You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

336 lines
11 KiB

from sympy.core import cacheit, Dummy, Ne, Integer, Rational, S, Wild
from sympy.functions import binomial, sin, cos, Piecewise, Abs
from .integrals import integrate
# TODO sin(a*x)*cos(b*x) -> sin((a+b)x) + sin((a-b)x) ?
# creating, each time, Wild's and sin/cos/Mul is expensive. Also, our match &
# subs are very slow when not cached, and if we create Wild each time, we
# effectively block caching.
#
# so we cache the pattern
# need to use a function instead of lamda since hash of lambda changes on
# each call to _pat_sincos
def _integer_instance(n):
return isinstance(n, Integer)
@cacheit
def _pat_sincos(x):
a = Wild('a', exclude=[x])
n, m = [Wild(s, exclude=[x], properties=[_integer_instance])
for s in 'nm']
pat = sin(a*x)**n * cos(a*x)**m
return pat, a, n, m
_u = Dummy('u')
def trigintegrate(f, x, conds='piecewise'):
"""
Integrate f = Mul(trig) over x.
Examples
========
>>> from sympy import sin, cos, tan, sec
>>> from sympy.integrals.trigonometry import trigintegrate
>>> from sympy.abc import x
>>> trigintegrate(sin(x)*cos(x), x)
sin(x)**2/2
>>> trigintegrate(sin(x)**2, x)
x/2 - sin(x)*cos(x)/2
>>> trigintegrate(tan(x)*sec(x), x)
1/cos(x)
>>> trigintegrate(sin(x)*tan(x), x)
-log(sin(x) - 1)/2 + log(sin(x) + 1)/2 - sin(x)
References
==========
.. [1] https://en.wikibooks.org/wiki/Calculus/Integration_techniques
See Also
========
sympy.integrals.integrals.Integral.doit
sympy.integrals.integrals.Integral
"""
pat, a, n, m = _pat_sincos(x)
f = f.rewrite('sincos')
M = f.match(pat)
if M is None:
return
n, m = M[n], M[m]
if n.is_zero and m.is_zero:
return x
zz = x if n.is_zero else S.Zero
a = M[a]
if n.is_odd or m.is_odd:
u = _u
n_, m_ = n.is_odd, m.is_odd
# take smallest n or m -- to choose simplest substitution
if n_ and m_:
# Make sure to choose the positive one
# otherwise an incorrect integral can occur.
if n < 0 and m > 0:
m_ = True
n_ = False
elif m < 0 and n > 0:
n_ = True
m_ = False
# Both are negative so choose the smallest n or m
# in absolute value for simplest substitution.
elif (n < 0 and m < 0):
n_ = n > m
m_ = not (n > m)
# Both n and m are odd and positive
else:
n_ = (n < m) # NB: careful here, one of the
m_ = not (n < m) # conditions *must* be true
# n m u=C (n-1)/2 m
# S(x) * C(x) dx --> -(1-u^2) * u du
if n_:
ff = -(1 - u**2)**((n - 1)/2) * u**m
uu = cos(a*x)
# n m u=S n (m-1)/2
# S(x) * C(x) dx --> u * (1-u^2) du
elif m_:
ff = u**n * (1 - u**2)**((m - 1)/2)
uu = sin(a*x)
fi = integrate(ff, u) # XXX cyclic deps
fx = fi.subs(u, uu)
if conds == 'piecewise':
return Piecewise((fx / a, Ne(a, 0)), (zz, True))
return fx / a
# n & m are both even
#
# 2k 2m 2l 2l
# we transform S (x) * C (x) into terms with only S (x) or C (x)
#
# example:
# 100 4 100 2 2 100 4 2
# S (x) * C (x) = S (x) * (1-S (x)) = S (x) * (1 + S (x) - 2*S (x))
#
# 104 102 100
# = S (x) - 2*S (x) + S (x)
# 2k
# then S is integrated with recursive formula
# take largest n or m -- to choose simplest substitution
n_ = (Abs(n) > Abs(m))
m_ = (Abs(m) > Abs(n))
res = S.Zero
if n_:
# 2k 2 k i 2i
# C = (1 - S ) = sum(i, (-) * B(k, i) * S )
if m > 0:
for i in range(0, m//2 + 1):
res += (S.NegativeOne**i * binomial(m//2, i) *
_sin_pow_integrate(n + 2*i, x))
elif m == 0:
res = _sin_pow_integrate(n, x)
else:
# m < 0 , |n| > |m|
# /
# |
# | m n
# | cos (x) sin (x) dx =
# |
# |
#/
# /
# |
# -1 m+1 n-1 n - 1 | m+2 n-2
# ________ cos (x) sin (x) + _______ | cos (x) sin (x) dx
# |
# m + 1 m + 1 |
# /
res = (Rational(-1, m + 1) * cos(x)**(m + 1) * sin(x)**(n - 1) +
Rational(n - 1, m + 1) *
trigintegrate(cos(x)**(m + 2)*sin(x)**(n - 2), x))
elif m_:
# 2k 2 k i 2i
# S = (1 - C ) = sum(i, (-) * B(k, i) * C )
if n > 0:
# / /
# | |
# | m n | -m n
# | cos (x)*sin (x) dx or | cos (x) * sin (x) dx
# | |
# / /
#
# |m| > |n| ; m, n >0 ; m, n belong to Z - {0}
# n 2
# sin (x) term is expanded here in terms of cos (x),
# and then integrated.
#
for i in range(0, n//2 + 1):
res += (S.NegativeOne**i * binomial(n//2, i) *
_cos_pow_integrate(m + 2*i, x))
elif n == 0:
# /
# |
# | 1
# | _ _ _
# | m
# | cos (x)
# /
#
res = _cos_pow_integrate(m, x)
else:
# n < 0 , |m| > |n|
# /
# |
# | m n
# | cos (x) sin (x) dx =
# |
# |
#/
# /
# |
# 1 m-1 n+1 m - 1 | m-2 n+2
# _______ cos (x) sin (x) + _______ | cos (x) sin (x) dx
# |
# n + 1 n + 1 |
# /
res = (Rational(1, n + 1) * cos(x)**(m - 1)*sin(x)**(n + 1) +
Rational(m - 1, n + 1) *
trigintegrate(cos(x)**(m - 2)*sin(x)**(n + 2), x))
else:
if m == n:
##Substitute sin(2x)/2 for sin(x)cos(x) and then Integrate.
res = integrate((sin(2*x)*S.Half)**m, x)
elif (m == -n):
if n < 0:
# Same as the scheme described above.
# the function argument to integrate in the end will
# be 1, this cannot be integrated by trigintegrate.
# Hence use sympy.integrals.integrate.
res = (Rational(1, n + 1) * cos(x)**(m - 1) * sin(x)**(n + 1) +
Rational(m - 1, n + 1) *
integrate(cos(x)**(m - 2) * sin(x)**(n + 2), x))
else:
res = (Rational(-1, m + 1) * cos(x)**(m + 1) * sin(x)**(n - 1) +
Rational(n - 1, m + 1) *
integrate(cos(x)**(m + 2)*sin(x)**(n - 2), x))
if conds == 'piecewise':
return Piecewise((res.subs(x, a*x) / a, Ne(a, 0)), (zz, True))
return res.subs(x, a*x) / a
def _sin_pow_integrate(n, x):
if n > 0:
if n == 1:
#Recursion break
return -cos(x)
# n > 0
# / /
# | |
# | n -1 n-1 n - 1 | n-2
# | sin (x) dx = ______ cos (x) sin (x) + _______ | sin (x) dx
# | |
# | n n |
#/ /
#
#
return (Rational(-1, n) * cos(x) * sin(x)**(n - 1) +
Rational(n - 1, n) * _sin_pow_integrate(n - 2, x))
if n < 0:
if n == -1:
##Make sure this does not come back here again.
##Recursion breaks here or at n==0.
return trigintegrate(1/sin(x), x)
# n < 0
# / /
# | |
# | n 1 n+1 n + 2 | n+2
# | sin (x) dx = _______ cos (x) sin (x) + _______ | sin (x) dx
# | |
# | n + 1 n + 1 |
#/ /
#
return (Rational(1, n + 1) * cos(x) * sin(x)**(n + 1) +
Rational(n + 2, n + 1) * _sin_pow_integrate(n + 2, x))
else:
#n == 0
#Recursion break.
return x
def _cos_pow_integrate(n, x):
if n > 0:
if n == 1:
#Recursion break.
return sin(x)
# n > 0
# / /
# | |
# | n 1 n-1 n - 1 | n-2
# | sin (x) dx = ______ sin (x) cos (x) + _______ | cos (x) dx
# | |
# | n n |
#/ /
#
return (Rational(1, n) * sin(x) * cos(x)**(n - 1) +
Rational(n - 1, n) * _cos_pow_integrate(n - 2, x))
if n < 0:
if n == -1:
##Recursion break
return trigintegrate(1/cos(x), x)
# n < 0
# / /
# | |
# | n -1 n+1 n + 2 | n+2
# | cos (x) dx = _______ sin (x) cos (x) + _______ | cos (x) dx
# | |
# | n + 1 n + 1 |
#/ /
#
return (Rational(-1, n + 1) * sin(x) * cos(x)**(n + 1) +
Rational(n + 2, n + 1) * _cos_pow_integrate(n + 2, x))
else:
# n == 0
#Recursion Break.
return x