You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

507 lines
16 KiB

from sympy.core.numbers import Rational
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.functions.elementary.complexes import sign
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.polys.polytools import gcd
from sympy.sets.sets import Complement
from sympy.core import Basic, Tuple, diff, expand, Eq, Integer
from sympy.core.sorting import ordered
from sympy.core.symbol import _symbol
from sympy.solvers import solveset, nonlinsolve, diophantine
from sympy.polys import total_degree
from sympy.geometry import Point
from sympy.ntheory.factor_ import core
class ImplicitRegion(Basic):
"""
Represents an implicit region in space.
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import x, y, z, t
>>> from sympy.vector import ImplicitRegion
>>> ImplicitRegion((x, y), x**2 + y**2 - 4)
ImplicitRegion((x, y), x**2 + y**2 - 4)
>>> ImplicitRegion((x, y), Eq(y*x, 1))
ImplicitRegion((x, y), x*y - 1)
>>> parabola = ImplicitRegion((x, y), y**2 - 4*x)
>>> parabola.degree
2
>>> parabola.equation
-4*x + y**2
>>> parabola.rational_parametrization(t)
(4/t**2, 4/t)
>>> r = ImplicitRegion((x, y, z), Eq(z, x**2 + y**2))
>>> r.variables
(x, y, z)
>>> r.singular_points()
EmptySet
>>> r.regular_point()
(-10, -10, 200)
Parameters
==========
variables : tuple to map variables in implicit equation to base scalars.
equation : An expression or Eq denoting the implicit equation of the region.
"""
def __new__(cls, variables, equation):
if not isinstance(variables, Tuple):
variables = Tuple(*variables)
if isinstance(equation, Eq):
equation = equation.lhs - equation.rhs
return super().__new__(cls, variables, equation)
@property
def variables(self):
return self.args[0]
@property
def equation(self):
return self.args[1]
@property
def degree(self):
return total_degree(self.equation)
def regular_point(self):
"""
Returns a point on the implicit region.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.vector import ImplicitRegion
>>> circle = ImplicitRegion((x, y), (x + 2)**2 + (y - 3)**2 - 16)
>>> circle.regular_point()
(-2, -1)
>>> parabola = ImplicitRegion((x, y), x**2 - 4*y)
>>> parabola.regular_point()
(0, 0)
>>> r = ImplicitRegion((x, y, z), (x + y + z)**4)
>>> r.regular_point()
(-10, -10, 20)
References
==========
- Erik Hillgarter, "Rational Points on Conics", Diploma Thesis, RISC-Linz,
J. Kepler Universitat Linz, 1996. Available:
https://www3.risc.jku.at/publications/download/risc_1355/Rational%20Points%20on%20Conics.pdf
"""
equation = self.equation
if len(self.variables) == 1:
return (list(solveset(equation, self.variables[0], domain=S.Reals))[0],)
elif len(self.variables) == 2:
if self.degree == 2:
coeffs = a, b, c, d, e, f = conic_coeff(self.variables, equation)
if b**2 == 4*a*c:
x_reg, y_reg = self._regular_point_parabola(*coeffs)
else:
x_reg, y_reg = self._regular_point_ellipse(*coeffs)
return x_reg, y_reg
if len(self.variables) == 3:
x, y, z = self.variables
for x_reg in range(-10, 10):
for y_reg in range(-10, 10):
if not solveset(equation.subs({x: x_reg, y: y_reg}), self.variables[2], domain=S.Reals).is_empty:
return (x_reg, y_reg, list(solveset(equation.subs({x: x_reg, y: y_reg})))[0])
if len(self.singular_points()) != 0:
return list[self.singular_points()][0]
raise NotImplementedError()
def _regular_point_parabola(self, a, b, c, d, e, f):
ok = (a, d) != (0, 0) and (c, e) != (0, 0) and b**2 == 4*a*c and (a, c) != (0, 0)
if not ok:
raise ValueError("Rational Point on the conic does not exist")
if a != 0:
d_dash, f_dash = (4*a*e - 2*b*d, 4*a*f - d**2)
if d_dash != 0:
y_reg = -f_dash/d_dash
x_reg = -(d + b*y_reg)/(2*a)
else:
ok = False
elif c != 0:
d_dash, f_dash = (4*c*d - 2*b*e, 4*c*f - e**2)
if d_dash != 0:
x_reg = -f_dash/d_dash
y_reg = -(e + b*x_reg)/(2*c)
else:
ok = False
if ok:
return x_reg, y_reg
else:
raise ValueError("Rational Point on the conic does not exist")
def _regular_point_ellipse(self, a, b, c, d, e, f):
D = 4*a*c - b**2
ok = D
if not ok:
raise ValueError("Rational Point on the conic does not exist")
if a == 0 and c == 0:
K = -1
L = 4*(d*e - b*f)
elif c != 0:
K = D
L = 4*c**2*d**2 - 4*b*c*d*e + 4*a*c*e**2 + 4*b**2*c*f - 16*a*c**2*f
else:
K = D
L = 4*a**2*e**2 - 4*b*a*d*e + 4*b**2*a*f
ok = L != 0 and not(K > 0 and L < 0)
if not ok:
raise ValueError("Rational Point on the conic does not exist")
K = Rational(K).limit_denominator(10**12)
L = Rational(L).limit_denominator(10**12)
k1, k2 = K.p, K.q
l1, l2 = L.p, L.q
g = gcd(k2, l2)
a1 = (l2*k2)/g
b1 = (k1*l2)/g
c1 = -(l1*k2)/g
a2 = sign(a1)*core(abs(a1), 2)
r1 = sqrt(a1/a2)
b2 = sign(b1)*core(abs(b1), 2)
r2 = sqrt(b1/b2)
c2 = sign(c1)*core(abs(c1), 2)
r3 = sqrt(c1/c2)
g = gcd(gcd(a2, b2), c2)
a2 = a2/g
b2 = b2/g
c2 = c2/g
g1 = gcd(a2, b2)
a2 = a2/g1
b2 = b2/g1
c2 = c2*g1
g2 = gcd(a2,c2)
a2 = a2/g2
b2 = b2*g2
c2 = c2/g2
g3 = gcd(b2, c2)
a2 = a2*g3
b2 = b2/g3
c2 = c2/g3
x, y, z = symbols("x y z")
eq = a2*x**2 + b2*y**2 + c2*z**2
solutions = diophantine(eq)
if len(solutions) == 0:
raise ValueError("Rational Point on the conic does not exist")
flag = False
for sol in solutions:
syms = Tuple(*sol).free_symbols
rep = {s: 3 for s in syms}
sol_z = sol[2]
if sol_z == 0:
flag = True
continue
if not isinstance(sol_z, (int, Integer)):
syms_z = sol_z.free_symbols
if len(syms_z) == 1:
p = next(iter(syms_z))
p_values = Complement(S.Integers, solveset(Eq(sol_z, 0), p, S.Integers))
rep[p] = next(iter(p_values))
if len(syms_z) == 2:
p, q = list(ordered(syms_z))
for i in S.Integers:
subs_sol_z = sol_z.subs(p, i)
q_values = Complement(S.Integers, solveset(Eq(subs_sol_z, 0), q, S.Integers))
if not q_values.is_empty:
rep[p] = i
rep[q] = next(iter(q_values))
break
if len(syms) != 0:
x, y, z = tuple(s.subs(rep) for s in sol)
else:
x, y, z = sol
flag = False
break
if flag:
raise ValueError("Rational Point on the conic does not exist")
x = (x*g3)/r1
y = (y*g2)/r2
z = (z*g1)/r3
x = x/z
y = y/z
if a == 0 and c == 0:
x_reg = (x + y - 2*e)/(2*b)
y_reg = (x - y - 2*d)/(2*b)
elif c != 0:
x_reg = (x - 2*d*c + b*e)/K
y_reg = (y - b*x_reg - e)/(2*c)
else:
y_reg = (x - 2*e*a + b*d)/K
x_reg = (y - b*y_reg - d)/(2*a)
return x_reg, y_reg
def singular_points(self):
"""
Returns a set of singular points of the region.
The singular points are those points on the region
where all partial derivatives vanish.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.vector import ImplicitRegion
>>> I = ImplicitRegion((x, y), (y-1)**2 -x**3 + 2*x**2 -x)
>>> I.singular_points()
{(1, 1)}
"""
eq_list = [self.equation]
for var in self.variables:
eq_list += [diff(self.equation, var)]
return nonlinsolve(eq_list, list(self.variables))
def multiplicity(self, point):
"""
Returns the multiplicity of a singular point on the region.
A singular point (x,y) of region is said to be of multiplicity m
if all the partial derivatives off to order m - 1 vanish there.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.vector import ImplicitRegion
>>> I = ImplicitRegion((x, y, z), x**2 + y**3 - z**4)
>>> I.singular_points()
{(0, 0, 0)}
>>> I.multiplicity((0, 0, 0))
2
"""
if isinstance(point, Point):
point = point.args
modified_eq = self.equation
for i, var in enumerate(self.variables):
modified_eq = modified_eq.subs(var, var + point[i])
modified_eq = expand(modified_eq)
if len(modified_eq.args) != 0:
terms = modified_eq.args
m = min([total_degree(term) for term in terms])
else:
terms = modified_eq
m = total_degree(terms)
return m
def rational_parametrization(self, parameters=('t', 's'), reg_point=None):
"""
Returns the rational parametrization of implicit region.
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import x, y, z, s, t
>>> from sympy.vector import ImplicitRegion
>>> parabola = ImplicitRegion((x, y), y**2 - 4*x)
>>> parabola.rational_parametrization()
(4/t**2, 4/t)
>>> circle = ImplicitRegion((x, y), Eq(x**2 + y**2, 4))
>>> circle.rational_parametrization()
(4*t/(t**2 + 1), 4*t**2/(t**2 + 1) - 2)
>>> I = ImplicitRegion((x, y), x**3 + x**2 - y**2)
>>> I.rational_parametrization()
(t**2 - 1, t*(t**2 - 1))
>>> cubic_curve = ImplicitRegion((x, y), x**3 + x**2 - y**2)
>>> cubic_curve.rational_parametrization(parameters=(t))
(t**2 - 1, t*(t**2 - 1))
>>> sphere = ImplicitRegion((x, y, z), x**2 + y**2 + z**2 - 4)
>>> sphere.rational_parametrization(parameters=(t, s))
(-2 + 4/(s**2 + t**2 + 1), 4*s/(s**2 + t**2 + 1), 4*t/(s**2 + t**2 + 1))
For some conics, regular_points() is unable to find a point on curve.
To calulcate the parametric representation in such cases, user need
to determine a point on the region and pass it using reg_point.
>>> c = ImplicitRegion((x, y), (x - 1/2)**2 + (y)**2 - (1/4)**2)
>>> c.rational_parametrization(reg_point=(3/4, 0))
(0.75 - 0.5/(t**2 + 1), -0.5*t/(t**2 + 1))
References
==========
- Christoph M. Hoffmann, "Conversion Methods between Parametric and
Implicit Curves and Surfaces", Purdue e-Pubs, 1990. Available:
https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1827&context=cstech
"""
equation = self.equation
degree = self.degree
if degree == 1:
if len(self.variables) == 1:
return (equation,)
elif len(self.variables) == 2:
x, y = self.variables
y_par = list(solveset(equation, y))[0]
return x, y_par
else:
raise NotImplementedError()
point = ()
# Finding the (n - 1) fold point of the monoid of degree
if degree == 2:
# For degree 2 curves, either a regular point or a singular point can be used.
if reg_point is not None:
# Using point provided by the user as regular point
point = reg_point
else:
if len(self.singular_points()) != 0:
point = list(self.singular_points())[0]
else:
point = self.regular_point()
if len(self.singular_points()) != 0:
singular_points = self.singular_points()
for spoint in singular_points:
syms = Tuple(*spoint).free_symbols
rep = {s: 2 for s in syms}
if len(syms) != 0:
spoint = tuple(s.subs(rep) for s in spoint)
if self.multiplicity(spoint) == degree - 1:
point = spoint
break
if len(point) == 0:
# The region in not a monoid
raise NotImplementedError()
modified_eq = equation
# Shifting the region such that fold point moves to origin
for i, var in enumerate(self.variables):
modified_eq = modified_eq.subs(var, var + point[i])
modified_eq = expand(modified_eq)
hn = hn_1 = 0
for term in modified_eq.args:
if total_degree(term) == degree:
hn += term
else:
hn_1 += term
hn_1 = -1*hn_1
if not isinstance(parameters, tuple):
parameters = (parameters,)
if len(self.variables) == 2:
parameter1 = parameters[0]
if parameter1 == 's':
# To avoid name conflict between parameters
s = _symbol('s_', real=True)
else:
s = _symbol('s', real=True)
t = _symbol(parameter1, real=True)
hn = hn.subs({self.variables[0]: s, self.variables[1]: t})
hn_1 = hn_1.subs({self.variables[0]: s, self.variables[1]: t})
x_par = (s*(hn_1/hn)).subs(s, 1) + point[0]
y_par = (t*(hn_1/hn)).subs(s, 1) + point[1]
return x_par, y_par
elif len(self.variables) == 3:
parameter1, parameter2 = parameters
if 'r' in parameters:
# To avoid name conflict between parameters
r = _symbol('r_', real=True)
else:
r = _symbol('r', real=True)
s = _symbol(parameter2, real=True)
t = _symbol(parameter1, real=True)
hn = hn.subs({self.variables[0]: r, self.variables[1]: s, self.variables[2]: t})
hn_1 = hn_1.subs({self.variables[0]: r, self.variables[1]: s, self.variables[2]: t})
x_par = (r*(hn_1/hn)).subs(r, 1) + point[0]
y_par = (s*(hn_1/hn)).subs(r, 1) + point[1]
z_par = (t*(hn_1/hn)).subs(r, 1) + point[2]
return x_par, y_par, z_par
raise NotImplementedError()
def conic_coeff(variables, equation):
if total_degree(equation) != 2:
raise ValueError()
x = variables[0]
y = variables[1]
equation = expand(equation)
a = equation.coeff(x**2)
b = equation.coeff(x*y)
c = equation.coeff(y**2)
d = equation.coeff(x, 1).coeff(y, 0)
e = equation.coeff(y, 1).coeff(x, 0)
f = equation.coeff(x, 0).coeff(y, 0)
return a, b, c, d, e, f