You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
281 lines
7.5 KiB
281 lines
7.5 KiB
from .functions import defun, defun_wrapped
|
|
|
|
@defun
|
|
def qp(ctx, a, q=None, n=None, **kwargs):
|
|
r"""
|
|
Evaluates the q-Pochhammer symbol (or q-rising factorial)
|
|
|
|
.. math ::
|
|
|
|
(a; q)_n = \prod_{k=0}^{n-1} (1-a q^k)
|
|
|
|
where `n = \infty` is permitted if `|q| < 1`. Called with two arguments,
|
|
``qp(a,q)`` computes `(a;q)_{\infty}`; with a single argument, ``qp(q)``
|
|
computes `(q;q)_{\infty}`. The special case
|
|
|
|
.. math ::
|
|
|
|
\phi(q) = (q; q)_{\infty} = \prod_{k=1}^{\infty} (1-q^k) =
|
|
\sum_{k=-\infty}^{\infty} (-1)^k q^{(3k^2-k)/2}
|
|
|
|
is also known as the Euler function, or (up to a factor `q^{-1/24}`)
|
|
the Dedekind eta function.
|
|
|
|
**Examples**
|
|
|
|
If `n` is a positive integer, the function amounts to a finite product::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> qp(2,3,5)
|
|
-725305.0
|
|
>>> fprod(1-2*3**k for k in range(5))
|
|
-725305.0
|
|
>>> qp(2,3,0)
|
|
1.0
|
|
|
|
Complex arguments are allowed::
|
|
|
|
>>> qp(2-1j, 0.75j)
|
|
(0.4628842231660149089976379 + 4.481821753552703090628793j)
|
|
|
|
The regular Pochhammer symbol `(a)_n` is obtained in the
|
|
following limit as `q \to 1`::
|
|
|
|
>>> a, n = 4, 7
|
|
>>> limit(lambda q: qp(q**a,q,n) / (1-q)**n, 1)
|
|
604800.0
|
|
>>> rf(a,n)
|
|
604800.0
|
|
|
|
The Taylor series of the reciprocal Euler function gives
|
|
the partition function `P(n)`, i.e. the number of ways of writing
|
|
`n` as a sum of positive integers::
|
|
|
|
>>> taylor(lambda q: 1/qp(q), 0, 10)
|
|
[1.0, 1.0, 2.0, 3.0, 5.0, 7.0, 11.0, 15.0, 22.0, 30.0, 42.0]
|
|
|
|
Special values include::
|
|
|
|
>>> qp(0)
|
|
1.0
|
|
>>> findroot(diffun(qp), -0.4) # location of maximum
|
|
-0.4112484791779547734440257
|
|
>>> qp(_)
|
|
1.228348867038575112586878
|
|
|
|
The q-Pochhammer symbol is related to the Jacobi theta functions.
|
|
For example, the following identity holds::
|
|
|
|
>>> q = mpf(0.5) # arbitrary
|
|
>>> qp(q)
|
|
0.2887880950866024212788997
|
|
>>> root(3,-2)*root(q,-24)*jtheta(2,pi/6,root(q,6))
|
|
0.2887880950866024212788997
|
|
|
|
"""
|
|
a = ctx.convert(a)
|
|
if n is None:
|
|
n = ctx.inf
|
|
else:
|
|
n = ctx.convert(n)
|
|
if n < 0:
|
|
raise ValueError("n cannot be negative")
|
|
if q is None:
|
|
q = a
|
|
else:
|
|
q = ctx.convert(q)
|
|
if n == 0:
|
|
return ctx.one + 0*(a+q)
|
|
infinite = (n == ctx.inf)
|
|
same = (a == q)
|
|
if infinite:
|
|
if abs(q) >= 1:
|
|
if same and (q == -1 or q == 1):
|
|
return ctx.zero * q
|
|
raise ValueError("q-function only defined for |q| < 1")
|
|
elif q == 0:
|
|
return ctx.one - a
|
|
maxterms = kwargs.get('maxterms', 50*ctx.prec)
|
|
if infinite and same:
|
|
# Euler's pentagonal theorem
|
|
def terms():
|
|
t = 1
|
|
yield t
|
|
k = 1
|
|
x1 = q
|
|
x2 = q**2
|
|
while 1:
|
|
yield (-1)**k * x1
|
|
yield (-1)**k * x2
|
|
x1 *= q**(3*k+1)
|
|
x2 *= q**(3*k+2)
|
|
k += 1
|
|
if k > maxterms:
|
|
raise ctx.NoConvergence
|
|
return ctx.sum_accurately(terms)
|
|
# return ctx.nprod(lambda k: 1-a*q**k, [0,n-1])
|
|
def factors():
|
|
k = 0
|
|
r = ctx.one
|
|
while 1:
|
|
yield 1 - a*r
|
|
r *= q
|
|
k += 1
|
|
if k >= n:
|
|
return
|
|
if k > maxterms:
|
|
raise ctx.NoConvergence
|
|
return ctx.mul_accurately(factors)
|
|
|
|
@defun_wrapped
|
|
def qgamma(ctx, z, q, **kwargs):
|
|
r"""
|
|
Evaluates the q-gamma function
|
|
|
|
.. math ::
|
|
|
|
\Gamma_q(z) = \frac{(q; q)_{\infty}}{(q^z; q)_{\infty}} (1-q)^{1-z}.
|
|
|
|
|
|
**Examples**
|
|
|
|
Evaluation for real and complex arguments::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> qgamma(4,0.75)
|
|
4.046875
|
|
>>> qgamma(6,6)
|
|
121226245.0
|
|
>>> qgamma(3+4j, 0.5j)
|
|
(0.1663082382255199834630088 + 0.01952474576025952984418217j)
|
|
|
|
The q-gamma function satisfies a functional equation similar
|
|
to that of the ordinary gamma function::
|
|
|
|
>>> q = mpf(0.25)
|
|
>>> z = mpf(2.5)
|
|
>>> qgamma(z+1,q)
|
|
1.428277424823760954685912
|
|
>>> (1-q**z)/(1-q)*qgamma(z,q)
|
|
1.428277424823760954685912
|
|
|
|
"""
|
|
if abs(q) > 1:
|
|
return ctx.qgamma(z,1/q)*q**((z-2)*(z-1)*0.5)
|
|
return ctx.qp(q, q, None, **kwargs) / \
|
|
ctx.qp(q**z, q, None, **kwargs) * (1-q)**(1-z)
|
|
|
|
@defun_wrapped
|
|
def qfac(ctx, z, q, **kwargs):
|
|
r"""
|
|
Evaluates the q-factorial,
|
|
|
|
.. math ::
|
|
|
|
[n]_q! = (1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1})
|
|
|
|
or more generally
|
|
|
|
.. math ::
|
|
|
|
[z]_q! = \frac{(q;q)_z}{(1-q)^z}.
|
|
|
|
**Examples**
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> qfac(0,0)
|
|
1.0
|
|
>>> qfac(4,3)
|
|
2080.0
|
|
>>> qfac(5,6)
|
|
121226245.0
|
|
>>> qfac(1+1j, 2+1j)
|
|
(0.4370556551322672478613695 + 0.2609739839216039203708921j)
|
|
|
|
"""
|
|
if ctx.isint(z) and ctx._re(z) > 0:
|
|
n = int(ctx._re(z))
|
|
return ctx.qp(q, q, n, **kwargs) / (1-q)**n
|
|
return ctx.qgamma(z+1, q, **kwargs)
|
|
|
|
@defun
|
|
def qhyper(ctx, a_s, b_s, q, z, **kwargs):
|
|
r"""
|
|
Evaluates the basic hypergeometric series or hypergeometric q-series
|
|
|
|
.. math ::
|
|
|
|
\,_r\phi_s \left[\begin{matrix}
|
|
a_1 & a_2 & \ldots & a_r \\
|
|
b_1 & b_2 & \ldots & b_s
|
|
\end{matrix} ; q,z \right] =
|
|
\sum_{n=0}^\infty
|
|
\frac{(a_1;q)_n, \ldots, (a_r;q)_n}
|
|
{(b_1;q)_n, \ldots, (b_s;q)_n}
|
|
\left((-1)^n q^{n\choose 2}\right)^{1+s-r}
|
|
\frac{z^n}{(q;q)_n}
|
|
|
|
where `(a;q)_n` denotes the q-Pochhammer symbol (see :func:`~mpmath.qp`).
|
|
|
|
**Examples**
|
|
|
|
Evaluation works for real and complex arguments::
|
|
|
|
>>> from mpmath import *
|
|
>>> mp.dps = 25; mp.pretty = True
|
|
>>> qhyper([0.5], [2.25], 0.25, 4)
|
|
-0.1975849091263356009534385
|
|
>>> qhyper([0.5], [2.25], 0.25-0.25j, 4)
|
|
(2.806330244925716649839237 + 3.568997623337943121769938j)
|
|
>>> qhyper([1+j], [2,3+0.5j], 0.25, 3+4j)
|
|
(9.112885171773400017270226 - 1.272756997166375050700388j)
|
|
|
|
Comparing with a summation of the defining series, using
|
|
:func:`~mpmath.nsum`::
|
|
|
|
>>> b, q, z = 3, 0.25, 0.5
|
|
>>> qhyper([], [b], q, z)
|
|
0.6221136748254495583228324
|
|
>>> nsum(lambda n: z**n / qp(q,q,n)/qp(b,q,n) * q**(n*(n-1)), [0,inf])
|
|
0.6221136748254495583228324
|
|
|
|
"""
|
|
#a_s = [ctx._convert_param(a)[0] for a in a_s]
|
|
#b_s = [ctx._convert_param(b)[0] for b in b_s]
|
|
#q = ctx._convert_param(q)[0]
|
|
a_s = [ctx.convert(a) for a in a_s]
|
|
b_s = [ctx.convert(b) for b in b_s]
|
|
q = ctx.convert(q)
|
|
z = ctx.convert(z)
|
|
r = len(a_s)
|
|
s = len(b_s)
|
|
d = 1+s-r
|
|
maxterms = kwargs.get('maxterms', 50*ctx.prec)
|
|
def terms():
|
|
t = ctx.one
|
|
yield t
|
|
qk = 1
|
|
k = 0
|
|
x = 1
|
|
while 1:
|
|
for a in a_s:
|
|
p = 1 - a*qk
|
|
t *= p
|
|
for b in b_s:
|
|
p = 1 - b*qk
|
|
if not p:
|
|
raise ValueError
|
|
t /= p
|
|
t *= z
|
|
x *= (-1)**d * qk ** d
|
|
qk *= q
|
|
t /= (1 - qk)
|
|
k += 1
|
|
yield t * x
|
|
if k > maxterms:
|
|
raise ctx.NoConvergence
|
|
return ctx.sum_accurately(terms)
|