You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
286 lines
8.4 KiB
286 lines
8.4 KiB
from __future__ import annotations
|
|
|
|
from sympy.vector.basisdependent import (BasisDependent, BasisDependentAdd,
|
|
BasisDependentMul, BasisDependentZero)
|
|
from sympy.core import S, Pow
|
|
from sympy.core.expr import AtomicExpr
|
|
from sympy.matrices.immutable import ImmutableDenseMatrix as Matrix
|
|
import sympy.vector
|
|
|
|
|
|
class Dyadic(BasisDependent):
|
|
"""
|
|
Super class for all Dyadic-classes.
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://en.wikipedia.org/wiki/Dyadic_tensor
|
|
.. [2] Kane, T., Levinson, D. Dynamics Theory and Applications. 1985
|
|
McGraw-Hill
|
|
|
|
"""
|
|
|
|
_op_priority = 13.0
|
|
|
|
_expr_type: type[Dyadic]
|
|
_mul_func: type[Dyadic]
|
|
_add_func: type[Dyadic]
|
|
_zero_func: type[Dyadic]
|
|
_base_func: type[Dyadic]
|
|
zero: DyadicZero
|
|
|
|
@property
|
|
def components(self):
|
|
"""
|
|
Returns the components of this dyadic in the form of a
|
|
Python dictionary mapping BaseDyadic instances to the
|
|
corresponding measure numbers.
|
|
|
|
"""
|
|
# The '_components' attribute is defined according to the
|
|
# subclass of Dyadic the instance belongs to.
|
|
return self._components
|
|
|
|
def dot(self, other):
|
|
"""
|
|
Returns the dot product(also called inner product) of this
|
|
Dyadic, with another Dyadic or Vector.
|
|
If 'other' is a Dyadic, this returns a Dyadic. Else, it returns
|
|
a Vector (unless an error is encountered).
|
|
|
|
Parameters
|
|
==========
|
|
|
|
other : Dyadic/Vector
|
|
The other Dyadic or Vector to take the inner product with
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.vector import CoordSys3D
|
|
>>> N = CoordSys3D('N')
|
|
>>> D1 = N.i.outer(N.j)
|
|
>>> D2 = N.j.outer(N.j)
|
|
>>> D1.dot(D2)
|
|
(N.i|N.j)
|
|
>>> D1.dot(N.j)
|
|
N.i
|
|
|
|
"""
|
|
|
|
Vector = sympy.vector.Vector
|
|
if isinstance(other, BasisDependentZero):
|
|
return Vector.zero
|
|
elif isinstance(other, Vector):
|
|
outvec = Vector.zero
|
|
for k, v in self.components.items():
|
|
vect_dot = k.args[1].dot(other)
|
|
outvec += vect_dot * v * k.args[0]
|
|
return outvec
|
|
elif isinstance(other, Dyadic):
|
|
outdyad = Dyadic.zero
|
|
for k1, v1 in self.components.items():
|
|
for k2, v2 in other.components.items():
|
|
vect_dot = k1.args[1].dot(k2.args[0])
|
|
outer_product = k1.args[0].outer(k2.args[1])
|
|
outdyad += vect_dot * v1 * v2 * outer_product
|
|
return outdyad
|
|
else:
|
|
raise TypeError("Inner product is not defined for " +
|
|
str(type(other)) + " and Dyadics.")
|
|
|
|
def __and__(self, other):
|
|
return self.dot(other)
|
|
|
|
__and__.__doc__ = dot.__doc__
|
|
|
|
def cross(self, other):
|
|
"""
|
|
Returns the cross product between this Dyadic, and a Vector, as a
|
|
Vector instance.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
other : Vector
|
|
The Vector that we are crossing this Dyadic with
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.vector import CoordSys3D
|
|
>>> N = CoordSys3D('N')
|
|
>>> d = N.i.outer(N.i)
|
|
>>> d.cross(N.j)
|
|
(N.i|N.k)
|
|
|
|
"""
|
|
|
|
Vector = sympy.vector.Vector
|
|
if other == Vector.zero:
|
|
return Dyadic.zero
|
|
elif isinstance(other, Vector):
|
|
outdyad = Dyadic.zero
|
|
for k, v in self.components.items():
|
|
cross_product = k.args[1].cross(other)
|
|
outer = k.args[0].outer(cross_product)
|
|
outdyad += v * outer
|
|
return outdyad
|
|
else:
|
|
raise TypeError(str(type(other)) + " not supported for " +
|
|
"cross with dyadics")
|
|
|
|
def __xor__(self, other):
|
|
return self.cross(other)
|
|
|
|
__xor__.__doc__ = cross.__doc__
|
|
|
|
def to_matrix(self, system, second_system=None):
|
|
"""
|
|
Returns the matrix form of the dyadic with respect to one or two
|
|
coordinate systems.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
system : CoordSys3D
|
|
The coordinate system that the rows and columns of the matrix
|
|
correspond to. If a second system is provided, this
|
|
only corresponds to the rows of the matrix.
|
|
second_system : CoordSys3D, optional, default=None
|
|
The coordinate system that the columns of the matrix correspond
|
|
to.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.vector import CoordSys3D
|
|
>>> N = CoordSys3D('N')
|
|
>>> v = N.i + 2*N.j
|
|
>>> d = v.outer(N.i)
|
|
>>> d.to_matrix(N)
|
|
Matrix([
|
|
[1, 0, 0],
|
|
[2, 0, 0],
|
|
[0, 0, 0]])
|
|
>>> from sympy import Symbol
|
|
>>> q = Symbol('q')
|
|
>>> P = N.orient_new_axis('P', q, N.k)
|
|
>>> d.to_matrix(N, P)
|
|
Matrix([
|
|
[ cos(q), -sin(q), 0],
|
|
[2*cos(q), -2*sin(q), 0],
|
|
[ 0, 0, 0]])
|
|
|
|
"""
|
|
|
|
if second_system is None:
|
|
second_system = system
|
|
|
|
return Matrix([i.dot(self).dot(j) for i in system for j in
|
|
second_system]).reshape(3, 3)
|
|
|
|
def _div_helper(one, other):
|
|
""" Helper for division involving dyadics """
|
|
if isinstance(one, Dyadic) and isinstance(other, Dyadic):
|
|
raise TypeError("Cannot divide two dyadics")
|
|
elif isinstance(one, Dyadic):
|
|
return DyadicMul(one, Pow(other, S.NegativeOne))
|
|
else:
|
|
raise TypeError("Cannot divide by a dyadic")
|
|
|
|
|
|
class BaseDyadic(Dyadic, AtomicExpr):
|
|
"""
|
|
Class to denote a base dyadic tensor component.
|
|
"""
|
|
|
|
def __new__(cls, vector1, vector2):
|
|
Vector = sympy.vector.Vector
|
|
BaseVector = sympy.vector.BaseVector
|
|
VectorZero = sympy.vector.VectorZero
|
|
# Verify arguments
|
|
if not isinstance(vector1, (BaseVector, VectorZero)) or \
|
|
not isinstance(vector2, (BaseVector, VectorZero)):
|
|
raise TypeError("BaseDyadic cannot be composed of non-base " +
|
|
"vectors")
|
|
# Handle special case of zero vector
|
|
elif vector1 == Vector.zero or vector2 == Vector.zero:
|
|
return Dyadic.zero
|
|
# Initialize instance
|
|
obj = super().__new__(cls, vector1, vector2)
|
|
obj._base_instance = obj
|
|
obj._measure_number = 1
|
|
obj._components = {obj: S.One}
|
|
obj._sys = vector1._sys
|
|
obj._pretty_form = ('(' + vector1._pretty_form + '|' +
|
|
vector2._pretty_form + ')')
|
|
obj._latex_form = (r'\left(' + vector1._latex_form + r"{\middle|}" +
|
|
vector2._latex_form + r'\right)')
|
|
|
|
return obj
|
|
|
|
def _sympystr(self, printer):
|
|
return "({}|{})".format(
|
|
printer._print(self.args[0]), printer._print(self.args[1]))
|
|
|
|
def _sympyrepr(self, printer):
|
|
return "BaseDyadic({}, {})".format(
|
|
printer._print(self.args[0]), printer._print(self.args[1]))
|
|
|
|
|
|
class DyadicMul(BasisDependentMul, Dyadic):
|
|
""" Products of scalars and BaseDyadics """
|
|
|
|
def __new__(cls, *args, **options):
|
|
obj = BasisDependentMul.__new__(cls, *args, **options)
|
|
return obj
|
|
|
|
@property
|
|
def base_dyadic(self):
|
|
""" The BaseDyadic involved in the product. """
|
|
return self._base_instance
|
|
|
|
@property
|
|
def measure_number(self):
|
|
""" The scalar expression involved in the definition of
|
|
this DyadicMul.
|
|
"""
|
|
return self._measure_number
|
|
|
|
|
|
class DyadicAdd(BasisDependentAdd, Dyadic):
|
|
""" Class to hold dyadic sums """
|
|
|
|
def __new__(cls, *args, **options):
|
|
obj = BasisDependentAdd.__new__(cls, *args, **options)
|
|
return obj
|
|
|
|
def _sympystr(self, printer):
|
|
items = list(self.components.items())
|
|
items.sort(key=lambda x: x[0].__str__())
|
|
return " + ".join(printer._print(k * v) for k, v in items)
|
|
|
|
|
|
class DyadicZero(BasisDependentZero, Dyadic):
|
|
"""
|
|
Class to denote a zero dyadic
|
|
"""
|
|
|
|
_op_priority = 13.1
|
|
_pretty_form = '(0|0)'
|
|
_latex_form = r'(\mathbf{\hat{0}}|\mathbf{\hat{0}})'
|
|
|
|
def __new__(cls):
|
|
obj = BasisDependentZero.__new__(cls)
|
|
return obj
|
|
|
|
|
|
Dyadic._expr_type = Dyadic
|
|
Dyadic._mul_func = DyadicMul
|
|
Dyadic._add_func = DyadicAdd
|
|
Dyadic._zero_func = DyadicZero
|
|
Dyadic._base_func = BaseDyadic
|
|
Dyadic.zero = DyadicZero()
|