::
|
|
|
|
>>> p = primepi2(10**23)
|
|
>>> p
|
|
[1.9253203909477020467e+21, 1.925320392280406229e+21]
|
|
>>> mpf(p.delta) / mpf(p.a)
|
|
6.9219865355293e-10
|
|
|
|
A more precise, nonrigorous estimate for `\pi(x)` can be
|
|
obtained using the Riemann R function (:func:`~mpmath.riemannr`).
|
|
For large enough `x`, the value returned by :func:`~mpmath.primepi2`
|
|
essentially amounts to a small perturbation of the value returned by
|
|
:func:`~mpmath.riemannr`::
|
|
|
|
>>> primepi2(10**100)
|
|
[4.3619719871407024816e+97, 4.3619719871407032404e+97]
|
|
>>> riemannr(10**100)
|
|
4.3619719871407e+97
|
|
"""
|
|
|
|
primezeta = r"""
|
|
Computes the prime zeta function, which is defined
|
|
in analogy with the Riemann zeta function (:func:`~mpmath.zeta`)
|
|
as
|
|
|
|
.. math ::
|
|
|
|
P(s) = \sum_p \frac{1}{p^s}
|
|
|
|
where the sum is taken over all prime numbers `p`. Although
|
|
this sum only converges for `\mathrm{Re}(s) > 1`, the
|
|
function is defined by analytic continuation in the
|
|
half-plane `\mathrm{Re}(s) > 0`.
|
|
|
|
**Examples**
|
|
|
|
Arbitrary-precision evaluation for real and complex arguments is
|
|
supported::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 30; mp.pretty = True
|
|
>>> primezeta(2)
|
|
0.452247420041065498506543364832
|
|
>>> primezeta(pi)
|
|
0.15483752698840284272036497397
|
|
>>> mp.dps = 50
|
|
>>> primezeta(3)
|
|
0.17476263929944353642311331466570670097541212192615
|
|
>>> mp.dps = 20
|
|
>>> primezeta(3+4j)
|
|
(-0.12085382601645763295 - 0.013370403397787023602j)
|
|
|
|
The prime zeta function has a logarithmic pole at `s = 1`,
|
|
with residue equal to the difference of the Mertens and
|
|
Euler constants::
|
|
|
|
>>> primezeta(1)
|
|
+inf
|
|
>>> extradps(25)(lambda x: primezeta(1+x)+log(x))(+eps)
|
|
-0.31571845205389007685
|
|
>>> mertens-euler
|
|
-0.31571845205389007685
|
|
|
|
The analytic continuation to `0 < \mathrm{Re}(s) \le 1`
|
|
is implemented. In this strip the function exhibits
|
|
very complex behavior; on the unit interval, it has poles at
|
|
`1/n` for every squarefree integer `n`::
|
|
|
|
>>> primezeta(0.5) # Pole at s = 1/2
|
|
(-inf + 3.1415926535897932385j)
|
|
>>> primezeta(0.25)
|
|
(-1.0416106801757269036 + 0.52359877559829887308j)
|
|
>>> primezeta(0.5+10j)
|
|
(0.54892423556409790529 + 0.45626803423487934264j)
|
|
|
|
Although evaluation works in principle for any `\mathrm{Re}(s) > 0`,
|
|
it should be noted that the evaluation time increases exponentially
|
|
as `s` approaches the imaginary axis.
|
|
|
|
For large `\mathrm{Re}(s)`, `P(s)` is asymptotic to `2^{-s}`::
|
|
|
|
>>> primezeta(inf)
|
|
0.0
|
|
>>> primezeta(10), mpf(2)**-10
|
|
(0.00099360357443698021786, 0.0009765625)
|
|
>>> primezeta(1000)
|
|
9.3326361850321887899e-302
|
|
>>> primezeta(1000+1000j)
|
|
(-3.8565440833654995949e-302 - 8.4985390447553234305e-302j)
|
|
|
|
**References**
|
|
|
|
Carl-Erik Froberg, "On the prime zeta function",
|
|
BIT 8 (1968), pp. 187-202.
|
|
|
|
"""
|
|
|
|
bernpoly = r"""
|
|
Evaluates the Bernoulli polynomial `B_n(z)`.
|
|
|
|
The first few Bernoulli polynomials are::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> for n in range(6):
|
|
... nprint(chop(taylor(lambda x: bernpoly(n,x), 0, n)))
|
|
...
|
|
[1.0]
|
|
[-0.5, 1.0]
|
|
[0.166667, -1.0, 1.0]
|
|
[0.0, 0.5, -1.5, 1.0]
|
|
[-0.0333333, 0.0, 1.0, -2.0, 1.0]
|
|
[0.0, -0.166667, 0.0, 1.66667, -2.5, 1.0]
|
|
|
|
At `z = 0`, the Bernoulli polynomial evaluates to a
|
|
Bernoulli number (see :func:`~mpmath.bernoulli`)::
|
|
|
|
>>> bernpoly(12, 0), bernoulli(12)
|
|
(-0.253113553113553, -0.253113553113553)
|
|
>>> bernpoly(13, 0), bernoulli(13)
|
|
(0.0, 0.0)
|
|
|
|
Evaluation is accurate for large `n` and small `z`::
|
|
|
|
>>> mp.dps = 25
|
|
>>> bernpoly(100, 0.5)
|
|
2.838224957069370695926416e+78
|
|
>>> bernpoly(1000, 10.5)
|
|
5.318704469415522036482914e+1769
|
|
|
|
"""
|
|
|
|
polylog = r"""
|
|
Computes the polylogarithm, defined by the sum
|
|
|
|
.. math ::
|
|
|
|
\mathrm{Li}_s(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^s}.
|
|
|
|
This series is convergent only for `|z| < 1`, so elsewhere
|
|
the analytic continuation is implied.
|
|
|
|
The polylogarithm should not be confused with the logarithmic
|
|
integral (also denoted by Li or li), which is implemented
|
|
as :func:`~mpmath.li`.
|
|
|
|
**Examples**
|
|
|
|
The polylogarithm satisfies a huge number of functional identities.
|
|
A sample of polylogarithm evaluations is shown below::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> polylog(1,0.5), log(2)
|
|
(0.693147180559945, 0.693147180559945)
|
|
>>> polylog(2,0.5), (pi**2-6*log(2)**2)/12
|
|
(0.582240526465012, 0.582240526465012)
|
|
>>> polylog(2,-phi), -log(phi)**2-pi**2/10
|
|
(-1.21852526068613, -1.21852526068613)
|
|
>>> polylog(3,0.5), 7*zeta(3)/8-pi**2*log(2)/12+log(2)**3/6
|
|
(0.53721319360804, 0.53721319360804)
|
|
|
|
:func:`~mpmath.polylog` can evaluate the analytic continuation of the
|
|
polylogarithm when `s` is an integer::
|
|
|
|
>>> polylog(2, 10)
|
|
(0.536301287357863 - 7.23378441241546j)
|
|
>>> polylog(2, -10)
|
|
-4.1982778868581
|
|
>>> polylog(2, 10j)
|
|
(-3.05968879432873 + 3.71678149306807j)
|
|
>>> polylog(-2, 10)
|
|
-0.150891632373114
|
|
>>> polylog(-2, -10)
|
|
0.067618332081142
|
|
>>> polylog(-2, 10j)
|
|
(0.0384353698579347 + 0.0912451798066779j)
|
|
|
|
Some more examples, with arguments on the unit circle (note that
|
|
the series definition cannot be used for computation here)::
|
|
|
|
>>> polylog(2,j)
|
|
(-0.205616758356028 + 0.915965594177219j)
|
|
>>> j*catalan-pi**2/48
|
|
(-0.205616758356028 + 0.915965594177219j)
|
|
>>> polylog(3,exp(2*pi*j/3))
|
|
(-0.534247512515375 + 0.765587078525922j)
|
|
>>> -4*zeta(3)/9 + 2*j*pi**3/81
|
|
(-0.534247512515375 + 0.765587078525921j)
|
|
|
|
Polylogarithms of different order are related by integration
|
|
and differentiation::
|
|
|
|
>>> s, z = 3, 0.5
|
|
>>> polylog(s+1, z)
|
|
0.517479061673899
|
|
>>> quad(lambda t: polylog(s,t)/t, [0, z])
|
|
0.517479061673899
|
|
>>> z*diff(lambda t: polylog(s+2,t), z)
|
|
0.517479061673899
|
|
|
|
Taylor series expansions around `z = 0` are::
|
|
|
|
>>> for n in range(-3, 4):
|
|
... nprint(taylor(lambda x: polylog(n,x), 0, 5))
|
|
...
|
|
[0.0, 1.0, 8.0, 27.0, 64.0, 125.0]
|
|
[0.0, 1.0, 4.0, 9.0, 16.0, 25.0]
|
|
[0.0, 1.0, 2.0, 3.0, 4.0, 5.0]
|
|
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0]
|
|
[0.0, 1.0, 0.5, 0.333333, 0.25, 0.2]
|
|
[0.0, 1.0, 0.25, 0.111111, 0.0625, 0.04]
|
|
[0.0, 1.0, 0.125, 0.037037, 0.015625, 0.008]
|
|
|
|
The series defining the polylogarithm is simultaneously
|
|
a Taylor series and an L-series. For certain values of `z`, the
|
|
polylogarithm reduces to a pure zeta function::
|
|
|
|
>>> polylog(pi, 1), zeta(pi)
|
|
(1.17624173838258, 1.17624173838258)
|
|
>>> polylog(pi, -1), -altzeta(pi)
|
|
(-0.909670702980385, -0.909670702980385)
|
|
|
|
Evaluation for arbitrary, nonintegral `s` is supported
|
|
for `z` within the unit circle:
|
|
|
|
>>> polylog(3+4j, 0.25)
|
|
(0.24258605789446 - 0.00222938275488344j)
|
|
>>> nsum(lambda k: 0.25**k / k**(3+4j), [1,inf])
|
|
(0.24258605789446 - 0.00222938275488344j)
|
|
|
|
It is also supported outside of the unit circle::
|
|
|
|
>>> polylog(1+j, 20+40j)
|
|
(-7.1421172179728 - 3.92726697721369j)
|
|
>>> polylog(1+j, 200+400j)
|
|
(-5.41934747194626 - 9.94037752563927j)
|
|
|
|
**References**
|
|
|
|
1. Richard Crandall, "Note on fast polylogarithm computation"
|
|
http://www.reed.edu/physics/faculty/crandall/papers/Polylog.pdf
|
|
2. http://en.wikipedia.org/wiki/Polylogarithm
|
|
3. http://mathworld.wolfram.com/Polylogarithm.html
|
|
|
|
"""
|
|
|
|
bell = r"""
|
|
For `n` a nonnegative integer, ``bell(n,x)`` evaluates the Bell
|
|
polynomial `B_n(x)`, the first few of which are
|
|
|
|
.. math ::
|
|
|
|
B_0(x) = 1
|
|
|
|
B_1(x) = x
|
|
|
|
B_2(x) = x^2+x
|
|
|
|
B_3(x) = x^3+3x^2+x
|
|
|
|
If `x = 1` or :func:`~mpmath.bell` is called with only one argument, it
|
|
gives the `n`-th Bell number `B_n`, which is the number of
|
|
partitions of a set with `n` elements. By setting the precision to
|
|
at least `\log_{10} B_n` digits, :func:`~mpmath.bell` provides fast
|
|
calculation of exact Bell numbers.
|
|
|
|
In general, :func:`~mpmath.bell` computes
|
|
|
|
.. math ::
|
|
|
|
B_n(x) = e^{-x} \left(\mathrm{sinc}(\pi n) + E_n(x)\right)
|
|
|
|
where `E_n(x)` is the generalized exponential function implemented
|
|
by :func:`~mpmath.polyexp`. This is an extension of Dobinski's formula [1],
|
|
where the modification is the sinc term ensuring that `B_n(x)` is
|
|
continuous in `n`; :func:`~mpmath.bell` can thus be evaluated,
|
|
differentiated, etc for arbitrary complex arguments.
|
|
|
|
**Examples**
|
|
|
|
Simple evaluations::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> bell(0, 2.5)
|
|
1.0
|
|
>>> bell(1, 2.5)
|
|
2.5
|
|
>>> bell(2, 2.5)
|
|
8.75
|
|
|
|
Evaluation for arbitrary complex arguments::
|
|
|
|
>>> bell(5.75+1j, 2-3j)
|
|
(-10767.71345136587098445143 - 15449.55065599872579097221j)
|
|
|
|
The first few Bell polynomials::
|
|
|
|
>>> for k in range(7):
|
|
... nprint(taylor(lambda x: bell(k,x), 0, k))
|
|
...
|
|
[1.0]
|
|
[0.0, 1.0]
|
|
[0.0, 1.0, 1.0]
|
|
[0.0, 1.0, 3.0, 1.0]
|
|
[0.0, 1.0, 7.0, 6.0, 1.0]
|
|
[0.0, 1.0, 15.0, 25.0, 10.0, 1.0]
|
|
[0.0, 1.0, 31.0, 90.0, 65.0, 15.0, 1.0]
|
|
|
|
The first few Bell numbers and complementary Bell numbers::
|
|
|
|
>>> [int(bell(k)) for k in range(10)]
|
|
[1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147]
|
|
>>> [int(bell(k,-1)) for k in range(10)]
|
|
[1, -1, 0, 1, 1, -2, -9, -9, 50, 267]
|
|
|
|
Large Bell numbers::
|
|
|
|
>>> mp.dps = 50
|
|
>>> bell(50)
|
|
185724268771078270438257767181908917499221852770.0
|
|
>>> bell(50,-1)
|
|
-29113173035759403920216141265491160286912.0
|
|
|
|
Some even larger values::
|
|
|
|
>>> mp.dps = 25
|
|
>>> bell(1000,-1)
|
|
-1.237132026969293954162816e+1869
|
|
>>> bell(1000)
|
|
2.989901335682408421480422e+1927
|
|
>>> bell(1000,2)
|
|
6.591553486811969380442171e+1987
|
|
>>> bell(1000,100.5)
|
|
9.101014101401543575679639e+2529
|
|
|
|
A determinant identity satisfied by Bell numbers::
|
|
|
|
>>> mp.dps = 15
|
|
>>> N = 8
|
|
>>> det([[bell(k+j) for j in range(N)] for k in range(N)])
|
|
125411328000.0
|
|
>>> superfac(N-1)
|
|
125411328000.0
|
|
|
|
**References**
|
|
|
|
1. http://mathworld.wolfram.com/DobinskisFormula.html
|
|
|
|
"""
|
|
|
|
polyexp = r"""
|
|
Evaluates the polyexponential function, defined for arbitrary
|
|
complex `s`, `z` by the series
|
|
|
|
.. math ::
|
|
|
|
E_s(z) = \sum_{k=1}^{\infty} \frac{k^s}{k!} z^k.
|
|
|
|
`E_s(z)` is constructed from the exponential function analogously
|
|
to how the polylogarithm is constructed from the ordinary
|
|
logarithm; as a function of `s` (with `z` fixed), `E_s` is an L-series
|
|
It is an entire function of both `s` and `z`.
|
|
|
|
The polyexponential function provides a generalization of the
|
|
Bell polynomials `B_n(x)` (see :func:`~mpmath.bell`) to noninteger orders `n`.
|
|
In terms of the Bell polynomials,
|
|
|
|
.. math ::
|
|
|
|
E_s(z) = e^z B_s(z) - \mathrm{sinc}(\pi s).
|
|
|
|
Note that `B_n(x)` and `e^{-x} E_n(x)` are identical if `n`
|
|
is a nonzero integer, but not otherwise. In particular, they differ
|
|
at `n = 0`.
|
|
|
|
**Examples**
|
|
|
|
Evaluating a series::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> nsum(lambda k: sqrt(k)/fac(k), [1,inf])
|
|
2.101755547733791780315904
|
|
>>> polyexp(0.5,1)
|
|
2.101755547733791780315904
|
|
|
|
Evaluation for arbitrary arguments::
|
|
|
|
>>> polyexp(-3-4j, 2.5+2j)
|
|
(2.351660261190434618268706 + 1.202966666673054671364215j)
|
|
|
|
Evaluation is accurate for tiny function values::
|
|
|
|
>>> polyexp(4, -100)
|
|
3.499471750566824369520223e-36
|
|
|
|
If `n` is a nonpositive integer, `E_n` reduces to a special
|
|
instance of the hypergeometric function `\,_pF_q`::
|
|
|
|
>>> n = 3
|
|
>>> x = pi
|
|
>>> polyexp(-n,x)
|
|
4.042192318847986561771779
|
|
>>> x*hyper([1]*(n+1), [2]*(n+1), x)
|
|
4.042192318847986561771779
|
|
|
|
"""
|
|
|
|
cyclotomic = r"""
|
|
Evaluates the cyclotomic polynomial `\Phi_n(x)`, defined by
|
|
|
|
.. math ::
|
|
|
|
\Phi_n(x) = \prod_{\zeta} (x - \zeta)
|
|
|
|
where `\zeta` ranges over all primitive `n`-th roots of unity
|
|
(see :func:`~mpmath.unitroots`). An equivalent representation, used
|
|
for computation, is
|
|
|
|
.. math ::
|
|
|
|
\Phi_n(x) = \prod_{d\mid n}(x^d-1)^{\mu(n/d)} = \Phi_n(x)
|
|
|
|
where `\mu(m)` denotes the Moebius function. The cyclotomic
|
|
polynomials are integer polynomials, the first of which can be
|
|
written explicitly as
|
|
|
|
.. math ::
|
|
|
|
\Phi_0(x) = 1
|
|
|
|
\Phi_1(x) = x - 1
|
|
|
|
\Phi_2(x) = x + 1
|
|
|
|
\Phi_3(x) = x^3 + x^2 + 1
|
|
|
|
\Phi_4(x) = x^2 + 1
|
|
|
|
\Phi_5(x) = x^4 + x^3 + x^2 + x + 1
|
|
|
|
\Phi_6(x) = x^2 - x + 1
|
|
|
|
**Examples**
|
|
|
|
The coefficients of low-order cyclotomic polynomials can be recovered
|
|
using Taylor expansion::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 15; mp.pretty = True
|
|
>>> for n in range(9):
|
|
... p = chop(taylor(lambda x: cyclotomic(n,x), 0, 10))
|
|
... print("%s %s" % (n, nstr(p[:10+1-p[::-1].index(1)])))
|
|
...
|
|
0 [1.0]
|
|
1 [-1.0, 1.0]
|
|
2 [1.0, 1.0]
|
|
3 [1.0, 1.0, 1.0]
|
|
4 [1.0, 0.0, 1.0]
|
|
5 [1.0, 1.0, 1.0, 1.0, 1.0]
|
|
6 [1.0, -1.0, 1.0]
|
|
7 [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
|
|
8 [1.0, 0.0, 0.0, 0.0, 1.0]
|
|
|
|
The definition as a product over primitive roots may be checked
|
|
by computing the product explicitly (for a real argument, this
|
|
method will generally introduce numerical noise in the imaginary
|
|
part)::
|
|
|
|
>>> mp.dps = 25
|
|
>>> z = 3+4j
|
|
>>> cyclotomic(10, z)
|
|
(-419.0 - 360.0j)
|
|
>>> fprod(z-r for r in unitroots(10, primitive=True))
|
|
(-419.0 - 360.0j)
|
|
>>> z = 3
|
|
>>> cyclotomic(10, z)
|
|
61.0
|
|
>>> fprod(z-r for r in unitroots(10, primitive=True))
|
|
(61.0 - 3.146045605088568607055454e-25j)
|
|
|
|
Up to permutation, the roots of a given cyclotomic polynomial
|
|
can be checked to agree with the list of primitive roots::
|
|
|
|
>>> p = taylor(lambda x: cyclotomic(6,x), 0, 6)[:3]
|
|
>>> for r in polyroots(p[::-1]):
|
|
... print(r)
|
|
...
|
|
(0.5 - 0.8660254037844386467637232j)
|
|
(0.5 + 0.8660254037844386467637232j)
|
|
>>>
|
|
>>> for r in unitroots(6, primitive=True):
|
|
... print(r)
|
|
...
|
|
(0.5 + 0.8660254037844386467637232j)
|
|
(0.5 - 0.8660254037844386467637232j)
|
|
|
|
"""
|
|
|
|
meijerg = r"""
|
|
Evaluates the Meijer G-function, defined as
|
|
|
|
.. math ::
|
|
|
|
G^{m,n}_{p,q} \left( \left. \begin{matrix}
|
|
a_1, \dots, a_n ; a_{n+1} \dots a_p \\
|
|
b_1, \dots, b_m ; b_{m+1} \dots b_q
|
|
\end{matrix}\; \right| \; z ; r \right) =
|
|
\frac{1}{2 \pi i} \int_L
|
|
\frac{\prod_{j=1}^m \Gamma(b_j+s) \prod_{j=1}^n\Gamma(1-a_j-s)}
|
|
{\prod_{j=n+1}^{p}\Gamma(a_j+s) \prod_{j=m+1}^q \Gamma(1-b_j-s)}
|
|
z^{-s/r} ds
|
|
|
|
for an appropriate choice of the contour `L` (see references).
|
|
|
|
There are `p` elements `a_j`.
|
|
The argument *a_s* should be a pair of lists, the first containing the
|
|
`n` elements `a_1, \ldots, a_n` and the second containing
|
|
the `p-n` elements `a_{n+1}, \ldots a_p`.
|
|
|
|
There are `q` elements `b_j`.
|
|
The argument *b_s* should be a pair of lists, the first containing the
|
|
`m` elements `b_1, \ldots, b_m` and the second containing
|
|
the `q-m` elements `b_{m+1}, \ldots b_q`.
|
|
|
|
The implicit tuple `(m, n, p, q)` constitutes the order or degree of the
|
|
Meijer G-function, and is determined by the lengths of the coefficient
|
|
vectors. Confusingly, the indices in this tuple appear in a different order
|
|
from the coefficients, but this notation is standard. The many examples
|
|
given below should hopefully clear up any potential confusion.
|
|
|
|
**Algorithm**
|
|
|
|
The Meijer G-function is evaluated as a combination of hypergeometric series.
|
|
There are two versions of the function, which can be selected with
|
|
the optional *series* argument.
|
|
|
|
*series=1* uses a sum of `m` `\,_pF_{q-1}` functions of `z`
|
|
|
|
*series=2* uses a sum of `n` `\,_qF_{p-1}` functions of `1/z`
|
|
|
|
The default series is chosen based on the degree and `|z|` in order
|
|
to be consistent with Mathematica's. This definition of the Meijer G-function
|
|
has a discontinuity at `|z| = 1` for some orders, which can
|
|
be avoided by explicitly specifying a series.
|
|
|
|
Keyword arguments are forwarded to :func:`~mpmath.hypercomb`.
|
|
|
|
**Examples**
|
|
|
|
Many standard functions are special cases of the Meijer G-function
|
|
(possibly rescaled and/or with branch cut corrections). We define
|
|
some test parameters::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> a = mpf(0.75)
|
|
>>> b = mpf(1.5)
|
|
>>> z = mpf(2.25)
|
|
|
|
The exponential function:
|
|
`e^z = G^{1,0}_{0,1} \left( \left. \begin{matrix} - \\ 0 \end{matrix} \;
|
|
\right| \; -z \right)`
|
|
|
|
>>> meijerg([[],[]], [[0],[]], -z)
|
|
9.487735836358525720550369
|
|
>>> exp(z)
|
|
9.487735836358525720550369
|
|
|
|
The natural logarithm:
|
|
`\log(1+z) = G^{1,2}_{2,2} \left( \left. \begin{matrix} 1, 1 \\ 1, 0
|
|
\end{matrix} \; \right| \; -z \right)`
|
|
|
|
>>> meijerg([[1,1],[]], [[1],[0]], z)
|
|
1.178654996341646117219023
|
|
>>> log(1+z)
|
|
1.178654996341646117219023
|
|
|
|
A rational function:
|
|
`\frac{z}{z+1} = G^{1,2}_{2,2} \left( \left. \begin{matrix} 1, 1 \\ 1, 1
|
|
\end{matrix} \; \right| \; z \right)`
|
|
|
|
>>> meijerg([[1,1],[]], [[1],[1]], z)
|
|
0.6923076923076923076923077
|
|
>>> z/(z+1)
|
|
0.6923076923076923076923077
|
|
|
|
The sine and cosine functions:
|
|
|
|
`\frac{1}{\sqrt \pi} \sin(2 \sqrt z) = G^{1,0}_{0,2} \left( \left. \begin{matrix}
|
|
- \\ \frac{1}{2}, 0 \end{matrix} \; \right| \; z \right)`
|
|
|
|
`\frac{1}{\sqrt \pi} \cos(2 \sqrt z) = G^{1,0}_{0,2} \left( \left. \begin{matrix}
|
|
- \\ 0, \frac{1}{2} \end{matrix} \; \right| \; z \right)`
|
|
|
|
>>> meijerg([[],[]], [[0.5],[0]], (z/2)**2)
|
|
0.4389807929218676682296453
|
|
>>> sin(z)/sqrt(pi)
|
|
0.4389807929218676682296453
|
|
>>> meijerg([[],[]], [[0],[0.5]], (z/2)**2)
|
|
-0.3544090145996275423331762
|
|
>>> cos(z)/sqrt(pi)
|
|
-0.3544090145996275423331762
|
|
|
|
Bessel functions:
|
|
|
|
`J_a(2 \sqrt z) = G^{1,0}_{0,2} \left( \left.
|
|
\begin{matrix} - \\ \frac{a}{2}, -\frac{a}{2}
|
|
\end{matrix} \; \right| \; z \right)`
|
|
|
|
`Y_a(2 \sqrt z) = G^{2,0}_{1,3} \left( \left.
|
|
\begin{matrix} \frac{-a-1}{2} \\ \frac{a}{2}, -\frac{a}{2}, \frac{-a-1}{2}
|
|
\end{matrix} \; \right| \; z \right)`
|
|
|
|
`(-z)^{a/2} z^{-a/2} I_a(2 \sqrt z) = G^{1,0}_{0,2} \left( \left.
|
|
\begin{matrix} - \\ \frac{a}{2}, -\frac{a}{2}
|
|
\end{matrix} \; \right| \; -z \right)`
|
|
|
|
`2 K_a(2 \sqrt z) = G^{2,0}_{0,2} \left( \left.
|
|
\begin{matrix} - \\ \frac{a}{2}, -\frac{a}{2}
|
|
\end{matrix} \; \right| \; z \right)`
|
|
|
|
As the example with the Bessel *I* function shows, a branch
|
|
factor is required for some arguments when inverting the square root.
|
|
|
|
>>> meijerg([[],[]], [[a/2],[-a/2]], (z/2)**2)
|
|
0.5059425789597154858527264
|
|
>>> besselj(a,z)
|
|
0.5059425789597154858527264
|
|
>>> meijerg([[],[(-a-1)/2]], [[a/2,-a/2],[(-a-1)/2]], (z/2)**2)
|
|
0.1853868950066556941442559
|
|
>>> bessely(a, z)
|
|
0.1853868950066556941442559
|
|
>>> meijerg([[],[]], [[a/2],[-a/2]], -(z/2)**2)
|
|
(0.8685913322427653875717476 + 2.096964974460199200551738j)
|
|
>>> (-z)**(a/2) / z**(a/2) * besseli(a, z)
|
|
(0.8685913322427653875717476 + 2.096964974460199200551738j)
|
|
>>> 0.5*meijerg([[],[]], [[a/2,-a/2],[]], (z/2)**2)
|
|
0.09334163695597828403796071
|
|
>>> besselk(a,z)
|
|
0.09334163695597828403796071
|
|
|
|
Error functions:
|
|
|
|
`\sqrt{\pi} z^{2(a-1)} \mathrm{erfc}(z) = G^{2,0}_{1,2} \left( \left.
|
|
\begin{matrix} a \\ a-1, a-\frac{1}{2}
|
|
\end{matrix} \; \right| \; z, \frac{1}{2} \right)`
|
|
|
|
>>> meijerg([[],[a]], [[a-1,a-0.5],[]], z, 0.5)
|
|
0.00172839843123091957468712
|
|
>>> sqrt(pi) * z**(2*a-2) * erfc(z)
|
|
0.00172839843123091957468712
|
|
|
|
A Meijer G-function of higher degree, (1,1,2,3):
|
|
|
|
>>> meijerg([[a],[b]], [[a],[b,a-1]], z)
|
|
1.55984467443050210115617
|
|
>>> sin((b-a)*pi)/pi*(exp(z)-1)*z**(a-1)
|
|
1.55984467443050210115617
|
|
|
|
A Meijer G-function of still higher degree, (4,1,2,4), that can
|
|
be expanded as a messy combination of exponential integrals:
|
|
|
|
>>> meijerg([[a],[2*b-a]], [[b,a,b-0.5,-1-a+2*b],[]], z)
|
|
0.3323667133658557271898061
|
|
>>> chop(4**(a-b+1)*sqrt(pi)*gamma(2*b-2*a)*z**a*\
|
|
... expint(2*b-2*a, -2*sqrt(-z))*expint(2*b-2*a, 2*sqrt(-z)))
|
|
0.3323667133658557271898061
|
|
|
|
In the following case, different series give different values::
|
|
|
|
>>> chop(meijerg([[1],[0.25]],[[3],[0.5]],-2))
|
|
-0.06417628097442437076207337
|
|
>>> meijerg([[1],[0.25]],[[3],[0.5]],-2,series=1)
|
|
0.1428699426155117511873047
|
|
>>> chop(meijerg([[1],[0.25]],[[3],[0.5]],-2,series=2))
|
|
-0.06417628097442437076207337
|
|
|
|
**References**
|
|
|
|
1. http://en.wikipedia.org/wiki/Meijer_G-function
|
|
|
|
2. http://mathworld.wolfram.com/MeijerG-Function.html
|
|
|
|
3. http://functions.wolfram.com/HypergeometricFunctions/MeijerG/
|
|
|
|
4. http://functions.wolfram.com/HypergeometricFunctions/MeijerG1/
|
|
|
|
"""
|
|
|
|
clsin = r"""
|
|
Computes the Clausen sine function, defined formally by the series
|
|
|
|
.. math ::
|
|
|
|
\mathrm{Cl}_s(z) = \sum_{k=1}^{\infty} \frac{\sin(kz)}{k^s}.
|
|
|
|
The special case `\mathrm{Cl}_2(z)` (i.e. ``clsin(2,z)``) is the classical
|
|
"Clausen function". More generally, the Clausen function is defined for
|
|
complex `s` and `z`, even when the series does not converge. The
|
|
Clausen function is related to the polylogarithm (:func:`~mpmath.polylog`) as
|
|
|
|
.. math ::
|
|
|
|
\mathrm{Cl}_s(z) = \frac{1}{2i}\left(\mathrm{Li}_s\left(e^{iz}\right) -
|
|
\mathrm{Li}_s\left(e^{-iz}\right)\right)
|
|
|
|
= \mathrm{Im}\left[\mathrm{Li}_s(e^{iz})\right] \quad (s, z \in \mathbb{R}),
|
|
|
|
and this representation can be taken to provide the analytic continuation of the
|
|
series. The complementary function :func:`~mpmath.clcos` gives the corresponding
|
|
cosine sum.
|
|
|
|
**Examples**
|
|
|
|
Evaluation for arbitrarily chosen `s` and `z`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> s, z = 3, 4
|
|
>>> clsin(s, z); nsum(lambda k: sin(z*k)/k**s, [1,inf])
|
|
-0.6533010136329338746275795
|
|
-0.6533010136329338746275795
|
|
|
|
Using `z + \pi` instead of `z` gives an alternating series::
|
|
|
|
>>> clsin(s, z+pi)
|
|
0.8860032351260589402871624
|
|
>>> nsum(lambda k: (-1)**k*sin(z*k)/k**s, [1,inf])
|
|
0.8860032351260589402871624
|
|
|
|
With `s = 1`, the sum can be expressed in closed form
|
|
using elementary functions::
|
|
|
|
>>> z = 1 + sqrt(3)
|
|
>>> clsin(1, z)
|
|
0.2047709230104579724675985
|
|
>>> chop((log(1-exp(-j*z)) - log(1-exp(j*z)))/(2*j))
|
|
0.2047709230104579724675985
|
|
>>> nsum(lambda k: sin(k*z)/k, [1,inf])
|
|
0.2047709230104579724675985
|
|
|
|
The classical Clausen function `\mathrm{Cl}_2(\theta)` gives the
|
|
value of the integral `\int_0^{\theta} -\ln(2\sin(x/2)) dx` for
|
|
`0 < \theta < 2 \pi`::
|
|
|
|
>>> cl2 = lambda t: clsin(2, t)
|
|
>>> cl2(3.5)
|
|
-0.2465045302347694216534255
|
|
>>> -quad(lambda x: ln(2*sin(0.5*x)), [0, 3.5])
|
|
-0.2465045302347694216534255
|
|
|
|
This function is symmetric about `\theta = \pi` with zeros and extreme
|
|
points::
|
|
|
|
>>> cl2(0); cl2(pi/3); chop(cl2(pi)); cl2(5*pi/3); chop(cl2(2*pi))
|
|
0.0
|
|
1.014941606409653625021203
|
|
0.0
|
|
-1.014941606409653625021203
|
|
0.0
|
|
|
|
Catalan's constant is a special value::
|
|
|
|
>>> cl2(pi/2)
|
|
0.9159655941772190150546035
|
|
>>> +catalan
|
|
0.9159655941772190150546035
|
|
|
|
The Clausen sine function can be expressed in closed form when
|
|
`s` is an odd integer (becoming zero when `s` < 0)::
|
|
|
|
>>> z = 1 + sqrt(2)
|
|
>>> clsin(1, z); (pi-z)/2
|
|
0.3636895456083490948304773
|
|
0.3636895456083490948304773
|
|
>>> clsin(3, z); pi**2/6*z - pi*z**2/4 + z**3/12
|
|
0.5661751584451144991707161
|
|
0.5661751584451144991707161
|
|
>>> clsin(-1, z)
|
|
0.0
|
|
>>> clsin(-3, z)
|
|
0.0
|
|
|
|
It can also be expressed in closed form for even integer `s \le 0`,
|
|
providing a finite sum for series such as
|
|
`\sin(z) + \sin(2z) + \sin(3z) + \ldots`::
|
|
|
|
>>> z = 1 + sqrt(2)
|
|
>>> clsin(0, z)
|
|
0.1903105029507513881275865
|
|
>>> cot(z/2)/2
|
|
0.1903105029507513881275865
|
|
>>> clsin(-2, z)
|
|
-0.1089406163841548817581392
|
|
>>> -cot(z/2)*csc(z/2)**2/4
|
|
-0.1089406163841548817581392
|
|
|
|
Call with ``pi=True`` to multiply `z` by `\pi` exactly::
|
|
|
|
>>> clsin(3, 3*pi)
|
|
-8.892316224968072424732898e-26
|
|
>>> clsin(3, 3, pi=True)
|
|
0.0
|
|
|
|
Evaluation for complex `s`, `z` in a nonconvergent case::
|
|
|
|
>>> s, z = -1-j, 1+2j
|
|
>>> clsin(s, z)
|
|
(-0.593079480117379002516034 + 0.9038644233367868273362446j)
|
|
>>> extraprec(20)(nsum)(lambda k: sin(k*z)/k**s, [1,inf])
|
|
(-0.593079480117379002516034 + 0.9038644233367868273362446j)
|
|
|
|
"""
|
|
|
|
clcos = r"""
|
|
Computes the Clausen cosine function, defined formally by the series
|
|
|
|
.. math ::
|
|
|
|
\mathrm{\widetilde{Cl}}_s(z) = \sum_{k=1}^{\infty} \frac{\cos(kz)}{k^s}.
|
|
|
|
This function is complementary to the Clausen sine function
|
|
:func:`~mpmath.clsin`. In terms of the polylogarithm,
|
|
|
|
.. math ::
|
|
|
|
\mathrm{\widetilde{Cl}}_s(z) =
|
|
\frac{1}{2}\left(\mathrm{Li}_s\left(e^{iz}\right) +
|
|
\mathrm{Li}_s\left(e^{-iz}\right)\right)
|
|
|
|
= \mathrm{Re}\left[\mathrm{Li}_s(e^{iz})\right] \quad (s, z \in \mathbb{R}).
|
|
|
|
**Examples**
|
|
|
|
Evaluation for arbitrarily chosen `s` and `z`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> s, z = 3, 4
|
|
>>> clcos(s, z); nsum(lambda k: cos(z*k)/k**s, [1,inf])
|
|
-0.6518926267198991308332759
|
|
-0.6518926267198991308332759
|
|
|
|
Using `z + \pi` instead of `z` gives an alternating series::
|
|
|
|
>>> s, z = 3, 0.5
|
|
>>> clcos(s, z+pi)
|
|
-0.8155530586502260817855618
|
|
>>> nsum(lambda k: (-1)**k*cos(z*k)/k**s, [1,inf])
|
|
-0.8155530586502260817855618
|
|
|
|
With `s = 1`, the sum can be expressed in closed form
|
|
using elementary functions::
|
|
|
|
>>> z = 1 + sqrt(3)
|
|
>>> clcos(1, z)
|
|
-0.6720334373369714849797918
|
|
>>> chop(-0.5*(log(1-exp(j*z))+log(1-exp(-j*z))))
|
|
-0.6720334373369714849797918
|
|
>>> -log(abs(2*sin(0.5*z))) # Equivalent to above when z is real
|
|
-0.6720334373369714849797918
|
|
>>> nsum(lambda k: cos(k*z)/k, [1,inf])
|
|
-0.6720334373369714849797918
|
|
|
|
It can also be expressed in closed form when `s` is an even integer.
|
|
For example,
|
|
|
|
>>> clcos(2,z)
|
|
-0.7805359025135583118863007
|
|
>>> pi**2/6 - pi*z/2 + z**2/4
|
|
-0.7805359025135583118863007
|
|
|
|
The case `s = 0` gives the renormalized sum of
|
|
`\cos(z) + \cos(2z) + \cos(3z) + \ldots` (which happens to be the same for
|
|
any value of `z`)::
|
|
|
|
>>> clcos(0, z)
|
|
-0.5
|
|
>>> nsum(lambda k: cos(k*z), [1,inf])
|
|
-0.5
|
|
|
|
Also the sums
|
|
|
|
.. math ::
|
|
|
|
\cos(z) + 2\cos(2z) + 3\cos(3z) + \ldots
|
|
|
|
and
|
|
|
|
.. math ::
|
|
|
|
\cos(z) + 2^n \cos(2z) + 3^n \cos(3z) + \ldots
|
|
|
|
for higher integer powers `n = -s` can be done in closed form. They are zero
|
|
when `n` is positive and even (`s` negative and even)::
|
|
|
|
>>> clcos(-1, z); 1/(2*cos(z)-2)
|
|
-0.2607829375240542480694126
|
|
-0.2607829375240542480694126
|
|
>>> clcos(-3, z); (2+cos(z))*csc(z/2)**4/8
|
|
0.1472635054979944390848006
|
|
0.1472635054979944390848006
|
|
>>> clcos(-2, z); clcos(-4, z); clcos(-6, z)
|
|
0.0
|
|
0.0
|
|
0.0
|
|
|
|
With `z = \pi`, the series reduces to that of the Riemann zeta function
|
|
(more generally, if `z = p \pi/q`, it is a finite sum over Hurwitz zeta
|
|
function values)::
|
|
|
|
>>> clcos(2.5, 0); zeta(2.5)
|
|
1.34148725725091717975677
|
|
1.34148725725091717975677
|
|
>>> clcos(2.5, pi); -altzeta(2.5)
|
|
-0.8671998890121841381913472
|
|
-0.8671998890121841381913472
|
|
|
|
Call with ``pi=True`` to multiply `z` by `\pi` exactly::
|
|
|
|
>>> clcos(-3, 2*pi)
|
|
2.997921055881167659267063e+102
|
|
>>> clcos(-3, 2, pi=True)
|
|
0.008333333333333333333333333
|
|
|
|
Evaluation for complex `s`, `z` in a nonconvergent case::
|
|
|
|
>>> s, z = -1-j, 1+2j
|
|
>>> clcos(s, z)
|
|
(0.9407430121562251476136807 + 0.715826296033590204557054j)
|
|
>>> extraprec(20)(nsum)(lambda k: cos(k*z)/k**s, [1,inf])
|
|
(0.9407430121562251476136807 + 0.715826296033590204557054j)
|
|
|
|
"""
|
|
|
|
whitm = r"""
|
|
Evaluates the Whittaker function `M(k,m,z)`, which gives a solution
|
|
to the Whittaker differential equation
|
|
|
|
.. math ::
|
|
|
|
\frac{d^2f}{dz^2} + \left(-\frac{1}{4}+\frac{k}{z}+
|
|
\frac{(\frac{1}{4}-m^2)}{z^2}\right) f = 0.
|
|
|
|
A second solution is given by :func:`~mpmath.whitw`.
|
|
|
|
The Whittaker functions are defined in Abramowitz & Stegun, section 13.1.
|
|
They are alternate forms of the confluent hypergeometric functions
|
|
`\,_1F_1` and `U`:
|
|
|
|
.. math ::
|
|
|
|
M(k,m,z) = e^{-\frac{1}{2}z} z^{\frac{1}{2}+m}
|
|
\,_1F_1(\tfrac{1}{2}+m-k, 1+2m, z)
|
|
|
|
W(k,m,z) = e^{-\frac{1}{2}z} z^{\frac{1}{2}+m}
|
|
U(\tfrac{1}{2}+m-k, 1+2m, z).
|
|
|
|
**Examples**
|
|
|
|
Evaluation for arbitrary real and complex arguments is supported::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> whitm(1, 1, 1)
|
|
0.7302596799460411820509668
|
|
>>> whitm(1, 1, -1)
|
|
(0.0 - 1.417977827655098025684246j)
|
|
>>> whitm(j, j/2, 2+3j)
|
|
(3.245477713363581112736478 - 0.822879187542699127327782j)
|
|
>>> whitm(2, 3, 100000)
|
|
4.303985255686378497193063e+21707
|
|
|
|
Evaluation at zero::
|
|
|
|
>>> whitm(1,-1,0); whitm(1,-0.5,0); whitm(1,0,0)
|
|
+inf
|
|
nan
|
|
0.0
|
|
|
|
We can verify that :func:`~mpmath.whitm` numerically satisfies the
|
|
differential equation for arbitrarily chosen values::
|
|
|
|
>>> k = mpf(0.25)
|
|
>>> m = mpf(1.5)
|
|
>>> f = lambda z: whitm(k,m,z)
|
|
>>> for z in [-1, 2.5, 3, 1+2j]:
|
|
... chop(diff(f,z,2) + (-0.25 + k/z + (0.25-m**2)/z**2)*f(z))
|
|
...
|
|
0.0
|
|
0.0
|
|
0.0
|
|
0.0
|
|
|
|
An integral involving both :func:`~mpmath.whitm` and :func:`~mpmath.whitw`,
|
|
verifying evaluation along the real axis::
|
|
|
|
>>> quad(lambda x: exp(-x)*whitm(3,2,x)*whitw(1,-2,x), [0,inf])
|
|
3.438869842576800225207341
|
|
>>> 128/(21*sqrt(pi))
|
|
3.438869842576800225207341
|
|
|
|
"""
|
|
|
|
whitw = r"""
|
|
Evaluates the Whittaker function `W(k,m,z)`, which gives a second
|
|
solution to the Whittaker differential equation. (See :func:`~mpmath.whitm`.)
|
|
|
|
**Examples**
|
|
|
|
Evaluation for arbitrary real and complex arguments is supported::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> whitw(1, 1, 1)
|
|
1.19532063107581155661012
|
|
>>> whitw(1, 1, -1)
|
|
(-0.9424875979222187313924639 - 0.2607738054097702293308689j)
|
|
>>> whitw(j, j/2, 2+3j)
|
|
(0.1782899315111033879430369 - 0.01609578360403649340169406j)
|
|
>>> whitw(2, 3, 100000)
|
|
1.887705114889527446891274e-21705
|
|
>>> whitw(-1, -1, 100)
|
|
1.905250692824046162462058e-24
|
|
|
|
Evaluation at zero::
|
|
|
|
>>> for m in [-1, -0.5, 0, 0.5, 1]:
|
|
... whitw(1, m, 0)
|
|
...
|
|
+inf
|
|
nan
|
|
0.0
|
|
nan
|
|
+inf
|
|
|
|
We can verify that :func:`~mpmath.whitw` numerically satisfies the
|
|
differential equation for arbitrarily chosen values::
|
|
|
|
>>> k = mpf(0.25)
|
|
>>> m = mpf(1.5)
|
|
>>> f = lambda z: whitw(k,m,z)
|
|
>>> for z in [-1, 2.5, 3, 1+2j]:
|
|
... chop(diff(f,z,2) + (-0.25 + k/z + (0.25-m**2)/z**2)*f(z))
|
|
...
|
|
0.0
|
|
0.0
|
|
0.0
|
|
0.0
|
|
|
|
"""
|
|
|
|
ber = r"""
|
|
Computes the Kelvin function ber, which for real arguments gives the real part
|
|
of the Bessel J function of a rotated argument
|
|
|
|
.. math ::
|
|
|
|
J_n\left(x e^{3\pi i/4}\right) = \mathrm{ber}_n(x) + i \mathrm{bei}_n(x).
|
|
|
|
The imaginary part is given by :func:`~mpmath.bei`.
|
|
|
|
**Plots**
|
|
|
|
.. literalinclude :: /plots/ber.py
|
|
.. image :: /plots/ber.png
|
|
|
|
**Examples**
|
|
|
|
Verifying the defining relation::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> n, x = 2, 3.5
|
|
>>> ber(n,x)
|
|
1.442338852571888752631129
|
|
>>> bei(n,x)
|
|
-0.948359035324558320217678
|
|
>>> besselj(n, x*root(1,8,3))
|
|
(1.442338852571888752631129 - 0.948359035324558320217678j)
|
|
|
|
The ber and bei functions are also defined by analytic continuation
|
|
for complex arguments::
|
|
|
|
>>> ber(1+j, 2+3j)
|
|
(4.675445984756614424069563 - 15.84901771719130765656316j)
|
|
>>> bei(1+j, 2+3j)
|
|
(15.83886679193707699364398 + 4.684053288183046528703611j)
|
|
|
|
"""
|
|
|
|
bei = r"""
|
|
Computes the Kelvin function bei, which for real arguments gives the
|
|
imaginary part of the Bessel J function of a rotated argument.
|
|
See :func:`~mpmath.ber`.
|
|
"""
|
|
|
|
ker = r"""
|
|
Computes the Kelvin function ker, which for real arguments gives the real part
|
|
of the (rescaled) Bessel K function of a rotated argument
|
|
|
|
.. math ::
|
|
|
|
e^{-\pi i/2} K_n\left(x e^{3\pi i/4}\right) = \mathrm{ker}_n(x) + i \mathrm{kei}_n(x).
|
|
|
|
The imaginary part is given by :func:`~mpmath.kei`.
|
|
|
|
**Plots**
|
|
|
|
.. literalinclude :: /plots/ker.py
|
|
.. image :: /plots/ker.png
|
|
|
|
**Examples**
|
|
|
|
Verifying the defining relation::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> n, x = 2, 4.5
|
|
>>> ker(n,x)
|
|
0.02542895201906369640249801
|
|
>>> kei(n,x)
|
|
-0.02074960467222823237055351
|
|
>>> exp(-n*pi*j/2) * besselk(n, x*root(1,8,1))
|
|
(0.02542895201906369640249801 - 0.02074960467222823237055351j)
|
|
|
|
The ker and kei functions are also defined by analytic continuation
|
|
for complex arguments::
|
|
|
|
>>> ker(1+j, 3+4j)
|
|
(1.586084268115490421090533 - 2.939717517906339193598719j)
|
|
>>> kei(1+j, 3+4j)
|
|
(-2.940403256319453402690132 - 1.585621643835618941044855j)
|
|
|
|
"""
|
|
|
|
kei = r"""
|
|
Computes the Kelvin function kei, which for real arguments gives the
|
|
imaginary part of the (rescaled) Bessel K function of a rotated argument.
|
|
See :func:`~mpmath.ker`.
|
|
"""
|
|
|
|
struveh = r"""
|
|
Gives the Struve function
|
|
|
|
.. math ::
|
|
|
|
\,\mathbf{H}_n(z) =
|
|
\sum_{k=0}^\infty \frac{(-1)^k}{\Gamma(k+\frac{3}{2})
|
|
\Gamma(k+n+\frac{3}{2})} {\left({\frac{z}{2}}\right)}^{2k+n+1}
|
|
|
|
which is a solution to the Struve differential equation
|
|
|
|
.. math ::
|
|
|
|
z^2 f''(z) + z f'(z) + (z^2-n^2) f(z) = \frac{2 z^{n+1}}{\pi (2n-1)!!}.
|
|
|
|
**Examples**
|
|
|
|
Evaluation for arbitrary real and complex arguments::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> struveh(0, 3.5)
|
|
0.3608207733778295024977797
|
|
>>> struveh(-1, 10)
|
|
-0.255212719726956768034732
|
|
>>> struveh(1, -100.5)
|
|
0.5819566816797362287502246
|
|
>>> struveh(2.5, 10000000000000)
|
|
3153915652525200060.308937
|
|
>>> struveh(2.5, -10000000000000)
|
|
(0.0 - 3153915652525200060.308937j)
|
|
>>> struveh(1+j, 1000000+4000000j)
|
|
(-3.066421087689197632388731e+1737173 - 1.596619701076529803290973e+1737173j)
|
|
|
|
A Struve function of half-integer order is elementary; for example:
|
|
|
|
>>> z = 3
|
|
>>> struveh(0.5, 3)
|
|
0.9167076867564138178671595
|
|
>>> sqrt(2/(pi*z))*(1-cos(z))
|
|
0.9167076867564138178671595
|
|
|
|
Numerically verifying the differential equation::
|
|
|
|
>>> z = mpf(4.5)
|
|
>>> n = 3
|
|
>>> f = lambda z: struveh(n,z)
|
|
>>> lhs = z**2*diff(f,z,2) + z*diff(f,z) + (z**2-n**2)*f(z)
|
|
>>> rhs = 2*z**(n+1)/fac2(2*n-1)/pi
|
|
>>> lhs
|
|
17.40359302709875496632744
|
|
>>> rhs
|
|
17.40359302709875496632744
|
|
|
|
"""
|
|
|
|
struvel = r"""
|
|
Gives the modified Struve function
|
|
|
|
.. math ::
|
|
|
|
\,\mathbf{L}_n(z) = -i e^{-n\pi i/2} \mathbf{H}_n(i z)
|
|
|
|
which solves to the modified Struve differential equation
|
|
|
|
.. math ::
|
|
|
|
z^2 f''(z) + z f'(z) - (z^2+n^2) f(z) = \frac{2 z^{n+1}}{\pi (2n-1)!!}.
|
|
|
|
**Examples**
|
|
|
|
Evaluation for arbitrary real and complex arguments::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> struvel(0, 3.5)
|
|
7.180846515103737996249972
|
|
>>> struvel(-1, 10)
|
|
2670.994904980850550721511
|
|
>>> struvel(1, -100.5)
|
|
1.757089288053346261497686e+42
|
|
>>> struvel(2.5, 10000000000000)
|
|
4.160893281017115450519948e+4342944819025
|
|
>>> struvel(2.5, -10000000000000)
|
|
(0.0 - 4.160893281017115450519948e+4342944819025j)
|
|
>>> struvel(1+j, 700j)
|
|
(-0.1721150049480079451246076 + 0.1240770953126831093464055j)
|
|
>>> struvel(1+j, 1000000+4000000j)
|
|
(-2.973341637511505389128708e+434290 - 5.164633059729968297147448e+434290j)
|
|
|
|
Numerically verifying the differential equation::
|
|
|
|
>>> z = mpf(3.5)
|
|
>>> n = 3
|
|
>>> f = lambda z: struvel(n,z)
|
|
>>> lhs = z**2*diff(f,z,2) + z*diff(f,z) - (z**2+n**2)*f(z)
|
|
>>> rhs = 2*z**(n+1)/fac2(2*n-1)/pi
|
|
>>> lhs
|
|
6.368850306060678353018165
|
|
>>> rhs
|
|
6.368850306060678353018165
|
|
"""
|
|
|
|
appellf1 = r"""
|
|
Gives the Appell F1 hypergeometric function of two variables,
|
|
|
|
.. math ::
|
|
|
|
F_1(a,b_1,b_2,c,x,y) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
|
|
\frac{(a)_{m+n} (b_1)_m (b_2)_n}{(c)_{m+n}}
|
|
\frac{x^m y^n}{m! n!}.
|
|
|
|
This series is only generally convergent when `|x| < 1` and `|y| < 1`,
|
|
although :func:`~mpmath.appellf1` can evaluate an analytic continuation
|
|
with respecto to either variable, and sometimes both.
|
|
|
|
**Examples**
|
|
|
|
Evaluation is supported for real and complex parameters::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> appellf1(1,0,0.5,1,0.5,0.25)
|
|
1.154700538379251529018298
|
|
>>> appellf1(1,1+j,0.5,1,0.5,0.5j)
|
|
(1.138403860350148085179415 + 1.510544741058517621110615j)
|
|
|
|
For some integer parameters, the F1 series reduces to a polynomial::
|
|
|
|
>>> appellf1(2,-4,-3,1,2,5)
|
|
-816.0
|
|
>>> appellf1(-5,1,2,1,4,5)
|
|
-20528.0
|
|
|
|
The analytic continuation with respect to either `x` or `y`,
|
|
and sometimes with respect to both, can be evaluated::
|
|
|
|
>>> appellf1(2,3,4,5,100,0.5)
|
|
(0.0006231042714165329279738662 + 0.0000005769149277148425774499857j)
|
|
>>> appellf1('1.1', '0.3', '0.2+2j', '0.4', '0.2', 1.5+3j)
|
|
(-0.1782604566893954897128702 + 0.002472407104546216117161499j)
|
|
>>> appellf1(1,2,3,4,10,12)
|
|
-0.07122993830066776374929313
|
|
|
|
For certain arguments, F1 reduces to an ordinary hypergeometric function::
|
|
|
|
>>> appellf1(1,2,3,5,0.5,0.25)
|
|
1.547902270302684019335555
|
|
>>> 4*hyp2f1(1,2,5,'1/3')/3
|
|
1.547902270302684019335555
|
|
>>> appellf1(1,2,3,4,0,1.5)
|
|
(-1.717202506168937502740238 - 2.792526803190927323077905j)
|
|
>>> hyp2f1(1,3,4,1.5)
|
|
(-1.717202506168937502740238 - 2.792526803190927323077905j)
|
|
|
|
The F1 function satisfies a system of partial differential equations::
|
|
|
|
>>> a,b1,b2,c,x,y = map(mpf, [1,0.5,0.25,1.125,0.25,-0.25])
|
|
>>> F = lambda x,y: appellf1(a,b1,b2,c,x,y)
|
|
>>> chop(x*(1-x)*diff(F,(x,y),(2,0)) +
|
|
... y*(1-x)*diff(F,(x,y),(1,1)) +
|
|
... (c-(a+b1+1)*x)*diff(F,(x,y),(1,0)) -
|
|
... b1*y*diff(F,(x,y),(0,1)) -
|
|
... a*b1*F(x,y))
|
|
0.0
|
|
>>>
|
|
>>> chop(y*(1-y)*diff(F,(x,y),(0,2)) +
|
|
... x*(1-y)*diff(F,(x,y),(1,1)) +
|
|
... (c-(a+b2+1)*y)*diff(F,(x,y),(0,1)) -
|
|
... b2*x*diff(F,(x,y),(1,0)) -
|
|
... a*b2*F(x,y))
|
|
0.0
|
|
|
|
The Appell F1 function allows for closed-form evaluation of various
|
|
integrals, such as any integral of the form
|
|
`\int x^r (x+a)^p (x+b)^q dx`::
|
|
|
|
>>> def integral(a,b,p,q,r,x1,x2):
|
|
... a,b,p,q,r,x1,x2 = map(mpmathify, [a,b,p,q,r,x1,x2])
|
|
... f = lambda x: x**r * (x+a)**p * (x+b)**q
|
|
... def F(x):
|
|
... v = x**(r+1)/(r+1) * (a+x)**p * (b+x)**q
|
|
... v *= (1+x/a)**(-p)
|
|
... v *= (1+x/b)**(-q)
|
|
... v *= appellf1(r+1,-p,-q,2+r,-x/a,-x/b)
|
|
... return v
|
|
... print("Num. quad: %s" % quad(f, [x1,x2]))
|
|
... print("Appell F1: %s" % (F(x2)-F(x1)))
|
|
...
|
|
>>> integral('1/5','4/3','-2','3','1/2',0,1)
|
|
Num. quad: 9.073335358785776206576981
|
|
Appell F1: 9.073335358785776206576981
|
|
>>> integral('3/2','4/3','-2','3','1/2',0,1)
|
|
Num. quad: 1.092829171999626454344678
|
|
Appell F1: 1.092829171999626454344678
|
|
>>> integral('3/2','4/3','-2','3','1/2',12,25)
|
|
Num. quad: 1106.323225040235116498927
|
|
Appell F1: 1106.323225040235116498927
|
|
|
|
Also incomplete elliptic integrals fall into this category [1]::
|
|
|
|
>>> def E(z, m):
|
|
... if (pi/2).ae(z):
|
|
... return ellipe(m)
|
|
... return 2*round(re(z)/pi)*ellipe(m) + mpf(-1)**round(re(z)/pi)*\
|
|
... sin(z)*appellf1(0.5,0.5,-0.5,1.5,sin(z)**2,m*sin(z)**2)
|
|
...
|
|
>>> z, m = 1, 0.5
|
|
>>> E(z,m); quad(lambda t: sqrt(1-m*sin(t)**2), [0,pi/4,3*pi/4,z])
|
|
0.9273298836244400669659042
|
|
0.9273298836244400669659042
|
|
>>> z, m = 3, 2
|
|
>>> E(z,m); quad(lambda t: sqrt(1-m*sin(t)**2), [0,pi/4,3*pi/4,z])
|
|
(1.057495752337234229715836 + 1.198140234735592207439922j)
|
|
(1.057495752337234229715836 + 1.198140234735592207439922j)
|
|
|
|
**References**
|
|
|
|
1. [WolframFunctions]_ http://functions.wolfram.com/EllipticIntegrals/EllipticE2/26/01/
|
|
2. [SrivastavaKarlsson]_
|
|
3. [CabralRosetti]_
|
|
4. [Vidunas]_
|
|
5. [Slater]_
|
|
|
|
"""
|
|
|
|
angerj = r"""
|
|
Gives the Anger function
|
|
|
|
.. math ::
|
|
|
|
\mathbf{J}_{\nu}(z) = \frac{1}{\pi}
|
|
\int_0^{\pi} \cos(\nu t - z \sin t) dt
|
|
|
|
which is an entire function of both the parameter `\nu` and
|
|
the argument `z`. It solves the inhomogeneous Bessel differential
|
|
equation
|
|
|
|
.. math ::
|
|
|
|
f''(z) + \frac{1}{z}f'(z) + \left(1-\frac{\nu^2}{z^2}\right) f(z)
|
|
= \frac{(z-\nu)}{\pi z^2} \sin(\pi \nu).
|
|
|
|
**Examples**
|
|
|
|
Evaluation for real and complex parameter and argument::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> angerj(2,3)
|
|
0.4860912605858910769078311
|
|
>>> angerj(-3+4j, 2+5j)
|
|
(-5033.358320403384472395612 + 585.8011892476145118551756j)
|
|
>>> angerj(3.25, 1e6j)
|
|
(4.630743639715893346570743e+434290 - 1.117960409887505906848456e+434291j)
|
|
>>> angerj(-1.5, 1e6)
|
|
0.0002795719747073879393087011
|
|
|
|
The Anger function coincides with the Bessel J-function when `\nu`
|
|
is an integer::
|
|
|
|
>>> angerj(1,3); besselj(1,3)
|
|
0.3390589585259364589255146
|
|
0.3390589585259364589255146
|
|
>>> angerj(1.5,3); besselj(1.5,3)
|
|
0.4088969848691080859328847
|
|
0.4777182150870917715515015
|
|
|
|
Verifying the differential equation::
|
|
|
|
>>> v,z = mpf(2.25), 0.75
|
|
>>> f = lambda z: angerj(v,z)
|
|
>>> diff(f,z,2) + diff(f,z)/z + (1-(v/z)**2)*f(z)
|
|
-0.6002108774380707130367995
|
|
>>> (z-v)/(pi*z**2) * sinpi(v)
|
|
-0.6002108774380707130367995
|
|
|
|
Verifying the integral representation::
|
|
|
|
>>> angerj(v,z)
|
|
0.1145380759919333180900501
|
|
>>> quad(lambda t: cos(v*t-z*sin(t))/pi, [0,pi])
|
|
0.1145380759919333180900501
|
|
|
|
**References**
|
|
|
|
1. [DLMF]_ section 11.10: Anger-Weber Functions
|
|
"""
|
|
|
|
webere = r"""
|
|
Gives the Weber function
|
|
|
|
.. math ::
|
|
|
|
\mathbf{E}_{\nu}(z) = \frac{1}{\pi}
|
|
\int_0^{\pi} \sin(\nu t - z \sin t) dt
|
|
|
|
which is an entire function of both the parameter `\nu` and
|
|
the argument `z`. It solves the inhomogeneous Bessel differential
|
|
equation
|
|
|
|
.. math ::
|
|
|
|
f''(z) + \frac{1}{z}f'(z) + \left(1-\frac{\nu^2}{z^2}\right) f(z)
|
|
= -\frac{1}{\pi z^2} (z+\nu+(z-\nu)\cos(\pi \nu)).
|
|
|
|
**Examples**
|
|
|
|
Evaluation for real and complex parameter and argument::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> webere(2,3)
|
|
-0.1057668973099018425662646
|
|
>>> webere(-3+4j, 2+5j)
|
|
(-585.8081418209852019290498 - 5033.314488899926921597203j)
|
|
>>> webere(3.25, 1e6j)
|
|
(-1.117960409887505906848456e+434291 - 4.630743639715893346570743e+434290j)
|
|
>>> webere(3.25, 1e6)
|
|
-0.00002812518265894315604914453
|
|
|
|
Up to addition of a rational function of `z`, the Weber function coincides
|
|
with the Struve H-function when `\nu` is an integer::
|
|
|
|
>>> webere(1,3); 2/pi-struveh(1,3)
|
|
-0.3834897968188690177372881
|
|
-0.3834897968188690177372881
|
|
>>> webere(5,3); 26/(35*pi)-struveh(5,3)
|
|
0.2009680659308154011878075
|
|
0.2009680659308154011878075
|
|
|
|
Verifying the differential equation::
|
|
|
|
>>> v,z = mpf(2.25), 0.75
|
|
>>> f = lambda z: webere(v,z)
|
|
>>> diff(f,z,2) + diff(f,z)/z + (1-(v/z)**2)*f(z)
|
|
-1.097441848875479535164627
|
|
>>> -(z+v+(z-v)*cospi(v))/(pi*z**2)
|
|
-1.097441848875479535164627
|
|
|
|
Verifying the integral representation::
|
|
|
|
>>> webere(v,z)
|
|
0.1486507351534283744485421
|
|
>>> quad(lambda t: sin(v*t-z*sin(t))/pi, [0,pi])
|
|
0.1486507351534283744485421
|
|
|
|
**References**
|
|
|
|
1. [DLMF]_ section 11.10: Anger-Weber Functions
|
|
"""
|
|
|
|
lommels1 = r"""
|
|
Gives the Lommel function `s_{\mu,\nu}` or `s^{(1)}_{\mu,\nu}`
|
|
|
|
.. math ::
|
|
|
|
s_{\mu,\nu}(z) = \frac{z^{\mu+1}}{(\mu-\nu+1)(\mu+\nu+1)}
|
|
\,_1F_2\left(1; \frac{\mu-\nu+3}{2}, \frac{\mu+\nu+3}{2};
|
|
-\frac{z^2}{4} \right)
|
|
|
|
which solves the inhomogeneous Bessel equation
|
|
|
|
.. math ::
|
|
|
|
z^2 f''(z) + z f'(z) + (z^2-\nu^2) f(z) = z^{\mu+1}.
|
|
|
|
A second solution is given by :func:`~mpmath.lommels2`.
|
|
|
|
**Plots**
|
|
|
|
.. literalinclude :: /plots/lommels1.py
|
|
.. image :: /plots/lommels1.png
|
|
|
|
**Examples**
|
|
|
|
An integral representation::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> u,v,z = 0.25, 0.125, mpf(0.75)
|
|
>>> lommels1(u,v,z)
|
|
0.4276243877565150372999126
|
|
>>> (bessely(v,z)*quad(lambda t: t**u*besselj(v,t), [0,z]) - \
|
|
... besselj(v,z)*quad(lambda t: t**u*bessely(v,t), [0,z]))*(pi/2)
|
|
0.4276243877565150372999126
|
|
|
|
A special value::
|
|
|
|
>>> lommels1(v,v,z)
|
|
0.5461221367746048054932553
|
|
>>> gamma(v+0.5)*sqrt(pi)*power(2,v-1)*struveh(v,z)
|
|
0.5461221367746048054932553
|
|
|
|
Verifying the differential equation::
|
|
|
|
>>> f = lambda z: lommels1(u,v,z)
|
|
>>> z**2*diff(f,z,2) + z*diff(f,z) + (z**2-v**2)*f(z)
|
|
0.6979536443265746992059141
|
|
>>> z**(u+1)
|
|
0.6979536443265746992059141
|
|
|
|
**References**
|
|
|
|
1. [GradshteynRyzhik]_
|
|
2. [Weisstein]_ http://mathworld.wolfram.com/LommelFunction.html
|
|
"""
|
|
|
|
lommels2 = r"""
|
|
Gives the second Lommel function `S_{\mu,\nu}` or `s^{(2)}_{\mu,\nu}`
|
|
|
|
.. math ::
|
|
|
|
S_{\mu,\nu}(z) = s_{\mu,\nu}(z) + 2^{\mu-1}
|
|
\Gamma\left(\tfrac{1}{2}(\mu-\nu+1)\right)
|
|
\Gamma\left(\tfrac{1}{2}(\mu+\nu+1)\right) \times
|
|
|
|
\left[\sin(\tfrac{1}{2}(\mu-\nu)\pi) J_{\nu}(z) -
|
|
\cos(\tfrac{1}{2}(\mu-\nu)\pi) Y_{\nu}(z)
|
|
\right]
|
|
|
|
which solves the same differential equation as
|
|
:func:`~mpmath.lommels1`.
|
|
|
|
**Plots**
|
|
|
|
.. literalinclude :: /plots/lommels2.py
|
|
.. image :: /plots/lommels2.png
|
|
|
|
**Examples**
|
|
|
|
For large `|z|`, `S_{\mu,\nu} \sim z^{\mu-1}`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> lommels2(10,2,30000)
|
|
1.968299831601008419949804e+40
|
|
>>> power(30000,9)
|
|
1.9683e+40
|
|
|
|
A special value::
|
|
|
|
>>> u,v,z = 0.5, 0.125, mpf(0.75)
|
|
>>> lommels2(v,v,z)
|
|
0.9589683199624672099969765
|
|
>>> (struveh(v,z)-bessely(v,z))*power(2,v-1)*sqrt(pi)*gamma(v+0.5)
|
|
0.9589683199624672099969765
|
|
|
|
Verifying the differential equation::
|
|
|
|
>>> f = lambda z: lommels2(u,v,z)
|
|
>>> z**2*diff(f,z,2) + z*diff(f,z) + (z**2-v**2)*f(z)
|
|
0.6495190528383289850727924
|
|
>>> z**(u+1)
|
|
0.6495190528383289850727924
|
|
|
|
**References**
|
|
|
|
1. [GradshteynRyzhik]_
|
|
2. [Weisstein]_ http://mathworld.wolfram.com/LommelFunction.html
|
|
"""
|
|
|
|
appellf2 = r"""
|
|
Gives the Appell F2 hypergeometric function of two variables
|
|
|
|
.. math ::
|
|
|
|
F_2(a,b_1,b_2,c_1,c_2,x,y) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
|
|
\frac{(a)_{m+n} (b_1)_m (b_2)_n}{(c_1)_m (c_2)_n}
|
|
\frac{x^m y^n}{m! n!}.
|
|
|
|
The series is generally absolutely convergent for `|x| + |y| < 1`.
|
|
|
|
**Examples**
|
|
|
|
Evaluation for real and complex arguments::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> appellf2(1,2,3,4,5,0.25,0.125)
|
|
1.257417193533135344785602
|
|
>>> appellf2(1,-3,-4,2,3,2,3)
|
|
-42.8
|
|
>>> appellf2(0.5,0.25,-0.25,2,3,0.25j,0.25)
|
|
(0.9880539519421899867041719 + 0.01497616165031102661476978j)
|
|
>>> chop(appellf2(1,1+j,1-j,3j,-3j,0.25,0.25))
|
|
1.201311219287411337955192
|
|
>>> appellf2(1,1,1,4,6,0.125,16)
|
|
(-0.09455532250274744282125152 - 0.7647282253046207836769297j)
|
|
|
|
A transformation formula::
|
|
|
|
>>> a,b1,b2,c1,c2,x,y = map(mpf, [1,2,0.5,0.25,1.625,-0.125,0.125])
|
|
>>> appellf2(a,b1,b2,c1,c2,x,y)
|
|
0.2299211717841180783309688
|
|
>>> (1-x)**(-a)*appellf2(a,c1-b1,b2,c1,c2,x/(x-1),y/(1-x))
|
|
0.2299211717841180783309688
|
|
|
|
A system of partial differential equations satisfied by F2::
|
|
|
|
>>> a,b1,b2,c1,c2,x,y = map(mpf, [1,0.5,0.25,1.125,1.5,0.0625,-0.0625])
|
|
>>> F = lambda x,y: appellf2(a,b1,b2,c1,c2,x,y)
|
|
>>> chop(x*(1-x)*diff(F,(x,y),(2,0)) -
|
|
... x*y*diff(F,(x,y),(1,1)) +
|
|
... (c1-(a+b1+1)*x)*diff(F,(x,y),(1,0)) -
|
|
... b1*y*diff(F,(x,y),(0,1)) -
|
|
... a*b1*F(x,y))
|
|
0.0
|
|
>>> chop(y*(1-y)*diff(F,(x,y),(0,2)) -
|
|
... x*y*diff(F,(x,y),(1,1)) +
|
|
... (c2-(a+b2+1)*y)*diff(F,(x,y),(0,1)) -
|
|
... b2*x*diff(F,(x,y),(1,0)) -
|
|
... a*b2*F(x,y))
|
|
0.0
|
|
|
|
**References**
|
|
|
|
See references for :func:`~mpmath.appellf1`.
|
|
"""
|
|
|
|
appellf3 = r"""
|
|
Gives the Appell F3 hypergeometric function of two variables
|
|
|
|
.. math ::
|
|
|
|
F_3(a_1,a_2,b_1,b_2,c,x,y) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
|
|
\frac{(a_1)_m (a_2)_n (b_1)_m (b_2)_n}{(c)_{m+n}}
|
|
\frac{x^m y^n}{m! n!}.
|
|
|
|
The series is generally absolutely convergent for `|x| < 1, |y| < 1`.
|
|
|
|
**Examples**
|
|
|
|
Evaluation for various parameters and variables::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> appellf3(1,2,3,4,5,0.5,0.25)
|
|
2.221557778107438938158705
|
|
>>> appellf3(1,2,3,4,5,6,0); hyp2f1(1,3,5,6)
|
|
(-0.5189554589089861284537389 - 0.1454441043328607980769742j)
|
|
(-0.5189554589089861284537389 - 0.1454441043328607980769742j)
|
|
>>> appellf3(1,-2,-3,1,1,4,6)
|
|
-17.4
|
|
>>> appellf3(1,2,-3,1,1,4,6)
|
|
(17.7876136773677356641825 + 19.54768762233649126154534j)
|
|
>>> appellf3(1,2,-3,1,1,6,4)
|
|
(85.02054175067929402953645 + 148.4402528821177305173599j)
|
|
>>> chop(appellf3(1+j,2,1-j,2,3,0.25,0.25))
|
|
1.719992169545200286696007
|
|
|
|
Many transformations and evaluations for special combinations
|
|
of the parameters are possible, e.g.:
|
|
|
|
>>> a,b,c,x,y = map(mpf, [0.5,0.25,0.125,0.125,-0.125])
|
|
>>> appellf3(a,c-a,b,c-b,c,x,y)
|
|
1.093432340896087107444363
|
|
>>> (1-y)**(a+b-c)*hyp2f1(a,b,c,x+y-x*y)
|
|
1.093432340896087107444363
|
|
>>> x**2*appellf3(1,1,1,1,3,x,-x)
|
|
0.01568646277445385390945083
|
|
>>> polylog(2,x**2)
|
|
0.01568646277445385390945083
|
|
>>> a1,a2,b1,b2,c,x = map(mpf, [0.5,0.25,0.125,0.5,4.25,0.125])
|
|
>>> appellf3(a1,a2,b1,b2,c,x,1)
|
|
1.03947361709111140096947
|
|
>>> gammaprod([c,c-a2-b2],[c-a2,c-b2])*hyp3f2(a1,b1,c-a2-b2,c-a2,c-b2,x)
|
|
1.03947361709111140096947
|
|
|
|
The Appell F3 function satisfies a pair of partial
|
|
differential equations::
|
|
|
|
>>> a1,a2,b1,b2,c,x,y = map(mpf, [0.5,0.25,0.125,0.5,0.625,0.0625,-0.0625])
|
|
>>> F = lambda x,y: appellf3(a1,a2,b1,b2,c,x,y)
|
|
>>> chop(x*(1-x)*diff(F,(x,y),(2,0)) +
|
|
... y*diff(F,(x,y),(1,1)) +
|
|
... (c-(a1+b1+1)*x)*diff(F,(x,y),(1,0)) -
|
|
... a1*b1*F(x,y))
|
|
0.0
|
|
>>> chop(y*(1-y)*diff(F,(x,y),(0,2)) +
|
|
... x*diff(F,(x,y),(1,1)) +
|
|
... (c-(a2+b2+1)*y)*diff(F,(x,y),(0,1)) -
|
|
... a2*b2*F(x,y))
|
|
0.0
|
|
|
|
**References**
|
|
|
|
See references for :func:`~mpmath.appellf1`.
|
|
"""
|
|
|
|
appellf4 = r"""
|
|
Gives the Appell F4 hypergeometric function of two variables
|
|
|
|
.. math ::
|
|
|
|
F_4(a,b,c_1,c_2,x,y) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
|
|
\frac{(a)_{m+n} (b)_{m+n}}{(c_1)_m (c_2)_n}
|
|
\frac{x^m y^n}{m! n!}.
|
|
|
|
The series is generally absolutely convergent for
|
|
`\sqrt{|x|} + \sqrt{|y|} < 1`.
|
|
|
|
**Examples**
|
|
|
|
Evaluation for various parameters and arguments::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> appellf4(1,1,2,2,0.25,0.125)
|
|
1.286182069079718313546608
|
|
>>> appellf4(-2,-3,4,5,4,5)
|
|
34.8
|
|
>>> appellf4(5,4,2,3,0.25j,-0.125j)
|
|
(-0.2585967215437846642163352 + 2.436102233553582711818743j)
|
|
|
|
Reduction to `\,_2F_1` in a special case::
|
|
|
|
>>> a,b,c,x,y = map(mpf, [0.5,0.25,0.125,0.125,-0.125])
|
|
>>> appellf4(a,b,c,a+b-c+1,x*(1-y),y*(1-x))
|
|
1.129143488466850868248364
|
|
>>> hyp2f1(a,b,c,x)*hyp2f1(a,b,a+b-c+1,y)
|
|
1.129143488466850868248364
|
|
|
|
A system of partial differential equations satisfied by F4::
|
|
|
|
>>> a,b,c1,c2,x,y = map(mpf, [1,0.5,0.25,1.125,0.0625,-0.0625])
|
|
>>> F = lambda x,y: appellf4(a,b,c1,c2,x,y)
|
|
>>> chop(x*(1-x)*diff(F,(x,y),(2,0)) -
|
|
... y**2*diff(F,(x,y),(0,2)) -
|
|
... 2*x*y*diff(F,(x,y),(1,1)) +
|
|
... (c1-(a+b+1)*x)*diff(F,(x,y),(1,0)) -
|
|
... ((a+b+1)*y)*diff(F,(x,y),(0,1)) -
|
|
... a*b*F(x,y))
|
|
0.0
|
|
>>> chop(y*(1-y)*diff(F,(x,y),(0,2)) -
|
|
... x**2*diff(F,(x,y),(2,0)) -
|
|
... 2*x*y*diff(F,(x,y),(1,1)) +
|
|
... (c2-(a+b+1)*y)*diff(F,(x,y),(0,1)) -
|
|
... ((a+b+1)*x)*diff(F,(x,y),(1,0)) -
|
|
... a*b*F(x,y))
|
|
0.0
|
|
|
|
**References**
|
|
|
|
See references for :func:`~mpmath.appellf1`.
|
|
"""
|
|
|
|
zeta = r"""
|
|
Computes the Riemann zeta function
|
|
|
|
.. math ::
|
|
|
|
\zeta(s) = 1+\frac{1}{2^s}+\frac{1}{3^s}+\frac{1}{4^s}+\ldots
|
|
|
|
or, with `a \ne 1`, the more general Hurwitz zeta function
|
|
|
|
.. math ::
|
|
|
|
\zeta(s,a) = \sum_{k=0}^\infty \frac{1}{(a+k)^s}.
|
|
|
|
Optionally, ``zeta(s, a, n)`` computes the `n`-th derivative with
|
|
respect to `s`,
|
|
|
|
.. math ::
|
|
|
|
\zeta^{(n)}(s,a) = (-1)^n \sum_{k=0}^\infty \frac{\log^n(a+k)}{(a+k)^s}.
|
|
|
|
Although these series only converge for `\Re(s) > 1`, the Riemann and Hurwitz
|
|
zeta functions are defined through analytic continuation for arbitrary
|
|
complex `s \ne 1` (`s = 1` is a pole).
|
|
|
|
The implementation uses three algorithms: the Borwein algorithm for
|
|
the Riemann zeta function when `s` is close to the real line;
|
|
the Riemann-Siegel formula for the Riemann zeta function when `s` is
|
|
large imaginary, and Euler-Maclaurin summation in all other cases.
|
|
The reflection formula for `\Re(s) < 0` is implemented in some cases.
|
|
The algorithm can be chosen with ``method = 'borwein'``,
|
|
``method='riemann-siegel'`` or ``method = 'euler-maclaurin'``.
|
|
|
|
The parameter `a` is usually a rational number `a = p/q`, and may be specified
|
|
as such by passing an integer tuple `(p, q)`. Evaluation is supported for
|
|
arbitrary complex `a`, but may be slow and/or inaccurate when `\Re(s) < 0` for
|
|
nonrational `a` or when computing derivatives.
|
|
|
|
**Examples**
|
|
|
|
Some values of the Riemann zeta function::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> zeta(2); pi**2 / 6
|
|
1.644934066848226436472415
|
|
1.644934066848226436472415
|
|
>>> zeta(0)
|
|
-0.5
|
|
>>> zeta(-1)
|
|
-0.08333333333333333333333333
|
|
>>> zeta(-2)
|
|
0.0
|
|
|
|
For large positive `s`, `\zeta(s)` rapidly approaches 1::
|
|
|
|
>>> zeta(50)
|
|
1.000000000000000888178421
|
|
>>> zeta(100)
|
|
1.0
|
|
>>> zeta(inf)
|
|
1.0
|
|
>>> 1-sum((zeta(k)-1)/k for k in range(2,85)); +euler
|
|
0.5772156649015328606065121
|
|
0.5772156649015328606065121
|
|
>>> nsum(lambda k: zeta(k)-1, [2, inf])
|
|
1.0
|
|
|
|
Evaluation is supported for complex `s` and `a`:
|
|
|
|
>>> zeta(-3+4j)
|
|
(-0.03373057338827757067584698 + 0.2774499251557093745297677j)
|
|
>>> zeta(2+3j, -1+j)
|
|
(389.6841230140842816370741 + 295.2674610150305334025962j)
|
|
|
|
The Riemann zeta function has so-called nontrivial zeros on
|
|
the critical line `s = 1/2 + it`::
|
|
|
|
>>> findroot(zeta, 0.5+14j); zetazero(1)
|
|
(0.5 + 14.13472514173469379045725j)
|
|
(0.5 + 14.13472514173469379045725j)
|
|
>>> findroot(zeta, 0.5+21j); zetazero(2)
|
|
(0.5 + 21.02203963877155499262848j)
|
|
(0.5 + 21.02203963877155499262848j)
|
|
>>> findroot(zeta, 0.5+25j); zetazero(3)
|
|
(0.5 + 25.01085758014568876321379j)
|
|
(0.5 + 25.01085758014568876321379j)
|
|
>>> chop(zeta(zetazero(10)))
|
|
0.0
|
|
|
|
Evaluation on and near the critical line is supported for large
|
|
heights `t` by means of the Riemann-Siegel formula (currently
|
|
for `a = 1`, `n \le 4`)::
|
|
|
|
>>> zeta(0.5+100000j)
|
|
(1.073032014857753132114076 + 5.780848544363503984261041j)
|
|
>>> zeta(0.75+1000000j)
|
|
(0.9535316058375145020351559 + 0.9525945894834273060175651j)
|
|
>>> zeta(0.5+10000000j)
|
|
(11.45804061057709254500227 - 8.643437226836021723818215j)
|
|
>>> zeta(0.5+100000000j, derivative=1)
|
|
(51.12433106710194942681869 + 43.87221167872304520599418j)
|
|
>>> zeta(0.5+100000000j, derivative=2)
|
|
(-444.2760822795430400549229 - 896.3789978119185981665403j)
|
|
>>> zeta(0.5+100000000j, derivative=3)
|
|
(3230.72682687670422215339 + 14374.36950073615897616781j)
|
|
>>> zeta(0.5+100000000j, derivative=4)
|
|
(-11967.35573095046402130602 - 218945.7817789262839266148j)
|
|
>>> zeta(1+10000000j) # off the line
|
|
(2.859846483332530337008882 + 0.491808047480981808903986j)
|
|
>>> zeta(1+10000000j, derivative=1)
|
|
(-4.333835494679647915673205 - 0.08405337962602933636096103j)
|
|
>>> zeta(1+10000000j, derivative=4)
|
|
(453.2764822702057701894278 - 581.963625832768189140995j)
|
|
|
|
For investigation of the zeta function zeros, the Riemann-Siegel
|
|
Z-function is often more convenient than working with the Riemann
|
|
zeta function directly (see :func:`~mpmath.siegelz`).
|
|
|
|
Some values of the Hurwitz zeta function::
|
|
|
|
>>> zeta(2, 3); -5./4 + pi**2/6
|
|
0.3949340668482264364724152
|
|
0.3949340668482264364724152
|
|
>>> zeta(2, (3,4)); pi**2 - 8*catalan
|
|
2.541879647671606498397663
|
|
2.541879647671606498397663
|
|
|
|
For positive integer values of `s`, the Hurwitz zeta function is
|
|
equivalent to a polygamma function (except for a normalizing factor)::
|
|
|
|
>>> zeta(4, (1,5)); psi(3, '1/5')/6
|
|
625.5408324774542966919938
|
|
625.5408324774542966919938
|
|
|
|
Evaluation of derivatives::
|
|
|
|
>>> zeta(0, 3+4j, 1); loggamma(3+4j) - ln(2*pi)/2
|
|
(-2.675565317808456852310934 + 4.742664438034657928194889j)
|
|
(-2.675565317808456852310934 + 4.742664438034657928194889j)
|
|
>>> zeta(2, 1, 20)
|
|
2432902008176640000.000242
|
|
>>> zeta(3+4j, 5.5+2j, 4)
|
|
(-0.140075548947797130681075 - 0.3109263360275413251313634j)
|
|
>>> zeta(0.5+100000j, 1, 4)
|
|
(-10407.16081931495861539236 + 13777.78669862804508537384j)
|
|
>>> zeta(-100+0.5j, (1,3), derivative=4)
|
|
(4.007180821099823942702249e+79 + 4.916117957092593868321778e+78j)
|
|
|
|
Generating a Taylor series at `s = 2` using derivatives::
|
|
|
|
>>> for k in range(11): print("%s * (s-2)^%i" % (zeta(2,1,k)/fac(k), k))
|
|
...
|
|
1.644934066848226436472415 * (s-2)^0
|
|
-0.9375482543158437537025741 * (s-2)^1
|
|
0.9946401171494505117104293 * (s-2)^2
|
|
-1.000024300473840810940657 * (s-2)^3
|
|
1.000061933072352565457512 * (s-2)^4
|
|
-1.000006869443931806408941 * (s-2)^5
|
|
1.000000173233769531820592 * (s-2)^6
|
|
-0.9999999569989868493432399 * (s-2)^7
|
|
0.9999999937218844508684206 * (s-2)^8
|
|
-0.9999999996355013916608284 * (s-2)^9
|
|
1.000000000004610645020747 * (s-2)^10
|
|
|
|
Evaluation at zero and for negative integer `s`::
|
|
|
|
>>> zeta(0, 10)
|
|
-9.5
|
|
>>> zeta(-2, (2,3)); mpf(1)/81
|
|
0.01234567901234567901234568
|
|
0.01234567901234567901234568
|
|
>>> zeta(-3+4j, (5,4))
|
|
(0.2899236037682695182085988 + 0.06561206166091757973112783j)
|
|
>>> zeta(-3.25, 1/pi)
|
|
-0.0005117269627574430494396877
|
|
>>> zeta(-3.5, pi, 1)
|
|
11.156360390440003294709
|
|
>>> zeta(-100.5, (8,3))
|
|
-4.68162300487989766727122e+77
|
|
>>> zeta(-10.5, (-8,3))
|
|
(-0.01521913704446246609237979 + 29907.72510874248161608216j)
|
|
>>> zeta(-1000.5, (-8,3))
|
|
(1.031911949062334538202567e+1770 + 1.519555750556794218804724e+426j)
|
|
>>> zeta(-1+j, 3+4j)
|
|
(-16.32988355630802510888631 - 22.17706465801374033261383j)
|
|
>>> zeta(-1+j, 3+4j, 2)
|
|
(32.48985276392056641594055 - 51.11604466157397267043655j)
|
|
>>> diff(lambda s: zeta(s, 3+4j), -1+j, 2)
|
|
(32.48985276392056641594055 - 51.11604466157397267043655j)
|
|
|
|
**References**
|
|
|
|
1. http://mathworld.wolfram.com/RiemannZetaFunction.html
|
|
|
|
2. http://mathworld.wolfram.com/HurwitzZetaFunction.html
|
|
|
|
3. [BorweinZeta]_
|
|
|
|
"""
|
|
|
|
dirichlet = r"""
|
|
Evaluates the Dirichlet L-function
|
|
|
|
.. math ::
|
|
|
|
L(s,\chi) = \sum_{k=1}^\infty \frac{\chi(k)}{k^s}.
|
|
|
|
where `\chi` is a periodic sequence of length `q` which should be supplied
|
|
in the form of a list `[\chi(0), \chi(1), \ldots, \chi(q-1)]`.
|
|
Strictly, `\chi` should be a Dirichlet character, but any periodic
|
|
sequence will work.
|
|
|
|
For example, ``dirichlet(s, [1])`` gives the ordinary
|
|
Riemann zeta function and ``dirichlet(s, [-1,1])`` gives
|
|
the alternating zeta function (Dirichlet eta function).
|
|
|
|
Also the derivative with respect to `s` (currently only a first
|
|
derivative) can be evaluated.
|
|
|
|
**Examples**
|
|
|
|
The ordinary Riemann zeta function::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> dirichlet(3, [1]); zeta(3)
|
|
1.202056903159594285399738
|
|
1.202056903159594285399738
|
|
>>> dirichlet(1, [1])
|
|
+inf
|
|
|
|
The alternating zeta function::
|
|
|
|
>>> dirichlet(1, [-1,1]); ln(2)
|
|
0.6931471805599453094172321
|
|
0.6931471805599453094172321
|
|
|
|
The following defines the Dirichlet beta function
|
|
`\beta(s) = \sum_{k=0}^\infty \frac{(-1)^k}{(2k+1)^s}` and verifies
|
|
several values of this function::
|
|
|
|
>>> B = lambda s, d=0: dirichlet(s, [0, 1, 0, -1], d)
|
|
>>> B(0); 1./2
|
|
0.5
|
|
0.5
|
|
>>> B(1); pi/4
|
|
0.7853981633974483096156609
|
|
0.7853981633974483096156609
|
|
>>> B(2); +catalan
|
|
0.9159655941772190150546035
|
|
0.9159655941772190150546035
|
|
>>> B(2,1); diff(B, 2)
|
|
0.08158073611659279510291217
|
|
0.08158073611659279510291217
|
|
>>> B(-1,1); 2*catalan/pi
|
|
0.5831218080616375602767689
|
|
0.5831218080616375602767689
|
|
>>> B(0,1); log(gamma(0.25)**2/(2*pi*sqrt(2)))
|
|
0.3915943927068367764719453
|
|
0.3915943927068367764719454
|
|
>>> B(1,1); 0.25*pi*(euler+2*ln2+3*ln(pi)-4*ln(gamma(0.25)))
|
|
0.1929013167969124293631898
|
|
0.1929013167969124293631898
|
|
|
|
A custom L-series of period 3::
|
|
|
|
>>> dirichlet(2, [2,0,1])
|
|
0.7059715047839078092146831
|
|
>>> 2*nsum(lambda k: (3*k)**-2, [1,inf]) + \
|
|
... nsum(lambda k: (3*k+2)**-2, [0,inf])
|
|
0.7059715047839078092146831
|
|
|
|
"""
|
|
|
|
coulombf = r"""
|
|
Calculates the regular Coulomb wave function
|
|
|
|
.. math ::
|
|
|
|
F_l(\eta,z) = C_l(\eta) z^{l+1} e^{-iz} \,_1F_1(l+1-i\eta, 2l+2, 2iz)
|
|
|
|
where the normalization constant `C_l(\eta)` is as calculated by
|
|
:func:`~mpmath.coulombc`. This function solves the differential equation
|
|
|
|
.. math ::
|
|
|
|
f''(z) + \left(1-\frac{2\eta}{z}-\frac{l(l+1)}{z^2}\right) f(z) = 0.
|
|
|
|
A second linearly independent solution is given by the irregular
|
|
Coulomb wave function `G_l(\eta,z)` (see :func:`~mpmath.coulombg`)
|
|
and thus the general solution is
|
|
`f(z) = C_1 F_l(\eta,z) + C_2 G_l(\eta,z)` for arbitrary
|
|
constants `C_1`, `C_2`.
|
|
Physically, the Coulomb wave functions give the radial solution
|
|
to the Schrodinger equation for a point particle in a `1/z` potential; `z` is
|
|
then the radius and `l`, `\eta` are quantum numbers.
|
|
|
|
The Coulomb wave functions with real parameters are defined
|
|
in Abramowitz & Stegun, section 14. However, all parameters are permitted
|
|
to be complex in this implementation (see references).
|
|
|
|
**Plots**
|
|
|
|
.. literalinclude :: /plots/coulombf.py
|
|
.. image :: /plots/coulombf.png
|
|
.. literalinclude :: /plots/coulombf_c.py
|
|
.. image :: /plots/coulombf_c.png
|
|
|
|
**Examples**
|
|
|
|
Evaluation is supported for arbitrary magnitudes of `z`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> coulombf(2, 1.5, 3.5)
|
|
0.4080998961088761187426445
|
|
>>> coulombf(-2, 1.5, 3.5)
|
|
0.7103040849492536747533465
|
|
>>> coulombf(2, 1.5, '1e-10')
|
|
4.143324917492256448770769e-33
|
|
>>> coulombf(2, 1.5, 1000)
|
|
0.4482623140325567050716179
|
|
>>> coulombf(2, 1.5, 10**10)
|
|
-0.066804196437694360046619
|
|
|
|
Verifying the differential equation::
|
|
|
|
>>> l, eta, z = 2, 3, mpf(2.75)
|
|
>>> A, B = 1, 2
|
|
>>> f = lambda z: A*coulombf(l,eta,z) + B*coulombg(l,eta,z)
|
|
>>> chop(diff(f,z,2) + (1-2*eta/z - l*(l+1)/z**2)*f(z))
|
|
0.0
|
|
|
|
A Wronskian relation satisfied by the Coulomb wave functions::
|
|
|
|
>>> l = 2
|
|
>>> eta = 1.5
|
|
>>> F = lambda z: coulombf(l,eta,z)
|
|
>>> G = lambda z: coulombg(l,eta,z)
|
|
>>> for z in [3.5, -1, 2+3j]:
|
|
... chop(diff(F,z)*G(z) - F(z)*diff(G,z))
|
|
...
|
|
1.0
|
|
1.0
|
|
1.0
|
|
|
|
Another Wronskian relation::
|
|
|
|
>>> F = coulombf
|
|
>>> G = coulombg
|
|
>>> for z in [3.5, -1, 2+3j]:
|
|
... chop(F(l-1,eta,z)*G(l,eta,z)-F(l,eta,z)*G(l-1,eta,z) - l/sqrt(l**2+eta**2))
|
|
...
|
|
0.0
|
|
0.0
|
|
0.0
|
|
|
|
An integral identity connecting the regular and irregular wave functions::
|
|
|
|
>>> l, eta, z = 4+j, 2-j, 5+2j
|
|
>>> coulombf(l,eta,z) + j*coulombg(l,eta,z)
|
|
(0.7997977752284033239714479 + 0.9294486669502295512503127j)
|
|
>>> g = lambda t: exp(-t)*t**(l-j*eta)*(t+2*j*z)**(l+j*eta)
|
|
>>> j*exp(-j*z)*z**(-l)/fac(2*l+1)/coulombc(l,eta)*quad(g, [0,inf])
|
|
(0.7997977752284033239714479 + 0.9294486669502295512503127j)
|
|
|
|
Some test case with complex parameters, taken from Michel [2]::
|
|
|
|
>>> mp.dps = 15
|
|
>>> coulombf(1+0.1j, 50+50j, 100.156)
|
|
(-1.02107292320897e+15 - 2.83675545731519e+15j)
|
|
>>> coulombg(1+0.1j, 50+50j, 100.156)
|
|
(2.83675545731519e+15 - 1.02107292320897e+15j)
|
|
>>> coulombf(1e-5j, 10+1e-5j, 0.1+1e-6j)
|
|
(4.30566371247811e-14 - 9.03347835361657e-19j)
|
|
>>> coulombg(1e-5j, 10+1e-5j, 0.1+1e-6j)
|
|
(778709182061.134 + 18418936.2660553j)
|
|
|
|
The following reproduces a table in Abramowitz & Stegun, at twice
|
|
the precision::
|
|
|
|
>>> mp.dps = 10
|
|
>>> eta = 2; z = 5
|
|
>>> for l in [5, 4, 3, 2, 1, 0]:
|
|
... print("%s %s %s" % (l, coulombf(l,eta,z),
|
|
... diff(lambda z: coulombf(l,eta,z), z)))
|
|
...
|
|
5 0.09079533488 0.1042553261
|
|
4 0.2148205331 0.2029591779
|
|
3 0.4313159311 0.320534053
|
|
2 0.7212774133 0.3952408216
|
|
1 0.9935056752 0.3708676452
|
|
0 1.143337392 0.2937960375
|
|
|
|
**References**
|
|
|
|
1. I.J. Thompson & A.R. Barnett, "Coulomb and Bessel Functions of Complex
|
|
Arguments and Order", J. Comp. Phys., vol 64, no. 2, June 1986.
|
|
|
|
2. N. Michel, "Precise Coulomb wave functions for a wide range of
|
|
complex `l`, `\eta` and `z`", http://arxiv.org/abs/physics/0702051v1
|
|
|
|
"""
|
|
|
|
coulombg = r"""
|
|
Calculates the irregular Coulomb wave function
|
|
|
|
.. math ::
|
|
|
|
G_l(\eta,z) = \frac{F_l(\eta,z) \cos(\chi) - F_{-l-1}(\eta,z)}{\sin(\chi)}
|
|
|
|
where `\chi = \sigma_l - \sigma_{-l-1} - (l+1/2) \pi`
|
|
and `\sigma_l(\eta) = (\ln \Gamma(1+l+i\eta)-\ln \Gamma(1+l-i\eta))/(2i)`.
|
|
|
|
See :func:`~mpmath.coulombf` for additional information.
|
|
|
|
**Plots**
|
|
|
|
.. literalinclude :: /plots/coulombg.py
|
|
.. image :: /plots/coulombg.png
|
|
.. literalinclude :: /plots/coulombg_c.py
|
|
.. image :: /plots/coulombg_c.png
|
|
|
|
**Examples**
|
|
|
|
Evaluation is supported for arbitrary magnitudes of `z`::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> coulombg(-2, 1.5, 3.5)
|
|
1.380011900612186346255524
|
|
>>> coulombg(2, 1.5, 3.5)
|
|
1.919153700722748795245926
|
|
>>> coulombg(-2, 1.5, '1e-10')
|
|
201126715824.7329115106793
|
|
>>> coulombg(-2, 1.5, 1000)
|
|
0.1802071520691149410425512
|
|
>>> coulombg(-2, 1.5, 10**10)
|
|
0.652103020061678070929794
|
|
|
|
The following reproduces a table in Abramowitz & Stegun,
|
|
at twice the precision::
|
|
|
|
>>> mp.dps = 10
|
|
>>> eta = 2; z = 5
|
|
>>> for l in [1, 2, 3, 4, 5]:
|
|
... print("%s %s %s" % (l, coulombg(l,eta,z),
|
|
... -diff(lambda z: coulombg(l,eta,z), z)))
|
|
...
|
|
1 1.08148276 0.6028279961
|
|
2 1.496877075 0.5661803178
|
|
3 2.048694714 0.7959909551
|
|
4 3.09408669 1.731802374
|
|
5 5.629840456 4.549343289
|
|
|
|
Evaluation close to the singularity at `z = 0`::
|
|
|
|
>>> mp.dps = 15
|
|
>>> coulombg(0,10,1)
|
|
3088184933.67358
|
|
>>> coulombg(0,10,'1e-10')
|
|
5554866000719.8
|
|
>>> coulombg(0,10,'1e-100')
|
|
5554866221524.1
|
|
|
|
Evaluation with a half-integer value for `l`::
|
|
|
|
>>> coulombg(1.5, 1, 10)
|
|
0.852320038297334
|
|
"""
|
|
|
|
coulombc = r"""
|
|
Gives the normalizing Gamow constant for Coulomb wave functions,
|
|
|
|
.. math ::
|
|
|
|
C_l(\eta) = 2^l \exp\left(-\pi \eta/2 + [\ln \Gamma(1+l+i\eta) +
|
|
\ln \Gamma(1+l-i\eta)]/2 - \ln \Gamma(2l+2)\right),
|
|
|
|
where the log gamma function with continuous imaginary part
|
|
away from the negative half axis (see :func:`~mpmath.loggamma`) is implied.
|
|
|
|
This function is used internally for the calculation of
|
|
Coulomb wave functions, and automatically cached to make multiple
|
|
evaluations with fixed `l`, `\eta` fast.
|
|
"""
|
|
|
|
ellipfun = r"""
|
|
Computes any of the Jacobi elliptic functions, defined
|
|
in terms of Jacobi theta functions as
|
|
|
|
.. math ::
|
|
|
|
\mathrm{sn}(u,m) = \frac{\vartheta_3(0,q)}{\vartheta_2(0,q)}
|
|
\frac{\vartheta_1(t,q)}{\vartheta_4(t,q)}
|
|
|
|
\mathrm{cn}(u,m) = \frac{\vartheta_4(0,q)}{\vartheta_2(0,q)}
|
|
\frac{\vartheta_2(t,q)}{\vartheta_4(t,q)}
|
|
|
|
\mathrm{dn}(u,m) = \frac{\vartheta_4(0,q)}{\vartheta_3(0,q)}
|
|
\frac{\vartheta_3(t,q)}{\vartheta_4(t,q)},
|
|
|
|
or more generally computes a ratio of two such functions. Here
|
|
`t = u/\vartheta_3(0,q)^2`, and `q = q(m)` denotes the nome (see
|
|
:func:`~mpmath.nome`). Optionally, you can specify the nome directly
|
|
instead of `m` by passing ``q=<value>``, or you can directly
|
|
specify the elliptic parameter `k` with ``k=<value>``.
|
|
|
|
The first argument should be a two-character string specifying the
|
|
function using any combination of ``'s'``, ``'c'``, ``'d'``, ``'n'``. These
|
|
letters respectively denote the basic functions
|
|
`\mathrm{sn}(u,m)`, `\mathrm{cn}(u,m)`, `\mathrm{dn}(u,m)`, and `1`.
|
|
The identifier specifies the ratio of two such functions.
|
|
For example, ``'ns'`` identifies the function
|
|
|
|
.. math ::
|
|
|
|
\mathrm{ns}(u,m) = \frac{1}{\mathrm{sn}(u,m)}
|
|
|
|
and ``'cd'`` identifies the function
|
|
|
|
.. math ::
|
|
|
|
\mathrm{cd}(u,m) = \frac{\mathrm{cn}(u,m)}{\mathrm{dn}(u,m)}.
|
|
|
|
If called with only the first argument, a function object
|
|
evaluating the chosen function for given arguments is returned.
|
|
|
|
**Examples**
|
|
|
|
Basic evaluation::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> ellipfun('cd', 3.5, 0.5)
|
|
-0.9891101840595543931308394
|
|
>>> ellipfun('cd', 3.5, q=0.25)
|
|
0.07111979240214668158441418
|
|
|
|
The sn-function is doubly periodic in the complex plane with periods
|
|
`4 K(m)` and `2 i K(1-m)` (see :func:`~mpmath.ellipk`)::
|
|
|
|
>>> sn = ellipfun('sn')
|
|
>>> sn(2, 0.25)
|
|
0.9628981775982774425751399
|
|
>>> sn(2+4*ellipk(0.25), 0.25)
|
|
0.9628981775982774425751399
|
|
>>> chop(sn(2+2*j*ellipk(1-0.25), 0.25))
|
|
0.9628981775982774425751399
|
|
|
|
The cn-function is doubly periodic with periods `4 K(m)` and `2 K(m) + 2 i K(1-m)`::
|
|
|
|
>>> cn = ellipfun('cn')
|
|
>>> cn(2, 0.25)
|
|
-0.2698649654510865792581416
|
|
>>> cn(2+4*ellipk(0.25), 0.25)
|
|
-0.2698649654510865792581416
|
|
>>> chop(cn(2+2*ellipk(0.25)+2*j*ellipk(1-0.25), 0.25))
|
|
-0.2698649654510865792581416
|
|
|
|
The dn-function is doubly periodic with periods `2 K(m)` and `4 i K(1-m)`::
|
|
|
|
>>> dn = ellipfun('dn')
|
|
>>> dn(2, 0.25)
|
|
0.8764740583123262286931578
|
|
>>> dn(2+2*ellipk(0.25), 0.25)
|
|
0.8764740583123262286931578
|
|
>>> chop(dn(2+4*j*ellipk(1-0.25), 0.25))
|
|
0.8764740583123262286931578
|
|
|
|
"""
|
|
|
|
|
|
jtheta = r"""
|
|
Computes the Jacobi theta function `\vartheta_n(z, q)`, where
|
|
`n = 1, 2, 3, 4`, defined by the infinite series:
|
|
|
|
.. math ::
|
|
|
|
\vartheta_1(z,q) = 2 q^{1/4} \sum_{n=0}^{\infty}
|
|
(-1)^n q^{n^2+n\,} \sin((2n+1)z)
|
|
|
|
\vartheta_2(z,q) = 2 q^{1/4} \sum_{n=0}^{\infty}
|
|
q^{n^{2\,} + n} \cos((2n+1)z)
|
|
|
|
\vartheta_3(z,q) = 1 + 2 \sum_{n=1}^{\infty}
|
|
q^{n^2\,} \cos(2 n z)
|
|
|
|
\vartheta_4(z,q) = 1 + 2 \sum_{n=1}^{\infty}
|
|
(-q)^{n^2\,} \cos(2 n z)
|
|
|
|
The theta functions are functions of two variables:
|
|
|
|
* `z` is the *argument*, an arbitrary real or complex number
|
|
|
|
* `q` is the *nome*, which must be a real or complex number
|
|
in the unit disk (i.e. `|q| < 1`). For `|q| \ll 1`, the
|
|
series converge very quickly, so the Jacobi theta functions
|
|
can efficiently be evaluated to high precision.
|
|
|
|
The compact notations `\vartheta_n(q) = \vartheta_n(0,q)`
|
|
and `\vartheta_n = \vartheta_n(0,q)` are also frequently
|
|
encountered. Finally, Jacobi theta functions are frequently
|
|
considered as functions of the half-period ratio `\tau`
|
|
and then usually denoted by `\vartheta_n(z|\tau)`.
|
|
|
|
Optionally, ``jtheta(n, z, q, derivative=d)`` with `d > 0` computes
|
|
a `d`-th derivative with respect to `z`.
|
|
|
|
**Examples and basic properties**
|
|
|
|
Considered as functions of `z`, the Jacobi theta functions may be
|
|
viewed as generalizations of the ordinary trigonometric functions
|
|
cos and sin. They are periodic functions::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> jtheta(1, 0.25, '0.2')
|
|
0.2945120798627300045053104
|
|
>>> jtheta(1, 0.25 + 2*pi, '0.2')
|
|
0.2945120798627300045053104
|
|
|
|
Indeed, the series defining the theta functions are essentially
|
|
trigonometric Fourier series. The coefficients can be retrieved
|
|
using :func:`~mpmath.fourier`::
|
|
|
|
>>> mp.dps = 10
|
|
>>> nprint(fourier(lambda x: jtheta(2, x, 0.5), [-pi, pi], 4))
|
|
([0.0, 1.68179, 0.0, 0.420448, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0])
|
|
|
|
The Jacobi theta functions are also so-called quasiperiodic
|
|
functions of `z` and `\tau`, meaning that for fixed `\tau`,
|
|
`\vartheta_n(z, q)` and `\vartheta_n(z+\pi \tau, q)` are the same
|
|
except for an exponential factor::
|
|
|
|
>>> mp.dps = 25
|
|
>>> tau = 3*j/10
|
|
>>> q = exp(pi*j*tau)
|
|
>>> z = 10
|
|
>>> jtheta(4, z+tau*pi, q)
|
|
(-0.682420280786034687520568 + 1.526683999721399103332021j)
|
|
>>> -exp(-2*j*z)/q * jtheta(4, z, q)
|
|
(-0.682420280786034687520568 + 1.526683999721399103332021j)
|
|
|
|
The Jacobi theta functions satisfy a huge number of other
|
|
functional equations, such as the following identity (valid for
|
|
any `q`)::
|
|
|
|
>>> q = mpf(3)/10
|
|
>>> jtheta(3,0,q)**4
|
|
6.823744089352763305137427
|
|
>>> jtheta(2,0,q)**4 + jtheta(4,0,q)**4
|
|
6.823744089352763305137427
|
|
|
|
Extensive listings of identities satisfied by the Jacobi theta
|
|
functions can be found in standard reference works.
|
|
|
|
The Jacobi theta functions are related to the gamma function
|
|
for special arguments::
|
|
|
|
>>> jtheta(3, 0, exp(-pi))
|
|
1.086434811213308014575316
|
|
>>> pi**(1/4.) / gamma(3/4.)
|
|
1.086434811213308014575316
|
|
|
|
:func:`~mpmath.jtheta` supports arbitrary precision evaluation and complex
|
|
arguments::
|
|
|
|
>>> mp.dps = 50
|
|
>>> jtheta(4, sqrt(2), 0.5)
|
|
2.0549510717571539127004115835148878097035750653737
|
|
>>> mp.dps = 25
|
|
>>> jtheta(4, 1+2j, (1+j)/5)
|
|
(7.180331760146805926356634 - 1.634292858119162417301683j)
|
|
|
|
Evaluation of derivatives::
|
|
|
|
>>> mp.dps = 25
|
|
>>> jtheta(1, 7, 0.25, 1); diff(lambda z: jtheta(1, z, 0.25), 7)
|
|
1.209857192844475388637236
|
|
1.209857192844475388637236
|
|
>>> jtheta(1, 7, 0.25, 2); diff(lambda z: jtheta(1, z, 0.25), 7, 2)
|
|
-0.2598718791650217206533052
|
|
-0.2598718791650217206533052
|
|
>>> jtheta(2, 7, 0.25, 1); diff(lambda z: jtheta(2, z, 0.25), 7)
|
|
-1.150231437070259644461474
|
|
-1.150231437070259644461474
|
|
>>> jtheta(2, 7, 0.25, 2); diff(lambda z: jtheta(2, z, 0.25), 7, 2)
|
|
-0.6226636990043777445898114
|
|
-0.6226636990043777445898114
|
|
>>> jtheta(3, 7, 0.25, 1); diff(lambda z: jtheta(3, z, 0.25), 7)
|
|
-0.9990312046096634316587882
|
|
-0.9990312046096634316587882
|
|
>>> jtheta(3, 7, 0.25, 2); diff(lambda z: jtheta(3, z, 0.25), 7, 2)
|
|
-0.1530388693066334936151174
|
|
-0.1530388693066334936151174
|
|
>>> jtheta(4, 7, 0.25, 1); diff(lambda z: jtheta(4, z, 0.25), 7)
|
|
0.9820995967262793943571139
|
|
0.9820995967262793943571139
|
|
>>> jtheta(4, 7, 0.25, 2); diff(lambda z: jtheta(4, z, 0.25), 7, 2)
|
|
0.3936902850291437081667755
|
|
0.3936902850291437081667755
|
|
|
|
**Possible issues**
|
|
|
|
For `|q| \ge 1` or `\Im(\tau) \le 0`, :func:`~mpmath.jtheta` raises
|
|
``ValueError``. This exception is also raised for `|q|` extremely
|
|
close to 1 (or equivalently `\tau` very close to 0), since the
|
|
series would converge too slowly::
|
|
|
|
>>> jtheta(1, 10, 0.99999999 * exp(0.5*j))
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: abs(q) > THETA_Q_LIM = 1.000000
|
|
|
|
"""
|
|
|
|
eulernum = r"""
|
|
Gives the `n`-th Euler number, defined as the `n`-th derivative of
|
|
`\mathrm{sech}(t) = 1/\cosh(t)` evaluated at `t = 0`. Equivalently, the
|
|
Euler numbers give the coefficients of the Taylor series
|
|
|
|
.. math ::
|
|
|
|
\mathrm{sech}(t) = \sum_{n=0}^{\infty} \frac{E_n}{n!} t^n.
|
|
|
|
The Euler numbers are closely related to Bernoulli numbers
|
|
and Bernoulli polynomials. They can also be evaluated in terms of
|
|
Euler polynomials (see :func:`~mpmath.eulerpoly`) as `E_n = 2^n E_n(1/2)`.
|
|
|
|
**Examples**
|
|
|
|
Computing the first few Euler numbers and verifying that they
|
|
agree with the Taylor series::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> [eulernum(n) for n in range(11)]
|
|
[1.0, 0.0, -1.0, 0.0, 5.0, 0.0, -61.0, 0.0, 1385.0, 0.0, -50521.0]
|
|
>>> chop(diffs(sech, 0, 10))
|
|
[1.0, 0.0, -1.0, 0.0, 5.0, 0.0, -61.0, 0.0, 1385.0, 0.0, -50521.0]
|
|
|
|
Euler numbers grow very rapidly. :func:`~mpmath.eulernum` efficiently
|
|
computes numerical approximations for large indices::
|
|
|
|
>>> eulernum(50)
|
|
-6.053285248188621896314384e+54
|
|
>>> eulernum(1000)
|
|
3.887561841253070615257336e+2371
|
|
>>> eulernum(10**20)
|
|
4.346791453661149089338186e+1936958564106659551331
|
|
|
|
Comparing with an asymptotic formula for the Euler numbers::
|
|
|
|
>>> n = 10**5
|
|
>>> (-1)**(n//2) * 8 * sqrt(n/(2*pi)) * (2*n/(pi*e))**n
|
|
3.69919063017432362805663e+436961
|
|
>>> eulernum(n)
|
|
3.699193712834466537941283e+436961
|
|
|
|
Pass ``exact=True`` to obtain exact values of Euler numbers as integers::
|
|
|
|
>>> print(eulernum(50, exact=True))
|
|
-6053285248188621896314383785111649088103498225146815121
|
|
>>> print(eulernum(200, exact=True) % 10**10)
|
|
1925859625
|
|
>>> eulernum(1001, exact=True)
|
|
0
|
|
"""
|
|
|
|
eulerpoly = r"""
|
|
Evaluates the Euler polynomial `E_n(z)`, defined by the generating function
|
|
representation
|
|
|
|
.. math ::
|
|
|
|
\frac{2e^{zt}}{e^t+1} = \sum_{n=0}^\infty E_n(z) \frac{t^n}{n!}.
|
|
|
|
The Euler polynomials may also be represented in terms of
|
|
Bernoulli polynomials (see :func:`~mpmath.bernpoly`) using various formulas, for
|
|
example
|
|
|
|
.. math ::
|
|
|
|
E_n(z) = \frac{2}{n+1} \left(
|
|
B_n(z)-2^{n+1}B_n\left(\frac{z}{2}\right)
|
|
\right).
|
|
|
|
Special values include the Euler numbers `E_n = 2^n E_n(1/2)` (see
|
|
:func:`~mpmath.eulernum`).
|
|
|
|
**Examples**
|
|
|
|
Computing the coefficients of the first few Euler polynomials::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> for n in range(6):
|
|
... chop(taylor(lambda z: eulerpoly(n,z), 0, n))
|
|
...
|
|
[1.0]
|
|
[-0.5, 1.0]
|
|
[0.0, -1.0, 1.0]
|
|
[0.25, 0.0, -1.5, 1.0]
|
|
[0.0, 1.0, 0.0, -2.0, 1.0]
|
|
[-0.5, 0.0, 2.5, 0.0, -2.5, 1.0]
|
|
|
|
Evaluation for arbitrary `z`::
|
|
|
|
>>> eulerpoly(2,3)
|
|
6.0
|
|
>>> eulerpoly(5,4)
|
|
423.5
|
|
>>> eulerpoly(35, 11111111112)
|
|
3.994957561486776072734601e+351
|
|
>>> eulerpoly(4, 10+20j)
|
|
(-47990.0 - 235980.0j)
|
|
>>> eulerpoly(2, '-3.5e-5')
|
|
0.000035001225
|
|
>>> eulerpoly(3, 0.5)
|
|
0.0
|
|
>>> eulerpoly(55, -10**80)
|
|
-1.0e+4400
|
|
>>> eulerpoly(5, -inf)
|
|
-inf
|
|
>>> eulerpoly(6, -inf)
|
|
+inf
|
|
|
|
Computing Euler numbers::
|
|
|
|
>>> 2**26 * eulerpoly(26,0.5)
|
|
-4087072509293123892361.0
|
|
>>> eulernum(26)
|
|
-4087072509293123892361.0
|
|
|
|
Evaluation is accurate for large `n` and small `z`::
|
|
|
|
>>> eulerpoly(100, 0.5)
|
|
2.29047999988194114177943e+108
|
|
>>> eulerpoly(1000, 10.5)
|
|
3.628120031122876847764566e+2070
|
|
>>> eulerpoly(10000, 10.5)
|
|
1.149364285543783412210773e+30688
|
|
"""
|
|
|
|
spherharm = r"""
|
|
Evaluates the spherical harmonic `Y_l^m(\theta,\phi)`,
|
|
|
|
.. math ::
|
|
|
|
Y_l^m(\theta,\phi) = \sqrt{\frac{2l+1}{4\pi}\frac{(l-m)!}{(l+m)!}}
|
|
P_l^m(\cos \theta) e^{i m \phi}
|
|
|
|
where `P_l^m` is an associated Legendre function (see :func:`~mpmath.legenp`).
|
|
|
|
Here `\theta \in [0, \pi]` denotes the polar coordinate (ranging
|
|
from the north pole to the south pole) and `\phi \in [0, 2 \pi]` denotes the
|
|
azimuthal coordinate on a sphere. Care should be used since many different
|
|
conventions for spherical coordinate variables are used.
|
|
|
|
Usually spherical harmonics are considered for `l \in \mathbb{N}`,
|
|
`m \in \mathbb{Z}`, `|m| \le l`. More generally, `l,m,\theta,\phi`
|
|
are permitted to be complex numbers.
|
|
|
|
.. note ::
|
|
|
|
:func:`~mpmath.spherharm` returns a complex number, even if the value is
|
|
purely real.
|
|
|
|
**Plots**
|
|
|
|
.. literalinclude :: /plots/spherharm40.py
|
|
|
|
`Y_{4,0}`:
|
|
|
|
.. image :: /plots/spherharm40.png
|
|
|
|
`Y_{4,1}`:
|
|
|
|
.. image :: /plots/spherharm41.png
|
|
|
|
`Y_{4,2}`:
|
|
|
|
.. image :: /plots/spherharm42.png
|
|
|
|
`Y_{4,3}`:
|
|
|
|
.. image :: /plots/spherharm43.png
|
|
|
|
`Y_{4,4}`:
|
|
|
|
.. image :: /plots/spherharm44.png
|
|
|
|
**Examples**
|
|
|
|
Some low-order spherical harmonics with reference values::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> theta = pi/4
|
|
>>> phi = pi/3
|
|
>>> spherharm(0,0,theta,phi); 0.5*sqrt(1/pi)*expj(0)
|
|
(0.2820947917738781434740397 + 0.0j)
|
|
(0.2820947917738781434740397 + 0.0j)
|
|
>>> spherharm(1,-1,theta,phi); 0.5*sqrt(3/(2*pi))*expj(-phi)*sin(theta)
|
|
(0.1221506279757299803965962 - 0.2115710938304086076055298j)
|
|
(0.1221506279757299803965962 - 0.2115710938304086076055298j)
|
|
>>> spherharm(1,0,theta,phi); 0.5*sqrt(3/pi)*cos(theta)*expj(0)
|
|
(0.3454941494713354792652446 + 0.0j)
|
|
(0.3454941494713354792652446 + 0.0j)
|
|
>>> spherharm(1,1,theta,phi); -0.5*sqrt(3/(2*pi))*expj(phi)*sin(theta)
|
|
(-0.1221506279757299803965962 - 0.2115710938304086076055298j)
|
|
(-0.1221506279757299803965962 - 0.2115710938304086076055298j)
|
|
|
|
With the normalization convention used, the spherical harmonics are orthonormal
|
|
on the unit sphere::
|
|
|
|
>>> sphere = [0,pi], [0,2*pi]
|
|
>>> dS = lambda t,p: fp.sin(t) # differential element
|
|
>>> Y1 = lambda t,p: fp.spherharm(l1,m1,t,p)
|
|
>>> Y2 = lambda t,p: fp.conj(fp.spherharm(l2,m2,t,p))
|
|
>>> l1 = l2 = 3; m1 = m2 = 2
|
|
>>> fp.chop(fp.quad(lambda t,p: Y1(t,p)*Y2(t,p)*dS(t,p), *sphere))
|
|
1.0000000000000007
|
|
>>> m2 = 1 # m1 != m2
|
|
>>> print(fp.chop(fp.quad(lambda t,p: Y1(t,p)*Y2(t,p)*dS(t,p), *sphere)))
|
|
0.0
|
|
|
|
Evaluation is accurate for large orders::
|
|
|
|
>>> spherharm(1000,750,0.5,0.25)
|
|
(3.776445785304252879026585e-102 - 5.82441278771834794493484e-102j)
|
|
|
|
Evaluation works with complex parameter values::
|
|
|
|
>>> spherharm(1+j, 2j, 2+3j, -0.5j)
|
|
(64.44922331113759992154992 + 1981.693919841408089681743j)
|
|
"""
|
|
|
|
scorergi = r"""
|
|
Evaluates the Scorer function
|
|
|
|
.. math ::
|
|
|
|
\operatorname{Gi}(z) =
|
|
\operatorname{Ai}(z) \int_0^z \operatorname{Bi}(t) dt +
|
|
\operatorname{Bi}(z) \int_z^{\infty} \operatorname{Ai}(t) dt
|
|
|
|
which gives a particular solution to the inhomogeneous Airy
|
|
differential equation `f''(z) - z f(z) = 1/\pi`. Another
|
|
particular solution is given by the Scorer Hi-function
|
|
(:func:`~mpmath.scorerhi`). The two functions are related as
|
|
`\operatorname{Gi}(z) + \operatorname{Hi}(z) = \operatorname{Bi}(z)`.
|
|
|
|
**Plots**
|
|
|
|
.. literalinclude :: /plots/gi.py
|
|
.. image :: /plots/gi.png
|
|
.. literalinclude :: /plots/gi_c.py
|
|
.. image :: /plots/gi_c.png
|
|
|
|
**Examples**
|
|
|
|
Some values and limits::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> scorergi(0); 1/(power(3,'7/6')*gamma('2/3'))
|
|
0.2049755424820002450503075
|
|
0.2049755424820002450503075
|
|
>>> diff(scorergi, 0); 1/(power(3,'5/6')*gamma('1/3'))
|
|
0.1494294524512754526382746
|
|
0.1494294524512754526382746
|
|
>>> scorergi(+inf); scorergi(-inf)
|
|
0.0
|
|
0.0
|
|
>>> scorergi(1)
|
|
0.2352184398104379375986902
|
|
>>> scorergi(-1)
|
|
-0.1166722172960152826494198
|
|
|
|
Evaluation for large arguments::
|
|
|
|
>>> scorergi(10)
|
|
0.03189600510067958798062034
|
|
>>> scorergi(100)
|
|
0.003183105228162961476590531
|
|
>>> scorergi(1000000)
|
|
0.0000003183098861837906721743873
|
|
>>> 1/(pi*1000000)
|
|
0.0000003183098861837906715377675
|
|
>>> scorergi(-1000)
|
|
-0.08358288400262780392338014
|
|
>>> scorergi(-100000)
|
|
0.02886866118619660226809581
|
|
>>> scorergi(50+10j)
|
|
(0.0061214102799778578790984 - 0.001224335676457532180747917j)
|
|
>>> scorergi(-50-10j)
|
|
(5.236047850352252236372551e+29 - 3.08254224233701381482228e+29j)
|
|
>>> scorergi(100000j)
|
|
(-8.806659285336231052679025e+6474077 + 8.684731303500835514850962e+6474077j)
|
|
|
|
Verifying the connection between Gi and Hi::
|
|
|
|
>>> z = 0.25
|
|
>>> scorergi(z) + scorerhi(z)
|
|
0.7287469039362150078694543
|
|
>>> airybi(z)
|
|
0.7287469039362150078694543
|
|
|
|
Verifying the differential equation::
|
|
|
|
>>> for z in [-3.4, 0, 2.5, 1+2j]:
|
|
... chop(diff(scorergi,z,2) - z*scorergi(z))
|
|
...
|
|
-0.3183098861837906715377675
|
|
-0.3183098861837906715377675
|
|
-0.3183098861837906715377675
|
|
-0.3183098861837906715377675
|
|
|
|
Verifying the integral representation::
|
|
|
|
>>> z = 0.5
|
|
>>> scorergi(z)
|
|
0.2447210432765581976910539
|
|
>>> Ai,Bi = airyai,airybi
|
|
>>> Bi(z)*(Ai(inf,-1)-Ai(z,-1)) + Ai(z)*(Bi(z,-1)-Bi(0,-1))
|
|
0.2447210432765581976910539
|
|
|
|
**References**
|
|
|
|
1. [DLMF]_ section 9.12: Scorer Functions
|
|
|
|
"""
|
|
|
|
scorerhi = r"""
|
|
Evaluates the second Scorer function
|
|
|
|
.. math ::
|
|
|
|
\operatorname{Hi}(z) =
|
|
\operatorname{Bi}(z) \int_{-\infty}^z \operatorname{Ai}(t) dt -
|
|
\operatorname{Ai}(z) \int_{-\infty}^z \operatorname{Bi}(t) dt
|
|
|
|
which gives a particular solution to the inhomogeneous Airy
|
|
differential equation `f''(z) - z f(z) = 1/\pi`. See also
|
|
:func:`~mpmath.scorergi`.
|
|
|
|
**Plots**
|
|
|
|
.. literalinclude :: /plots/hi.py
|
|
.. image :: /plots/hi.png
|
|
.. literalinclude :: /plots/hi_c.py
|
|
.. image :: /plots/hi_c.png
|
|
|
|
**Examples**
|
|
|
|
Some values and limits::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> scorerhi(0); 2/(power(3,'7/6')*gamma('2/3'))
|
|
0.4099510849640004901006149
|
|
0.4099510849640004901006149
|
|
>>> diff(scorerhi,0); 2/(power(3,'5/6')*gamma('1/3'))
|
|
0.2988589049025509052765491
|
|
0.2988589049025509052765491
|
|
>>> scorerhi(+inf); scorerhi(-inf)
|
|
+inf
|
|
0.0
|
|
>>> scorerhi(1)
|
|
0.9722051551424333218376886
|
|
>>> scorerhi(-1)
|
|
0.2206696067929598945381098
|
|
|
|
Evaluation for large arguments::
|
|
|
|
>>> scorerhi(10)
|
|
455641153.5163291358991077
|
|
>>> scorerhi(100)
|
|
6.041223996670201399005265e+288
|
|
>>> scorerhi(1000000)
|
|
7.138269638197858094311122e+289529652
|
|
>>> scorerhi(-10)
|
|
0.0317685352825022727415011
|
|
>>> scorerhi(-100)
|
|
0.003183092495767499864680483
|
|
>>> scorerhi(100j)
|
|
(-6.366197716545672122983857e-9 + 0.003183098861710582761688475j)
|
|
>>> scorerhi(50+50j)
|
|
(-5.322076267321435669290334e+63 + 1.478450291165243789749427e+65j)
|
|
>>> scorerhi(-1000-1000j)
|
|
(0.0001591549432510502796565538 - 0.000159154943091895334973109j)
|
|
|
|
Verifying the differential equation::
|
|
|
|
>>> for z in [-3.4, 0, 2, 1+2j]:
|
|
... chop(diff(scorerhi,z,2) - z*scorerhi(z))
|
|
...
|
|
0.3183098861837906715377675
|
|
0.3183098861837906715377675
|
|
0.3183098861837906715377675
|
|
0.3183098861837906715377675
|
|
|
|
Verifying the integral representation::
|
|
|
|
>>> z = 0.5
|
|
>>> scorerhi(z)
|
|
0.6095559998265972956089949
|
|
>>> Ai,Bi = airyai,airybi
|
|
>>> Bi(z)*(Ai(z,-1)-Ai(-inf,-1)) - Ai(z)*(Bi(z,-1)-Bi(-inf,-1))
|
|
0.6095559998265972956089949
|
|
|
|
"""
|
|
|
|
|
|
stirling1 = r"""
|
|
Gives the Stirling number of the first kind `s(n,k)`, defined by
|
|
|
|
.. math ::
|
|
|
|
x(x-1)(x-2)\cdots(x-n+1) = \sum_{k=0}^n s(n,k) x^k.
|
|
|
|
The value is computed using an integer recurrence. The implementation
|
|
is not optimized for approximating large values quickly.
|
|
|
|
**Examples**
|
|
|
|
Comparing with the generating function::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> taylor(lambda x: ff(x, 5), 0, 5)
|
|
[0.0, 24.0, -50.0, 35.0, -10.0, 1.0]
|
|
>>> [stirling1(5, k) for k in range(6)]
|
|
[0.0, 24.0, -50.0, 35.0, -10.0, 1.0]
|
|
|
|
Recurrence relation::
|
|
|
|
>>> n, k = 5, 3
|
|
>>> stirling1(n+1,k) + n*stirling1(n,k) - stirling1(n,k-1)
|
|
0.0
|
|
|
|
The matrices of Stirling numbers of first and second kind are inverses
|
|
of each other::
|
|
|
|
>>> A = matrix(5, 5); B = matrix(5, 5)
|
|
>>> for n in range(5):
|
|
... for k in range(5):
|
|
... A[n,k] = stirling1(n,k)
|
|
... B[n,k] = stirling2(n,k)
|
|
...
|
|
>>> A * B
|
|
[1.0 0.0 0.0 0.0 0.0]
|
|
[0.0 1.0 0.0 0.0 0.0]
|
|
[0.0 0.0 1.0 0.0 0.0]
|
|
[0.0 0.0 0.0 1.0 0.0]
|
|
[0.0 0.0 0.0 0.0 1.0]
|
|
|
|
Pass ``exact=True`` to obtain exact values of Stirling numbers as integers::
|
|
|
|
>>> stirling1(42, 5)
|
|
-2.864498971768501633736628e+50
|
|
>>> print(stirling1(42, 5, exact=True))
|
|
-286449897176850163373662803014001546235808317440000
|
|
|
|
"""
|
|
|
|
stirling2 = r"""
|
|
Gives the Stirling number of the second kind `S(n,k)`, defined by
|
|
|
|
.. math ::
|
|
|
|
x^n = \sum_{k=0}^n S(n,k) x(x-1)(x-2)\cdots(x-k+1)
|
|
|
|
The value is computed using integer arithmetic to evaluate a power sum.
|
|
The implementation is not optimized for approximating large values quickly.
|
|
|
|
**Examples**
|
|
|
|
Comparing with the generating function::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> taylor(lambda x: sum(stirling2(5,k) * ff(x,k) for k in range(6)), 0, 5)
|
|
[0.0, 0.0, 0.0, 0.0, 0.0, 1.0]
|
|
|
|
Recurrence relation::
|
|
|
|
>>> n, k = 5, 3
|
|
>>> stirling2(n+1,k) - k*stirling2(n,k) - stirling2(n,k-1)
|
|
0.0
|
|
|
|
Pass ``exact=True`` to obtain exact values of Stirling numbers as integers::
|
|
|
|
>>> stirling2(52, 10)
|
|
2.641822121003543906807485e+45
|
|
>>> print(stirling2(52, 10, exact=True))
|
|
2641822121003543906807485307053638921722527655
|
|
|
|
|
|
"""
|
|
|
|
squarew = r"""
|
|
Computes the square wave function using the definition:
|
|
|
|
.. math::
|
|
x(t) = A(-1)^{\left\lfloor{2t / P}\right\rfloor}
|
|
|
|
where `P` is the period of the wave and `A` is the amplitude.
|
|
|
|
**Examples**
|
|
|
|
Square wave with period = 2, amplitude = 1 ::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> squarew(0,1,2)
|
|
1.0
|
|
>>> squarew(0.5,1,2)
|
|
1.0
|
|
>>> squarew(1,1,2)
|
|
-1.0
|
|
>>> squarew(1.5,1,2)
|
|
-1.0
|
|
>>> squarew(2,1,2)
|
|
1.0
|
|
"""
|
|
|
|
trianglew = r"""
|
|
Computes the triangle wave function using the definition:
|
|
|
|
.. math::
|
|
x(t) = 2A\left(\frac{1}{2}-\left|1-2 \operatorname{frac}\left(\frac{x}{P}+\frac{1}{4}\right)\right|\right)
|
|
|
|
where :math:`\operatorname{frac}\left(\frac{t}{T}\right) = \frac{t}{T}-\left\lfloor{\frac{t}{T}}\right\rfloor`
|
|
, `P` is the period of the wave, and `A` is the amplitude.
|
|
|
|
**Examples**
|
|
|
|
Triangle wave with period = 2, amplitude = 1 ::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> trianglew(0,1,2)
|
|
0.0
|
|
>>> trianglew(0.25,1,2)
|
|
0.5
|
|
>>> trianglew(0.5,1,2)
|
|
1.0
|
|
>>> trianglew(1,1,2)
|
|
0.0
|
|
>>> trianglew(1.5,1,2)
|
|
-1.0
|
|
>>> trianglew(2,1,2)
|
|
0.0
|
|
"""
|
|
|
|
sawtoothw = r"""
|
|
Computes the sawtooth wave function using the definition:
|
|
|
|
.. math::
|
|
x(t) = A\operatorname{frac}\left(\frac{t}{T}\right)
|
|
|
|
where :math:`\operatorname{frac}\left(\frac{t}{T}\right) = \frac{t}{T}-\left\lfloor{\frac{t}{T}}\right\rfloor`,
|
|
`P` is the period of the wave, and `A` is the amplitude.
|
|
|
|
**Examples**
|
|
|
|
Sawtooth wave with period = 2, amplitude = 1 ::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> sawtoothw(0,1,2)
|
|
0.0
|
|
>>> sawtoothw(0.5,1,2)
|
|
0.25
|
|
>>> sawtoothw(1,1,2)
|
|
0.5
|
|
>>> sawtoothw(1.5,1,2)
|
|
0.75
|
|
>>> sawtoothw(2,1,2)
|
|
0.0
|
|
"""
|
|
|
|
unit_triangle = r"""
|
|
Computes the unit triangle using the definition:
|
|
|
|
.. math::
|
|
x(t) = A(-\left| t \right| + 1)
|
|
|
|
where `A` is the amplitude.
|
|
|
|
**Examples**
|
|
|
|
Unit triangle with amplitude = 1 ::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> unit_triangle(-1,1)
|
|
0.0
|
|
>>> unit_triangle(-0.5,1)
|
|
0.5
|
|
>>> unit_triangle(0,1)
|
|
1.0
|
|
>>> unit_triangle(0.5,1)
|
|
0.5
|
|
>>> unit_triangle(1,1)
|
|
0.0
|
|
"""
|
|
|
|
sigmoid = r"""
|
|
Computes the sigmoid function using the definition:
|
|
|
|
.. math::
|
|
x(t) = \frac{A}{1 + e^{-t}}
|
|
|
|
where `A` is the amplitude.
|
|
|
|
**Examples**
|
|
|
|
Sigmoid function with amplitude = 1 ::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> sigmoid(-1,1)
|
|
0.2689414213699951207488408
|
|
>>> sigmoid(-0.5,1)
|
|
0.3775406687981454353610994
|
|
>>> sigmoid(0,1)
|
|
0.5
|
|
>>> sigmoid(0.5,1)
|
|
0.6224593312018545646389006
|
|
>>> sigmoid(1,1)
|
|
0.7310585786300048792511592
|
|
|
|
"""
|