You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
683 lines
23 KiB
683 lines
23 KiB
from typing import (
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
List,
|
|
Literal,
|
|
Optional,
|
|
overload,
|
|
Sequence,
|
|
Tuple,
|
|
Union,
|
|
)
|
|
|
|
from torch import Tensor
|
|
from torch.types import _dtype, _int, _size
|
|
|
|
from .common_types import (
|
|
_ratio_any_t,
|
|
_size_1_t,
|
|
_size_2_opt_t,
|
|
_size_2_t,
|
|
_size_3_opt_t,
|
|
_size_3_t,
|
|
_size_any_t,
|
|
)
|
|
|
|
# 'TypedDict' is a new accepted type that represents a dictionary with a fixed set of allowed keys.
|
|
# It is standards-track but not in `typing` yet. We leave this hear to be uncommented once the feature
|
|
# is wide-spread.
|
|
|
|
# from mypy_extensions import TypedDict
|
|
|
|
# GRID_SAMPLE_INTERPOLATION_MODES = TypedDict('GRID_SAMPLE_INTERPOLATION_MODES', {'bilinear': int, 'nearest': int})
|
|
# GRID_SAMPLE_PADDING_MODES = TypedDict('GRID_SAMPLE_PADDING_MODES', {'zeros': int, 'border': int, 'reflection': int})
|
|
|
|
GRID_SAMPLE_INTERPOLATION_MODES = Dict[str, int]
|
|
GRID_SAMPLE_PADDING_MODES = Dict[str, int]
|
|
|
|
# These stubs were generated by running stubgen (`stubgen --parse-only functional.py`), followed by manual cleaning.
|
|
#
|
|
# The 'BroadcastingList{1,2,3}' types were replaced by `_size` or _output_ratio, as appropriate.
|
|
# This was necessary since the JIT uses BroadcastingList* types but static checking with mypy etc requires a `Sequence`
|
|
# type. There is no way to express the expected lengths of these lists in the current Python typing system.
|
|
#
|
|
# Functions created via `_add_docstr` in `functional.py` where merely typed as `Any` by `stubgen`, so those were
|
|
# deleted from the stub and replaced by generated declarations. See `gen_pyi` for the implementation of the code
|
|
# generation logic for those functions. In the future, it might be worth looking into using the mypy plugin system
|
|
# to encode the type semantics of `_add_docstr`, should that system ever become widespread.
|
|
def fractional_max_pool2d_with_indices(
|
|
input: Tensor,
|
|
kernel_size: _size,
|
|
output_size: Optional[_size] = ...,
|
|
output_ratio: Optional[_ratio_any_t] = ...,
|
|
return_indices: bool = ...,
|
|
_random_samples: Optional[Tensor] = ...,
|
|
) -> Tuple[Tensor, Tensor]: ...
|
|
def fractional_max_pool3d_with_indices(
|
|
input: Tensor,
|
|
kernel_size: _size,
|
|
output_size: Optional[_size] = ...,
|
|
output_ratio: Optional[_ratio_any_t] = ...,
|
|
return_indices: bool = ...,
|
|
_random_samples: Optional[Tensor] = ...,
|
|
) -> Tuple[Tensor, Tensor]: ...
|
|
def max_pool1d_with_indices(
|
|
input: Tensor,
|
|
kernel_size: _size,
|
|
stride: Optional[_size] = ...,
|
|
padding: _size = ...,
|
|
dilation: _size = ...,
|
|
ceil_mode: bool = ...,
|
|
return_indices: bool = ...,
|
|
) -> Tuple[Tensor, Tensor]: ...
|
|
def max_pool2d_with_indices(
|
|
input: Tensor,
|
|
kernel_size: _size,
|
|
stride: Optional[_size] = ...,
|
|
padding: _size = ...,
|
|
dilation: _size = ...,
|
|
ceil_mode: bool = ...,
|
|
return_indices: bool = ...,
|
|
) -> Tuple[Tensor, Tensor]: ...
|
|
def max_pool3d_with_indices(
|
|
input: Tensor,
|
|
kernel_size: _size,
|
|
stride: Optional[_size] = ...,
|
|
padding: _size = ...,
|
|
dilation: _size = ...,
|
|
ceil_mode: bool = ...,
|
|
return_indices: bool = ...,
|
|
) -> Tuple[Tensor, Tensor]: ...
|
|
def max_unpool1d(
|
|
input: Tensor,
|
|
indices: Tensor,
|
|
kernel_size: _size,
|
|
stride: Optional[_size] = ...,
|
|
padding: _size = ...,
|
|
output_size: Optional[_size] = ...,
|
|
) -> Tensor: ...
|
|
def max_unpool2d(
|
|
input: Tensor,
|
|
indices: Tensor,
|
|
kernel_size: _size,
|
|
stride: Optional[_size] = ...,
|
|
padding: _size = ...,
|
|
output_size: Optional[_size] = ...,
|
|
) -> Tensor: ...
|
|
def max_unpool3d(
|
|
input: Tensor,
|
|
indices: Tensor,
|
|
kernel_size: _size,
|
|
stride: Optional[_size] = ...,
|
|
padding: _size = ...,
|
|
output_size: Optional[_size] = ...,
|
|
) -> Tensor: ...
|
|
def lp_pool1d(
|
|
input: Tensor,
|
|
norm_type: float,
|
|
kernel_size: _size_1_t,
|
|
stride: Union[Optional[_size], Optional[int]] = ...,
|
|
ceil_mode: bool = ...,
|
|
) -> Tensor: ...
|
|
def lp_pool2d(
|
|
input: Tensor,
|
|
norm_type: float,
|
|
kernel_size: _size_2_t,
|
|
stride: Union[Optional[_size], Optional[int]] = ...,
|
|
ceil_mode: bool = ...,
|
|
) -> Tensor: ...
|
|
def lp_pool3d(
|
|
input: Tensor,
|
|
norm_type: float,
|
|
kernel_size: _size_3_t,
|
|
stride: Union[Optional[_size], Optional[int]] = ...,
|
|
ceil_mode: bool = ...,
|
|
) -> Tensor: ...
|
|
def adaptive_max_pool1d_with_indices(
|
|
input: Tensor,
|
|
output_size: _size,
|
|
return_indices: bool = ...,
|
|
) -> Tuple[Tensor, Tensor]: ...
|
|
def adaptive_max_pool2d_with_indices(
|
|
input: Tensor,
|
|
output_size: _size_2_opt_t,
|
|
return_indices: bool = ...,
|
|
) -> Tuple[Tensor, Tensor]: ...
|
|
def adaptive_max_pool3d_with_indices(
|
|
input: Tensor,
|
|
output_size: _size_3_opt_t,
|
|
return_indices: bool = ...,
|
|
) -> Tuple[Tensor, Tensor]: ...
|
|
def adaptive_avg_pool2d(input: Tensor, output_size: _size_2_opt_t) -> Tensor: ...
|
|
def adaptive_avg_pool3d(input: Tensor, output_size: _size_3_opt_t) -> Tensor: ...
|
|
def dropout(
|
|
input: Tensor,
|
|
p: float = ...,
|
|
training: bool = ...,
|
|
inplace: bool = ...,
|
|
) -> Tensor: ...
|
|
def alpha_dropout(
|
|
input: Tensor,
|
|
p: float = ...,
|
|
training: bool = ...,
|
|
inplace: bool = ...,
|
|
) -> Tensor: ...
|
|
def dropout1d(
|
|
input: Tensor,
|
|
p: float = ...,
|
|
training: bool = ...,
|
|
inplace: bool = ...,
|
|
) -> Tensor: ...
|
|
def dropout2d(
|
|
input: Tensor,
|
|
p: float = ...,
|
|
training: bool = ...,
|
|
inplace: bool = ...,
|
|
) -> Tensor: ...
|
|
def dropout3d(
|
|
input: Tensor,
|
|
p: float = ...,
|
|
training: bool = ...,
|
|
inplace: bool = ...,
|
|
) -> Tensor: ...
|
|
def feature_alpha_dropout(
|
|
input: Tensor,
|
|
p: float = ...,
|
|
training: bool = ...,
|
|
inplace: bool = ...,
|
|
) -> Tensor: ...
|
|
def threshold(
|
|
input: Tensor,
|
|
threshold: float,
|
|
value: float,
|
|
inplace: bool = ...,
|
|
) -> Tensor: ...
|
|
def relu(input: Tensor, inplace: bool = ...) -> Tensor: ...
|
|
def glu(input: Tensor, dim: int = ...) -> Tensor: ...
|
|
def hardtanh(
|
|
input: Tensor,
|
|
min_val: float = ...,
|
|
max_val: float = ...,
|
|
inplace: bool = ...,
|
|
) -> Tensor: ...
|
|
def relu6(input: Tensor, inplace: bool = ...) -> Tensor: ...
|
|
def elu(input: Tensor, alpha: float = ..., inplace: bool = ...) -> Tensor: ...
|
|
def selu(input: Tensor, inplace: bool = ...) -> Tensor: ...
|
|
def celu(input: Tensor, alpha: float = ..., inplace: bool = ...) -> Tensor: ...
|
|
def leaky_relu(
|
|
input: Tensor,
|
|
negative_slope: float = ...,
|
|
inplace: bool = ...,
|
|
) -> Tensor: ...
|
|
def rrelu(
|
|
input: Tensor,
|
|
lower: float = ...,
|
|
upper: float = ...,
|
|
training: bool = ...,
|
|
inplace: bool = ...,
|
|
) -> Tensor: ...
|
|
def tanhshrink(input: Any): ...
|
|
def softsign(input: Any): ...
|
|
def softmin(
|
|
input: Tensor,
|
|
dim: Optional[int] = ...,
|
|
_stacklevel: int = ...,
|
|
dtype: Optional[_dtype] = ...,
|
|
) -> Tensor: ...
|
|
def softmax(
|
|
input: Tensor,
|
|
dim: Optional[int] = ...,
|
|
_stacklevel: int = ...,
|
|
dtype: Optional[_dtype] = ...,
|
|
) -> Tensor: ...
|
|
def gumbel_softmax(
|
|
logits: Tensor,
|
|
tau: float = ...,
|
|
hard: bool = ...,
|
|
eps: float = ...,
|
|
dim: int = ...,
|
|
) -> Tensor: ...
|
|
def log_softmax(
|
|
input: Tensor,
|
|
dim: Optional[int] = ...,
|
|
_stacklevel: int = ...,
|
|
dtype: Optional[_dtype] = ...,
|
|
) -> Tensor: ...
|
|
def tanh(input: Any): ...
|
|
def sigmoid(input: Any) -> Tensor: ...
|
|
def hardsigmoid(input: Tensor, inplace: bool = False) -> Tensor: ...
|
|
def silu(input: Tensor, inplace: bool = False) -> Tensor: ...
|
|
def mish(input: Tensor, inplace: bool = False) -> Tensor: ...
|
|
def hardswish(input: Tensor, inplace: bool = False) -> Tensor: ...
|
|
def embedding(
|
|
input: Tensor,
|
|
weight: Tensor,
|
|
padding_idx: Optional[int] = ...,
|
|
max_norm: Optional[float] = ...,
|
|
norm_type: float = ...,
|
|
scale_grad_by_freq: bool = ...,
|
|
sparse: bool = ...,
|
|
) -> Tensor: ...
|
|
def embedding_bag(
|
|
input: Tensor,
|
|
weight: Tensor,
|
|
offsets: Optional[Tensor] = ...,
|
|
max_norm: Optional[float] = ...,
|
|
norm_type: float = ...,
|
|
scale_grad_by_freq: bool = ...,
|
|
mode: str = ...,
|
|
sparse: bool = ...,
|
|
per_sample_weights: Optional[Tensor] = ...,
|
|
include_last_offset: bool = ...,
|
|
padding_idx: Optional[int] = ...,
|
|
) -> Tensor: ...
|
|
def batch_norm(
|
|
input: Tensor,
|
|
running_mean: Optional[Tensor],
|
|
running_var: Optional[Tensor],
|
|
weight: Optional[Tensor] = ...,
|
|
bias: Optional[Tensor] = ...,
|
|
training: bool = ...,
|
|
momentum: float = ...,
|
|
eps: float = ...,
|
|
) -> Tensor: ...
|
|
def instance_norm(
|
|
input: Tensor,
|
|
running_mean: Optional[Tensor] = ...,
|
|
running_var: Optional[Tensor] = ...,
|
|
weight: Optional[Tensor] = ...,
|
|
bias: Optional[Tensor] = ...,
|
|
use_input_stats: bool = ...,
|
|
momentum: float = ...,
|
|
eps: float = ...,
|
|
) -> Tensor: ...
|
|
def layer_norm(
|
|
input: Tensor,
|
|
normalized_shape: Sequence[int],
|
|
weight: Optional[Tensor] = ...,
|
|
bias: Optional[Tensor] = ...,
|
|
eps: float = ...,
|
|
) -> Tensor: ...
|
|
def group_norm(
|
|
input: Tensor,
|
|
num_groups: int,
|
|
weight: Optional[Tensor] = ...,
|
|
bias: Optional[Tensor] = ...,
|
|
eps: float = ...,
|
|
) -> Tensor: ...
|
|
def local_response_norm(
|
|
input: Tensor,
|
|
size: int,
|
|
alpha: float = ...,
|
|
beta: float = ...,
|
|
k: float = ...,
|
|
) -> Tensor: ...
|
|
def ctc_loss(
|
|
log_probs: Tensor,
|
|
targets: Tensor,
|
|
input_lengths: Tensor,
|
|
target_lengths: Tensor,
|
|
blank: int = ...,
|
|
reduction: str = ...,
|
|
zero_infinity: bool = ...,
|
|
) -> Tensor: ...
|
|
def nll_loss(
|
|
input: Tensor,
|
|
target: Tensor,
|
|
weight: Optional[Tensor] = ...,
|
|
size_average: Optional[bool] = ...,
|
|
ignore_index: int = ...,
|
|
reduce: Optional[bool] = ...,
|
|
reduction: str = ...,
|
|
) -> Tensor: ...
|
|
def poisson_nll_loss(
|
|
input: Tensor,
|
|
target: Tensor,
|
|
log_input: bool = ...,
|
|
full: bool = ...,
|
|
size_average: Optional[bool] = ...,
|
|
eps: float = ...,
|
|
reduce: Optional[bool] = ...,
|
|
reduction: str = ...,
|
|
) -> Tensor: ...
|
|
def gaussian_nll_loss(
|
|
input: Tensor,
|
|
target: Tensor,
|
|
var: Tensor,
|
|
full: Optional[bool] = ...,
|
|
eps: Optional[float] = ...,
|
|
reduction: Optional[str] = ...,
|
|
) -> Tensor: ...
|
|
def kl_div(
|
|
input: Tensor,
|
|
target: Tensor,
|
|
size_average: Optional[bool] = ...,
|
|
reduce: Optional[bool] = ...,
|
|
reduction: str = ...,
|
|
log_target: bool = ...,
|
|
) -> Tensor: ...
|
|
def cross_entropy(
|
|
input: Tensor,
|
|
target: Tensor,
|
|
weight: Optional[Tensor] = ...,
|
|
size_average: Optional[bool] = ...,
|
|
ignore_index: int = ...,
|
|
reduce: Optional[bool] = ...,
|
|
reduction: str = ...,
|
|
label_smoothing: float = ...,
|
|
) -> Tensor: ...
|
|
def binary_cross_entropy(
|
|
input: Tensor,
|
|
target: Tensor,
|
|
weight: Optional[Tensor] = ...,
|
|
size_average: Optional[bool] = ...,
|
|
reduce: Optional[bool] = ...,
|
|
reduction: str = ...,
|
|
) -> Tensor: ...
|
|
def binary_cross_entropy_with_logits(
|
|
input: Tensor,
|
|
target: Tensor,
|
|
weight: Optional[Tensor] = ...,
|
|
size_average: Optional[bool] = ...,
|
|
reduce: Optional[bool] = ...,
|
|
reduction: str = ...,
|
|
pos_weight: Optional[Tensor] = ...,
|
|
) -> Tensor: ...
|
|
def smooth_l1_loss(
|
|
input: Tensor,
|
|
target: Tensor,
|
|
size_average: Optional[bool] = ...,
|
|
reduce: Optional[bool] = ...,
|
|
reduction: str = ...,
|
|
beta: float = ...,
|
|
) -> Tensor: ...
|
|
def huber_loss(
|
|
input: Tensor,
|
|
target: Tensor,
|
|
reduction: str = ...,
|
|
delta: float = ...,
|
|
) -> Tensor: ...
|
|
def l1_loss(
|
|
input: Tensor,
|
|
target: Tensor,
|
|
size_average: Optional[bool] = ...,
|
|
reduce: Optional[bool] = ...,
|
|
reduction: str = ...,
|
|
) -> Tensor: ...
|
|
def mse_loss(
|
|
input: Tensor,
|
|
target: Tensor,
|
|
size_average: Optional[bool] = ...,
|
|
reduce: Optional[bool] = ...,
|
|
reduction: str = ...,
|
|
) -> Tensor: ...
|
|
def margin_ranking_loss(
|
|
input1: Tensor,
|
|
input2: Tensor,
|
|
target: Tensor,
|
|
margin: float = ...,
|
|
size_average: Optional[bool] = ...,
|
|
reduce: Optional[bool] = ...,
|
|
reduction: str = ...,
|
|
) -> Tensor: ...
|
|
def hinge_embedding_loss(
|
|
input: Tensor,
|
|
target: Tensor,
|
|
margin: float = ...,
|
|
size_average: Optional[bool] = ...,
|
|
reduce: Optional[bool] = ...,
|
|
reduction: str = ...,
|
|
) -> Tensor: ...
|
|
def multilabel_margin_loss(
|
|
input: Tensor,
|
|
target: Tensor,
|
|
size_average: Optional[bool] = ...,
|
|
reduce: Optional[bool] = ...,
|
|
reduction: str = ...,
|
|
) -> Tensor: ...
|
|
def soft_margin_loss(
|
|
input: Tensor,
|
|
target: Tensor,
|
|
size_average: Optional[bool] = ...,
|
|
reduce: Optional[bool] = ...,
|
|
reduction: str = ...,
|
|
) -> Tensor: ...
|
|
def multilabel_soft_margin_loss(
|
|
input: Tensor,
|
|
target: Tensor,
|
|
weight: Optional[Tensor] = ...,
|
|
size_average: Optional[bool] = ...,
|
|
reduce: Optional[bool] = ...,
|
|
reduction: str = ...,
|
|
) -> Tensor: ...
|
|
def cosine_embedding_loss(
|
|
input1: Tensor,
|
|
input2: Tensor,
|
|
target: Tensor,
|
|
margin: float = ...,
|
|
size_average: Optional[bool] = ...,
|
|
reduce: Optional[bool] = ...,
|
|
reduction: str = ...,
|
|
) -> Tensor: ...
|
|
def multi_margin_loss(
|
|
input: Tensor,
|
|
target: Tensor,
|
|
p: int = ...,
|
|
margin: float = ...,
|
|
weight: Optional[Tensor] = ...,
|
|
size_average: Optional[bool] = ...,
|
|
reduce: Optional[bool] = ...,
|
|
reduction: str = ...,
|
|
) -> Tensor: ...
|
|
def upsample(
|
|
input: Any,
|
|
size: Optional[Any] = ...,
|
|
scale_factor: Optional[Any] = ...,
|
|
mode: str = ...,
|
|
align_corners: Optional[Any] = ...,
|
|
): ...
|
|
def interpolate(
|
|
input: Any,
|
|
size: Optional[Any] = ...,
|
|
scale_factor: Optional[Any] = ...,
|
|
mode: str = ...,
|
|
align_corners: Optional[Any] = ...,
|
|
recompute_scale_factor: Optional[Any] = ...,
|
|
antialias: bool = ...,
|
|
): ...
|
|
def upsample_nearest(
|
|
input: Any,
|
|
size: Optional[Any] = ...,
|
|
scale_factor: Optional[Any] = ...,
|
|
): ...
|
|
def upsample_bilinear(
|
|
input: Any,
|
|
size: Optional[Any] = ...,
|
|
scale_factor: Optional[Any] = ...,
|
|
): ...
|
|
def grid_sample(
|
|
input: Tensor,
|
|
grid: Tensor,
|
|
mode: str = ...,
|
|
padding_mode: str = ...,
|
|
align_corners: Optional[Any] = ...,
|
|
) -> Tensor: ...
|
|
def affine_grid(
|
|
theta: Tensor,
|
|
size: List[int],
|
|
align_corners: Optional[Any] = ...,
|
|
) -> Tensor: ...
|
|
def triplet_margin_loss(
|
|
anchor: Tensor,
|
|
positive: Tensor,
|
|
negative: Tensor,
|
|
margin: float = ...,
|
|
p: float = ...,
|
|
eps: float = ...,
|
|
swap: bool = ...,
|
|
size_average: Optional[bool] = ...,
|
|
reduce: Optional[bool] = ...,
|
|
reduction: str = ...,
|
|
) -> Tensor: ...
|
|
def triplet_margin_with_distance_loss(
|
|
anchor: Tensor,
|
|
positive: Tensor,
|
|
negative: Tensor,
|
|
*,
|
|
distance_function: Optional[Callable[[Tensor, Tensor], Tensor]] = ...,
|
|
margin: float = ...,
|
|
swap: bool = ...,
|
|
reduction: str = ...,
|
|
) -> Tensor: ...
|
|
def normalize(
|
|
input: Tensor,
|
|
p: float = ...,
|
|
dim: int = ...,
|
|
eps: float = ...,
|
|
out: Optional[Tensor] = ...,
|
|
) -> Tensor: ...
|
|
def assert_int_or_pair(
|
|
arg: Any,
|
|
arg_name: Any,
|
|
message: Any,
|
|
) -> None: ...
|
|
def unfold(
|
|
input: Tensor,
|
|
kernel_size: _size_any_t,
|
|
dilation: _size_any_t = ...,
|
|
padding: _size_any_t = ...,
|
|
stride: _size_any_t = ...,
|
|
) -> Tensor: ...
|
|
def fold(
|
|
input: Tensor,
|
|
output_size: _size_any_t,
|
|
kernel_size: _size_any_t,
|
|
dilation: _size_any_t = ...,
|
|
padding: _size_any_t = ...,
|
|
stride: _size_any_t = ...,
|
|
) -> Tensor: ...
|
|
def _canonical_mask(
|
|
mask: Optional[Tensor],
|
|
mask_name: str,
|
|
other_type: Optional[_dtype],
|
|
other_name: str,
|
|
target_type: _dtype,
|
|
check_other: bool = True,
|
|
) -> Optional[Tensor]: ...
|
|
def _none_or_dtype(input: Optional[Tensor]) -> Optional[_dtype]: ...
|
|
def multi_head_attention_forward(
|
|
query: Tensor,
|
|
key: Tensor,
|
|
value: Tensor,
|
|
embed_dim_to_check: int,
|
|
num_heads: int,
|
|
in_proj_weight: Optional[Tensor],
|
|
in_proj_bias: Optional[Tensor],
|
|
bias_k: Optional[Tensor],
|
|
bias_v: Optional[Tensor],
|
|
add_zero_attn: bool,
|
|
dropout_p: float,
|
|
out_proj_weight: Tensor,
|
|
out_proj_bias: Optional[Tensor],
|
|
training: bool = True,
|
|
key_padding_mask: Optional[Tensor] = None,
|
|
need_weights: bool = True,
|
|
attn_mask: Optional[Tensor] = None,
|
|
use_separate_proj_weight: bool = False,
|
|
q_proj_weight: Optional[Tensor] = None,
|
|
k_proj_weight: Optional[Tensor] = None,
|
|
v_proj_weight: Optional[Tensor] = None,
|
|
static_k: Optional[Tensor] = None,
|
|
static_v: Optional[Tensor] = None,
|
|
average_attn_weights: bool = True,
|
|
is_causal: bool = False,
|
|
) -> Tuple[Tensor, Optional[Tensor]]: ...
|
|
|
|
from .. import conv1d as conv1d
|
|
from .. import conv2d as conv2d
|
|
from .. import conv3d as conv3d
|
|
from .. import conv_transpose1d as conv_transpose1d
|
|
from .. import conv_transpose2d as conv_transpose2d
|
|
from .. import conv_transpose3d as conv_transpose3d
|
|
from .. import conv_tbc as conv_tbc
|
|
from .. import avg_pool1d as avg_pool1d
|
|
from .. import adaptive_avg_pool1d as adaptive_avg_pool1d
|
|
from .. import relu_ as relu_
|
|
from .. import selu_ as selu_
|
|
from .. import celu_ as celu_
|
|
from .. import prelu as prelu
|
|
from .. import rrelu_ as rrelu_
|
|
from .. import hardshrink as hardshrink
|
|
from .. import bilinear as bilinear
|
|
from .. import pixel_shuffle as pixel_shuffle
|
|
from .. import pixel_unshuffle as pixel_unshuffle
|
|
from .. import channel_shuffle as channel_shuffle
|
|
from .. import native_channel_shuffle as native_channel_shuffle
|
|
from .. import pairwise_distance as pairwise_distance
|
|
from .. import pdist as pdist
|
|
from .. import cosine_similarity as cosine_similarity
|
|
from .._C._nn import avg_pool2d as avg_pool2d
|
|
from .._C._nn import avg_pool3d as avg_pool3d
|
|
from .._C._nn import hardtanh_ as hardtanh_
|
|
from .._C._nn import elu_ as elu_
|
|
from .._C._nn import leaky_relu_ as leaky_relu_
|
|
from .._C._nn import gelu as gelu
|
|
from .._C._nn import softplus as softplus
|
|
from .._C._nn import softshrink as softshrink
|
|
from .._C._nn import linear as linear
|
|
from .._C._nn import pad as pad
|
|
from .._C._nn import one_hot as one_hot
|
|
from .._C._nn import scaled_dot_product_attention as scaled_dot_product_attention
|
|
from .._C._nn import log_sigmoid
|
|
logsigmoid = log_sigmoid
|
|
|
|
@overload
|
|
def adaptive_max_pool1d(input: Tensor, output_size: Union[_int, _size], return_indices: Literal[False] = False) -> Tensor: ...
|
|
@overload
|
|
def adaptive_max_pool1d(input: Tensor, output_size: Union[_int, _size], return_indices: Literal[True], /) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def adaptive_max_pool1d(input: Tensor, output_size: Union[_int, _size], *, return_indices: Literal[True]) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def adaptive_max_pool2d(input: Tensor, output_size: Union[_int, _size], return_indices: Literal[False] = False) -> Tensor: ...
|
|
@overload
|
|
def adaptive_max_pool2d(input: Tensor, output_size: Union[_int, _size], return_indices: Literal[True], /) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def adaptive_max_pool2d(input: Tensor, output_size: Union[_int, _size], *, return_indices: Literal[True]) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def adaptive_max_pool3d(input: Tensor, output_size: Union[_int, _size], return_indices: Literal[False] = False) -> Tensor: ...
|
|
@overload
|
|
def adaptive_max_pool3d(input: Tensor, output_size: Union[_int, _size], return_indices: Literal[True], /) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def adaptive_max_pool3d(input: Tensor, output_size: Union[_int, _size], *, return_indices: Literal[True]) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def fractional_max_pool2d(input: Tensor, kernel_size: Union[_int, _size], output_size: Optional[Union[_int, _size]] = None, output_ratio: Optional[_ratio_any_t] = None, return_indices: Literal[False] = False, _random_samples: Optional[Tensor] = None) -> Tensor: ...
|
|
@overload
|
|
def fractional_max_pool2d(input: Tensor, kernel_size: Union[_int, _size], output_size: Optional[Union[_int, _size]], output_ratio: Optional[_ratio_any_t], return_indices: Literal[True], /, _random_samples: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def fractional_max_pool2d(input: Tensor, kernel_size: Union[_int, _size], output_size: Optional[Union[_int, _size]] = None, output_ratio: Optional[_ratio_any_t] = None, *, return_indices: Literal[True], _random_samples: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def fractional_max_pool3d(input: Tensor, kernel_size: Union[_int, _size], output_size: Optional[Union[_int, _size]] = None, output_ratio: Optional[_ratio_any_t] = None, return_indices: Literal[False] = False, _random_samples: Optional[Tensor] = None) -> Tensor: ...
|
|
@overload
|
|
def fractional_max_pool3d(input: Tensor, kernel_size: Union[_int, _size], output_size: Optional[Union[_int, _size]], output_ratio: Optional[_ratio_any_t], return_indices: Literal[True], /, _random_samples: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def fractional_max_pool3d(input: Tensor, kernel_size: Union[_int, _size], output_size: Optional[Union[_int, _size]] = None, output_ratio: Optional[_ratio_any_t] = None, *, return_indices: Literal[True], _random_samples: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def max_pool1d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: bool = False, return_indices: Literal[False] = False) -> Tensor: ...
|
|
@overload
|
|
def max_pool1d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]], padding: Union[_int, _size], dilation: Union[_int, _size], ceil_mode: bool, return_indices: Literal[True], /) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def max_pool1d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: bool = False, *, return_indices: Literal[True]) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def max_pool2d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: bool = False, return_indices: Literal[False] = False) -> Tensor: ...
|
|
@overload
|
|
def max_pool2d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]], padding: Union[_int, _size], dilation: Union[_int, _size], ceil_mode: bool, return_indices: Literal[True], /) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def max_pool2d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: bool = False, *, return_indices: Literal[True]) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def max_pool3d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: bool = False, return_indices: Literal[False] = False) -> Tensor: ...
|
|
@overload
|
|
def max_pool3d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]], padding: Union[_int, _size], dilation: Union[_int, _size], ceil_mode: bool, return_indices: Literal[True], /) -> Tuple[Tensor, Tensor]: ...
|
|
@overload
|
|
def max_pool3d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: bool = False, *, return_indices: Literal[True]) -> Tuple[Tensor, Tensor]: ...
|